Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA105, 4283–4288 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366, 883–892 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gerlinger, M. & Swanton, C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer103, 1139–1143 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gatenby, R. A., Gillies, R. J. & Brown, J. S. Of cancer and cave fish. Nature Rev. Cancer11, 237–238 (2011). ArticleCAS Google Scholar
Gillies, R. J., Robey, I. & Gatenby, R. A. Causes and consequences of increased glucose metabolism of cancers. J. Nucl Med49 Suppl 2, 24S–42S (2008). ArticleCASPubMed Google Scholar
Allred, D. C. et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin. Cancer Res.14, 370–378 (2008). ArticleCASPubMed Google Scholar
Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nature Rev. Cancer8, 56–61 (2008). ArticleCAS Google Scholar
Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer4, 891–899 (2004). ArticleCAS Google Scholar
Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res.51, 3075–3079 (1991). CASPubMed Google Scholar
Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol.9, M57–M60 (1999). ArticleCASPubMed Google Scholar
Garber, J. E. & Offit, K. Hereditary cancer predisposition syndromes. J. Clin. Oncol.23, 276–292 (2005). ArticlePubMed Google Scholar
Chung, C. C. & Chanock, S. J. Current status of genome-wide association studies in cancer. Hum. Genet.130, 59–78 (2011). ArticlePubMed Google Scholar
Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability--an evolving hallmark of cancer. Nature Rev. Mol. Cell Biol.11, 220–228 (2010). ArticleCAS Google Scholar
Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA96, 1563–1568 (1999). ArticleCASPubMedPubMed Central Google Scholar
Michiels, F. M. et al. Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc. Natl Acad. Sci. USA94, 3330–3335 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380, 439–442 (1996). ArticleCASPubMed Google Scholar
Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science333, 1764–1767 (2011). ArticleCASPubMed Google Scholar
Goncharova, E. I., Nadas, A. & Rossman, T. G. Serum deprivation, but not inhibition of growth per se, induces a hypermutable state in Chinese hamster G12 cells. Cancer Res.56, 752–756 (1996). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Aggarwal, B. B., Vijayalekshmi, R. V. & Sung, B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin. Cancer Res.15, 425–430 (2009). ArticleCASPubMed Google Scholar
Papp-Szabo, E., Josephy, P. D. & Coomber, B. L. Microenvironmental influences on mutagenesis in mammary epithelial cells. Int. J. Cancer116, 679–685 (2005). ArticleCASPubMed Google Scholar
Reynolds, T. Y., Rockwell, S. & Glazer, P. M. Genetic instability induced by the tumor microenvironment. Cancer Res.56, 5754–5757 (1996). CASPubMed Google Scholar
Wilkinson, D., Sandhu, J. K., Breneman, J. W., Tucker, J. D. & Birnboim, H. C. Hprt mutants in a transplantable murine tumour arise more frequently in vivo than in vitro. Br. J. Cancer72, 1234–1240 (1995). ArticleCASPubMedPubMed Central Google Scholar
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell63, 1129–1136 (1990). ArticleCASPubMed Google Scholar
Brechot, C., Pourcel, C., Louise, A., Rain, B. & Tiollais, P. Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature286, 533–535 (1980). ArticleCASPubMed Google Scholar
Minamoto, T., Mai, M. & Ronai, Z. Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis20, 519–527 (1999). ArticleCASPubMed Google Scholar
DeMarini, D. M. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat. Res.567, 447–474 (2004). ArticleCASPubMed Google Scholar
Chitneni, S. K., Palmer, G. M., Zalutsky, M. R. & Dewhirst, M. W. Molecular imaging of hypoxia. J. Nucl. Med.52, 165–168 (2011). ArticleCASPubMed Google Scholar
Wykoff, C. C. et al. Expression of the hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. Am. J. Pathol.158, 1011–1019 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gillies, R. J. & Gatenby, R. A. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J. Bioenerg. Biomembr.39, 251–257 (2007). ArticleCASPubMed Google Scholar
Bristow, R. G. & Hill, R. P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nature Rev. Cancer8, 180–192 (2008). ArticleCAS Google Scholar
Lu, Y., Chu, A., Turker, M. S. & Glazer, P. M. Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol. Cell. Biol.31, 3339–3350 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mihaylova, V. T. et al. Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol. Cell. Biol.23, 3265–3273 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hammond, E. M., Dorie, M. J. & Giaccia, A. J. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J. Biol. Chem.278, 12207–12213 (2003). ArticleCASPubMed Google Scholar
Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature379, 88–91 (1996). ArticleCASPubMed Google Scholar
Shi, Q. et al. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin. Cancer Res.5, 3711–3721 (1999). CASPubMed Google Scholar
Bindra, R. S. & Glazer, P. M. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat. Res.569, 75–85 (2005). ArticleCASPubMed Google Scholar
Young, S. D., Marshall, R. S. & Hill, R. P. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc. Natl Acad. Sci. USA85, 9533–9537 (1988). ArticleCASPubMedPubMed Central Google Scholar
Rice, G. C., Hoy, C. & Schimke, R. T. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc. Natl Acad. Sci. USA83, 5978–5982 (1986). ArticleCASPubMedPubMed Central Google Scholar
Otsuka, J. The large-scale evolution by generating new genes from gene duplication; similarity and difference between monoploid and diploid organisms. J. Theor. Biol.278, 120–126 (2011). ArticlePubMed Google Scholar
van Sluis, R. et al. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med.41, 743–750 (1999). ArticleCASPubMed Google Scholar
Gillies, R. J., Liu, Z. & Bhujwalla, Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am. J. Physiol.267, C195–203 (1994). ArticleCASPubMed Google Scholar
Morita, T., Nagaki, T., Fukuda, I. & Okumura, K. Clastogenicity of low pH to various cultured mammalian cells. Mutat. Res.268, 297–305 (1992). ArticleCASPubMed Google Scholar
Zhang, H. Y., Hormi-Carver, K., Zhang, X., Spechler, S. J. & Souza, R. F. In benign Barrett's epithelial cells, acid exposure generates reactive oxygen species that cause DNA double-strand breaks. Cancer Res.69, 9083–9089 (2009). ArticleCASPubMedPubMed Central Google Scholar
Xiao, H., Li, T. K., Yang, J. M. & Liu, L. F. Acidic pH induces topoisomerase II-mediated DNA damage. Proc. Natl Acad. Sci. USA100, 5205–5210 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hashim, A. I., Zhang, X., Wojtkowiak, J. W., Martinez, G. V. & Gillies, R. J. Imaging pH and metastasis. NMR Biomed.24, 582–591 (2011). PubMedPubMed Central Google Scholar
Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nature Rev. Cancer11, 671–677 (2011). ArticleCAS Google Scholar
Radu, C. G., Nijagal, A., McLaughlin, J., Wang, L. & Witte, O. N. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc. Natl Acad. Sci. USA102, 1632–1637 (2005). ArticleCASPubMedPubMed Central Google Scholar
Leffler, A., Monter, B. & Koltzenburg, M. The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice. Neuroscience139, 699–709 (2006). ArticleCASPubMed Google Scholar
Dong, X. et al. Expression of acid-sensing ion channels in intestinal epithelial cells and their role in the regulation of duodenal mucosal bicarbonate secretion. Acta Physiol. (Oxf.)201, 97–107 (2011). ArticleCAS Google Scholar
Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science325, 1555–1559 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rose, C. J. et al. Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn. Reson. Med.62, 488–499 (2009). ArticlePubMed Google Scholar
Kawata, Y. et al. Quantitative classification based on CT histogram analysis of non-small cell lung cancer: Correlation with histopathological characteristics and recurrence-free survival. Med. Phys.39, 988 (2012). ArticlePubMed Google Scholar
Drew, P. J. et al. Dynamic contrast enhanced magnetic resonance imaging of the breast is superior to triple assessment for the pre-operative detection of multifocal breast cancer. Ann. Surg. Oncol.6, 599–603 (1999). ArticleCASPubMed Google Scholar
Knopp, M. V., Giesel, F. L., Marcos, H., von Tengg-Kobligk, H. & Choyke, P. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top. Magn. Reson. Imag.12, 301–308 (2001). ArticleCAS Google Scholar
Lamer, S. et al. Radiologic assessment of intranodal vascularity in head and neck squamous cell carcinoma. Correlation with histologic vascular density. Invest. Radiol31, 673–679 (1996). ArticleCASPubMed Google Scholar
Venkatasubramanian, R., Arenas, R. B., Henson, M. A. & Forbes, N. S. Mechanistic modelling of dynamic MRI data predicts that tumour heterogeneity decreases therapeutic response. Br. J. Cancer103, 486–497 (2010). ArticleCASPubMedPubMed Central Google Scholar
Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med.3, 177–182 (1997). ArticleCASPubMed Google Scholar
Kimura, H. et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res.56, 5522–5528 (1996). CASPubMed Google Scholar
Costouros, N. G. et al. Microarray gene expression analysis of murine tumor heterogeneity defined by dynamic contrast-enhanced MRI. Mol. Imag.1, 301–308 (2002). ArticleCAS Google Scholar
Guccione, S. et al. Functional genomics guided with MR imaging: mouse tumor model study. Radiology228, 560–568 (2003). ArticlePubMed Google Scholar
Hobbs, S. K. et al. Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J. Magn. Reson. Imag.18, 530–536 (2003). Article Google Scholar
Winge, O. Zytologische untersuchungen uber die natur maligner tumoren. II. Teerkarzinome bei mausen. Z. Zellforsch. Mikrosk. Anat.10, 683–735 (1930). Article Google Scholar
Sandberg, A. A. & Hossfeld, D. K. Chromosomal abnormalities in human neoplasia. Annu. Rev. Med.21, 379–408 (1970). ArticleCASPubMed Google Scholar
Bakhoum, S. F., Danilova, O. V., Kaur, P., Levy, N. B. & Compton, D. A. Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clin. Cancer Res.17, 7704–7711 (2011). ArticleCASPubMedPubMed Central Google Scholar
Loeb, L. A. Human cancers express mutator phenotypes: origin, consequences and targeting. Nature Rev. Cancer11, 450–457 (2011). ArticleCAS Google Scholar
Araujo, R. P., Liotta, L. A. & Petricoin, E. F. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nature Rev. Drug Discov.6, 871–880 (2007). ArticleCAS Google Scholar
Lage, H. An overview of cancer multidrug resistance: a still unsolved problem. Cell. Mol. Life Sci.65, 3145–3167 (2008). ArticleCASPubMed Google Scholar
Marty, M. et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J. Clin. Oncol.23, 4265–4274 (2005). ArticleCASPubMed Google Scholar
Mahtani, R. L. & Vogel, C. L. Pleomorphic lobular carcinoma of the breast: four long-term responders to trastuzumab--coincidence or hint? J. Clin. Oncol.26, 5823–5824 (2008). ArticlePubMed Google Scholar
Untch, M. et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups. J. Clin. Oncol.29, 3351–3357 (2011). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med.355, 2408–2417 (2006). ArticleCASPubMed Google Scholar
Engelman, J. A. & Settleman, J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr. Opin. Genet. Dev.18, 73–79 (2008). ArticleCASPubMed Google Scholar
Aktipis, C. A., Kwan, V. S., Johnson, K. A., Neuberg, S. L. & Maley, C. C. Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research. PLoS ONE6, e26100 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
O'Hare, T., Corbin, A. S. & Druker, B. J. Targeted CML therapy: controlling drug resistance, seeking cure. Curr. Opin. Genet. Dev.16, 92–99 (2006). ArticleCASPubMed Google Scholar
Blackwell, K. L. et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol.28, 1124–1130 (2010). ArticleCASPubMed Google Scholar
Massarweh, S. & Schiff, R. Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. Endocr. Relat. Cancer13 Suppl. 1, 15–24 (2006). ArticleCAS Google Scholar
Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med.366, 520–529 (2012). ArticleCASPubMed Google Scholar
Komarova, N. L. & Wodarz, D. Drug resistance in cancer: principles of emergence and prevention. Proc. Natl Acad. Sci. USA102, 9714–9719 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chmielecki, J. et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med3, 90ra59 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gatenby, R. A., Brown, J. & Vincent, T. Lessons from applied ecology: cancer control using an evolutionary double bind. Cancer Res.69, 7499–7502 (2009). ArticleCASPubMed Google Scholar
Mirski, S. E., Gerlach, J. H. & Cole, S. P. Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res.47, 2594–2598 (1987). CASPubMed Google Scholar
Abrahamsson, P. A. Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: a systematic review of the literature. Eur. Urol.57, 49–59 (2010). ArticleCASPubMed Google Scholar
Beex, L. et al. Continuous versus intermittent tamoxifen versus intermittent/alternated tamoxifen and medroxyprogesterone acetate as first line endocrine treatment in advanced breast cancer: an EORTC phase III study (10863). Eur. J. Cancer42, 3178–3185 (2006). ArticleCASPubMed Google Scholar
Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med.238, 787–793 (1948). ArticleCASPubMed Google Scholar
De Bock, K., Mazzone, M. & Carmeliet, P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nature Rev. Clin. Oncol.8, 393–404 (2011). ArticleCAS Google Scholar
Iwamoto, F. M. et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology73, 1200–1206 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jain, R. K. Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nature Rev. Cancer8, 309–316 (2008). ArticleCAS Google Scholar
Goel, S. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev.91, 1071–1121 (2011). ArticleCASPubMed Google Scholar
Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med3, 94ra70 (2011). CASPubMedPubMed Central Google Scholar
Ganapathy-Kanniappan, S. et al. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr. Pharm. Biotechnol.11, 510–517 (2010). ArticleCASPubMed Google Scholar
Michelakis, E. D., Webster, L. & Mackey, J. R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer99, 989–994 (2008). ArticleCASPubMedPubMed Central Google Scholar
Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl Acad. Sci. USA107, 2037–2042 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B. & Gillies, R. J. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res.66, 5216–5223 (2006). ArticleCASPubMed Google Scholar
Hashim, A. I. et al. Sytemic buffers inhibit carcinogenesis in TRAMP mice. J. Urology (2012). (in press Jan, </pub>2012).
Ibrahim Hashim, A. et al. Reduction of metastasis using a non-volatile buffer. Clin Exp Metastasis (2011).
Wojtkowiak, J. W., Verduzco, D., Schramm, K. J. & Gillies, R. J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm.8, 2032–2038 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ghobrial, I. M., Witzig, T. E. & Adjei, A. A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin.55, 178–194 (2005). ArticlePubMed Google Scholar
Ludwig, H., Khayat, D., Giaccone, G. & Facon, T. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer104, 1794–1807 (2005). ArticleCASPubMed Google Scholar
Madhok, B. M., Yeluri, S., Perry, S. L., Hughes, T. A. & Jayne, D. G. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br. J. Cancer102, 1746–1752 (2010). ArticleCASPubMedPubMed Central Google Scholar
Holoch, P. A. & Griffith, T. S. TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur. J. Pharmacol.625, 63–72 (2009). ArticleCASPubMedPubMed Central Google Scholar
Smolewski, P. Recent developments in targeting the mammalian target of rapamycin (mTOR) kinase pathway. Anticancer Drugs17, 487–494 (2006). ArticleCASPubMed Google Scholar
Agulnik, M. New developments in mammalian target of rapamycin inhibitors for the treatment of sarcoma. Cancer118, 1486–1497 (2012). ArticleCASPubMed Google Scholar
Pouget, J. P. et al. Clinical radioimmunotherapy--the role of radiobiology. Nature Rev. Clin. Oncol.8, 720–734 (2011). ArticleCAS Google Scholar
Richman, C. M. et al. High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, m170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin. Cancer Res.11, 5920–5927 (2005). ArticleCASPubMed Google Scholar
Behr, T. M. et al. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab' fragments in a human colonic cancer model. Cancer Res.59, 2635–2643 (1999). CASPubMed Google Scholar
Chatal, J. F., Davodeau, F., Cherel, M. & Barbet, J. Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors. J. Cancer Res. Ther.5 Suppl. 1, S36–40 (2009). ArticleCASPubMed Google Scholar
Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nature Rev. Cancer11, 393–410 (2011). ArticleCAS Google Scholar
Duan, J. X. et al. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J. Med. Chem.51, 2412–2420 (2008). ArticleCASPubMed Google Scholar
Meng, F. et al. Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol. Cancer Ther.6, 6 (2011). Google Scholar
Sun, J. D. et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin. Cancer Res.18, 758–770 (2011). ArticlePubMed Google Scholar
Tian, L. & Bae, Y. H. Cancer nanomedicines targeting tumor extracellular pH. Colloids Surf B Biointerfaces DOI colsurfb.2011.10.039 (2011).
Kaminskas, L. M. et al. Doxorubicin-conjugated PEGylated dendrimers show similar tumoricidal activity but lower systemic toxicity when compared to PEGylated liposome and solution formulations in mouse and rat tumor models. Mol. Pharm.9, 422–432 (2012). ArticleCASPubMed Google Scholar
Gatenby, R. A. & Vincent, T. L. Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies. Mol. Cancer Ther.2, 919–927 (2003). CASPubMed Google Scholar
Casanueva, M. O., Burga, A. & Lehner, B. Fitness trade-offs and environmentally induced mutation buffering in isogenic C. elegans. Science335, 82–85 (2012). ArticleCASPubMed Google Scholar