Tracking cells in their native habitat: lineage tracing in epithelial neoplasia (original) (raw)
Jones, P. H., Harper, S. & Watt, F. M. Stem cell patterning and fate in human epidermis. Cell80, 83–93 (1995). CASPubMed Google Scholar
Li, A., Simmons, P. J. & Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA95, 3902–3907 (1998). CASPubMedPubMed Central Google Scholar
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet.21, 70–71 (1999). CASPubMed Google Scholar
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol.166, 4 (2001). Google Scholar
Hoess, R. H. & Abremski, K. Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J. Mol. Biol.181, 351–362 (1985). CASPubMed Google Scholar
Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis26, 99–109 (2000). CASPubMed Google Scholar
Badea, T. C. et al. New mouse lines for the analysis of neuronal morphology using CreER(T)/loxP-directed sparse labeling. PLoS ONE466, e7859 (2009). Google Scholar
Ireland, H. et al. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin. Gastroenterology126, 1236–1246 (2004). CASPubMed Google Scholar
Kemp, R. et al. Elimination of background recombination: somatic induction of Cre by combined transcriptional regulation and hormone binding affinity. Nucleic Acids Res.3266, e92 (2004). Google Scholar
Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science269, 1427–1429 (1995). CASPubMed Google Scholar
Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res.23, 1686–1690 (1995). CASPubMedPubMed Central Google Scholar
Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA96, 8551–8556 (1999). CASPubMedPubMed Central Google Scholar
Hirrlinger, J. et al. Split-cre complementation indicates coincident activity of different genes in vivo. PLoS ONE466, e4286 (2009). Google Scholar
Beckervordersandforth, R. et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell7, 744–758 (2010). CASPubMed Google Scholar
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell143, 134–144 (2010). A multicolour confetti mouse enables quantitative lineage analysis in the intestine, revealing the role of restricted niche size in maintaining the epithelium. CASPubMed Google Scholar
Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature450, 56–62 (2007). CASPubMed Google Scholar
Murray, S. A., Eppig, J. T., Smedley, D., Simpson, E. M. & Rosenthal, N. Beyond knockouts: cre resources for conditional mutagenesis. Mamm. Genome23, 587–599 (2012). PubMedPubMed Central Google Scholar
Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature446, 185–189 (2007). The first study to use large-scale lineage tracing to quantify cell behaviourin vivo, revealing a new paradigm of tissue homeostasis. CASPubMed Google Scholar
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature449, 1003–1007 (2007). Targeting an inducible Cre to a WNT target gene reveals that intestinal epithelium is maintained by stem cells at the base of the crypt. CASPubMed Google Scholar
Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell9, 855–861 (2005). CASPubMed Google Scholar
van Amerongen, R., Bowman, A. N. & Nusse, R. Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell11, 387–400 (2012). CASPubMed Google Scholar
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature457, 608–611 (2009). CASPubMed Google Scholar
Youssef, K. K. et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biol.12, 299–305 (2010). CASPubMed Google Scholar
Heffner, C. S. et al. Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nature Commun.366, 1218 (2012). Google Scholar
Lapouge, G. et al. Identifying the cellular origin of squamous skin tumors. Proc. Natl Acad. Sci. USA108, 7431–7436 (2011). CASPubMedPubMed Central Google Scholar
Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature489, 257–262 (2012). CASPubMed Google Scholar
Wong, V. W. et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biol.14, 401–408 (2012). CASPubMed Google Scholar
Backman, C. M. et al. Generalized tetracycline induced Cre recombinase expression through the ROSA26 locus of recombinant mice. J. Neurosci. Methods176, 16–23 (2009). PubMed Google Scholar
Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl Acad. Sci. USA98, 9209–9214 (2001). CASPubMedPubMed Central Google Scholar
Zhu, J., Nguyen, M. T., Nakamura, E., Yang, J. & Mackem, S. Cre-mediated recombination can induce apoptosis in vivo by activating the p53 DNA damage-induced pathway. Genesis50, 102–111 (2012). CASPubMedPubMed Central Google Scholar
Huh, W. J. et al. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology142, 21–24.e27 (2012). CASPubMed Google Scholar
Lee, M. H. et al. Gene expression profiling of murine hepatic steatosis induced by tamoxifen. Toxicol. Lett.199, 416–424 (2010). CASPubMed Google Scholar
Barker, N., van Oudenaarden, A. & Clevers, H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell11, 452–460 (2012). CASPubMed Google Scholar
Tao, W. et al. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not. Stem Cells25, 670–678 (2007). CASPubMed Google Scholar
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol.22, 1567–1572 (2004). CAS Google Scholar
Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nature Biotechnol.29, 757–761 (2011). CAS Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol.22, 411–417 (2004). CAS Google Scholar
Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med.11, 1351–1354 (2005). CASPubMed Google Scholar
Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEBJ.21, 1358–1366 (2007). CAS Google Scholar
Jensen, K. B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell4, 427–439 (2009). CASPubMedPubMed Central Google Scholar
Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science327, 1385–1389 (2010). CASPubMed Google Scholar
Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet.40, 915–920 (2008). CASPubMed Google Scholar
Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell118, 517–528 (2004). CASPubMed Google Scholar
Doupe, D. P., Klein, A. M., Simons, B. D. & Jones, P. H. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev. Cell18, 317–323 (2010). CASPubMed Google Scholar
Klein, A. M., Doupe, D. P., Jones, P. H. & Simons, B. D. Kinetics of cell division in epidermal maintenance. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.7666, 021910 (2007). Google Scholar
Roshan, A. & Jones, P. H. Act your age: tuning cell behavior to tissue requirements in interfollicular epidermis. Semin. Cell Dev. Biol.23, 884–889 (2012). PubMed Google Scholar
Jones, P. & Simons, B. D. Epidermal homeostasis: do committed progenitors work while stem cells sleep? Nature Rev. Mol. Cell Biol.9, 82–88 (2008). CAS Google Scholar
Marques-Pereira, J. P. & Leblond, C. P. Mitosis and differentiation in the stratified squamous epithelium of the rat esophagus. Am. J. Anat.117, 73–87 (1965). CASPubMed Google Scholar
Goetsch, E. The structure of the mammalian esophagus. Am. J. Anat.10, 1–39 (1910). Google Scholar
Doupe, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science337, 1091–1093 (2012). Lineage tracing and other approaches reveal that murine oesophagus has no quiescent stem cells, and is healed by the same progenitor cells that maintain the tissue. CASPubMedPubMed Central Google Scholar
Jones, P. H. Stem cell fate in proliferating tissues: equal odds in a game of chance. Dev. Cell19, 489–490 (2010). CASPubMed Google Scholar
Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science334, 1420–1424 (2011). CASPubMedPubMed Central Google Scholar
Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature478, 255–259 (2011). CASPubMedPubMed Central Google Scholar
Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell149, 146–158 (2012). CASPubMedPubMed Central Google Scholar
Montgomery, R. K. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl Acad. Sci. USA108, 179–184 (2011). CASPubMed Google Scholar
Munoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J.31, 3079–3091 (2012). CASPubMedPubMed Central Google Scholar
van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biol.14, 1099–1104 (2012). CASPubMed Google Scholar
Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer6, 963–968 (1953). CASPubMed Google Scholar
Nowell, P. C. The clonal evolution of tumor cell populations. Science194, 23–28 (1976). CASPubMed Google Scholar
Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA93, 14025–14029 (1996). CASPubMedPubMed Central Google Scholar
Klein, A. M., Brash, D. E., Jones, P. H. & Simons, B. D. Stochastic fate of p53-mutant epidermal progenitor cells is tilted toward proliferation by UV B during preneoplasia. Proc. Natl Acad. Sci. USA107, 270–275 (2010). Quantitative analysis reveals that UV light drives the exponential expansion of p53-mutant clones in mouse and human epidermis. CASPubMed Google Scholar
Remenyik, E., Wikonkal, N. M., Zhang, W., Paliwal, V. & Brash, D. E. Antigen-specific immunity does not mediate acute regression of UVB-induced p53-mutant clones. Oncogene22, 6369–6376 (2003). CASPubMed Google Scholar
Zhang, W., Remenyik, E., Zelterman, D., Brash, D. E. & Wikonkal, N. M. Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc. Natl Acad. Sci. USA98, 13948–13953 (2001). CASPubMedPubMed Central Google Scholar
Bennett, W. P. et al. p53 mutation and protein accumulation during multistage human esophageal carcinogenesis. Cancer Res.52, 6092–6097 (1992). CASPubMed Google Scholar
Dainichi, T. et al. Chemical peeling by SA-PEG remodels photo-damaged skin: suppressing p53 expression and normalizing keratinocyte differentiation. J. Invest. Dermatol.126, 416–421 (2006). CASPubMed Google Scholar
El-Domyati, M. M. et al. Effect of laser resurfacing on p53 expression in photoaged facial skin. Dermatol. Surg.33, 668–675 (2007). CASPubMed Google Scholar
Cozzi, S. J. et al. Ingenol mebutate field-directed treatment of UVB-damaged skin reduces lesion formation and removes mutant p53 patches. J. Invest. Dermatol.132, 1263–1271 (2011). PubMed Google Scholar
Rebel, H. G., Bodmann, C. A., van de Glind, G. C. & de Gruijl, F. R. UV-induced ablation of the epidermal basal layer including p53-mutant clones resets UV carcinogenesis showing squamous cell carcinomas to originate from interfollicular epidermis. Carcinogenesis33, 714–720 (2012). CASPubMed Google Scholar
Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature488, 527–530 (2012). Benign epidermal tumours result from the mobilization of stem- and progenitor-like cells, analogous to wound healing. CASPubMedPubMed Central Google Scholar
Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science337, 730–735 (2012). Multicolour lineage tracing reveals that adenoma growth is underpinned byLgr5-expressing cells that have escaped the confines of the niche. CASPubMed Google Scholar
Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469, 415–418 (2011). CASPubMed Google Scholar
Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nature Rev. Cancer1, 55–67 (2001). CAS Google Scholar
Nakanishi, Y. et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nature Genet.45, 98–103 (2012). PubMed Google Scholar
Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med.315, 1650–1659 (1986). CASPubMed Google Scholar
Schafer, M. & Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nature Rev. Mol. Cell Biol.9, 628–638 (2008). CAS Google Scholar
Arwert, E. N., Hoste, E. & Watt, F. M. Epithelial stem cells, wound healing and cancer. Nature Rev. Cancer12, 170–180 (2012). CAS Google Scholar
Merlos-Suarez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell8, 511–524 (2011). CASPubMed Google Scholar
Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biol.12, 468–476 (2010). CASPubMed Google Scholar
Vermeulen, L. et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl Acad. Sci. USA105, 13427–13432 (2008). CASPubMedPubMed Central Google Scholar
Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology141, 1762–1772 (2011). CASPubMed Google Scholar
Grachtchouk, M. et al. Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J. Clin. Invest.121, 1768–1781 (2011). CASPubMedPubMed Central Google Scholar
Wang, G. Y., Wang, J., Mancianti, M. L. & Epstein, E. H. Jr. Basal cell carcinomas arise from hair follicle stem cells in Ptch1+/− mice. Cancer Cell19, 114–124 (2011). CASPubMedPubMed Central Google Scholar
White, A. C. et al. Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc. Natl Acad. Sci. USA108, 7425–7430 (2011). CASPubMedPubMed Central Google Scholar
Youssef, K. K. et al. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nature Cell Biol.14, 1282–1294 (2012). CASPubMed Google Scholar
Seykora, J. T. & Cotsarelis, G. Keratin 15-positive stem cells give rise to basal cell carcinomas in irradiated Ptch1+/− mice. Cancer Cell19, 5–6 (2011). CASPubMedPubMed Central Google Scholar
Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell148, 349–361 (2012). Lineage tracing in a pancreatic cancer model reveals that cells acquire an invasive and metastatic phenotype before detectable tumour formation. CASPubMedPubMed Central Google Scholar
Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell21, 822–835 (2012). CASPubMedPubMed Central Google Scholar
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366, 883–892 (2012). CASPubMedPubMed Central Google Scholar
Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature469, 356–361 (2011). CASPubMed Google Scholar
Merlo, L. M. et al. A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev. Res.3, 1388–1397 (2010). Google Scholar
McCaughan, F. et al. Genomic evidence of pre-invasive clonal expansion, dispersal and progression in bronchial dysplasia. J. Pathol.224, 153–159 (2011). CASPubMedPubMed Central Google Scholar
Klein, A. M. & Simons, B. D. Universal patterns of stem cell fate in cycling adult tissues. Development138, 3103–3111 (2011). CASPubMed Google Scholar
Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a neutral drift. Science330, 822–825 (2010). CASPubMed Google Scholar
Simons, B. D. & Clevers, H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell145, 851–862 (2011). CASPubMed Google Scholar