DNA and its associated processes as targets for cancer therapy (original) (raw)
Slapak, C. A. & Kufe, D. W. in Harrison's Principles of Internal Medicine 14th edn (eds Isselbacher, K. J. et al.) 523–537 (McGraw–Hill, Inc. (Health Professions Div., New York, 1998). Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med344, 1031–1037 (2001). ArticleCASPubMed Google Scholar
Kohn, K. Beyond DNA cross-linking: history and prospects of DNA–targeted cancer treatment. Fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res.56, 5533–5546 (1996). CASPubMed Google Scholar
Infield, G. B. Disaster at Bari (Macmillan, New York, 1971). Google Scholar
Ward, K. Jr. The chlorinated ethylamines: a new type of vesicant. J. Am. Chem. Soc.57, 914–916 (1935). ArticleCAS Google Scholar
Gilman, A. & Philips, F. S. The biological actions and therapeutic applications of β-chloroethyl amines and sulfides. Science103, 409–415 (1946). ArticleCASPubMed Google Scholar
Goodman, L. S., Wintrobe, M. M., Dameshek, W., Goodman, J. J. & Gilman, A. Nitrogen mustard therapy. Use of methyl-bis(β-chloroethylamine hydrocholoride) and tris(β–chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA132, 126–132 (1946).The first report of clinical results from 67 patients treated with nitrogen mustards for Hodgkin's disease, lymphosarcoma and leukaemia. Some marked improvements were found, but the margin of safety was narrow. ArticleCAS Google Scholar
Clark, A. S. et al. Antitumor imidazotetrazines. 32. Synthesis of novel imidazotetrazinones and related bicyclic heterocycles to probe the mode of action of the antitumor drug temozolomide. J. Med. Chem.38, 1493–1504 (1995). ArticleCASPubMed Google Scholar
Goldacre, R. J., Loveless, A. & Ross, W. C. The mode of production of chromosome abnormalities by nitrogen mustard: possible role of crosslinking. Nature163, 667–669 (1949). ArticleCASPubMed Google Scholar
Wang, K., Ramji, S., Bhathena, A., Lee, C. & Riddick, D. S. Glutathione _S_-transferases in wild-type and doxorubicin-resistant MCF-7 human breast cancer cell lines. Xenobiotica29, 155–170 (1999). ArticleCASPubMed Google Scholar
Smith, S. Technology evaluation: SGN–15, Seattle Genetics Inc. Curr. Opin. Mol. Ther.3, 295–302 (2001). CASPubMed Google Scholar
Syrigos, K. N. & Epenetos, A. A. Antibody directed enzyme prodrug therapy (ADEPT): a review of the experimental and clinical considerations. Anticancer Res.19, 605–613 (1999). CASPubMed Google Scholar
Dorr, R. T. & Von Hoff, D. D. Cancer Chemotherapy Handbook (Appleton & Lange, Norwalk, Connecticut, 1994). Google Scholar
Gottesfeld, J. M., Turner, J. M. & Dervan, P. B. Chemical approaches to control gene expression. Gene Expr.9, 77–91 (2000). ArticleCASPubMed Google Scholar
Giovannangeli, C. & Hélène, C. Triplex-forming molecules for modulation of DNA information processing. Curr. Opin. Mol. Ther.2, 288–297 (2000). CASPubMed Google Scholar
Neidle, S. The molecular basis for the action of some DNA-binding drugs. Prog. Med. Chem.16, 151–221 (1979). ArticleCASPubMed Google Scholar
Minford, J. et al. Isolation of intercalator-dependent protein-linked DNA strand cleavage activity from cell nuclei and identification as topoisomerase II. Biochemistry25, 9–16 (1986).The protein linked to the intercalator DNA strand-cleaved product was shown to be topoisomerase II. ArticleCASPubMed Google Scholar
Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D. & Liu, L. F. Adriamycin-induced DNA damage mediate by mammalian DNA topoisomerase II. Science226, 466–468 (1984).In a cell-free system, doxorubicin is shown to produce topoisomerase-II-mediated cleavage of DNA, inferring that this drug affects the breakage–reunion reaction by stabilizing the cleavable complex. ArticleCASPubMed Google Scholar
Henderson, D. & Hurley, L. H. Molecular struggle for transcriptional control. Nature Med.1, 525–527 (1995). ArticleCASPubMed Google Scholar
Zhong, D., Pal, S. K., Wan, C. & Zewail, A. H. Femtosecond dynamics of a drug–protein complex: daunomycin with Apo riboflavin-binding protein. Proc. Natl Acad. Sci. USA98, 11873–11878 (2001). ArticleCASPubMedPubMed Central Google Scholar
Reich, E. & Goldberg, I. H. Actinomycin and nucleic acid function. Prog. Nucleic Acid Res. Mol. Biol.3, 183–234 (1964). ArticleCASPubMed Google Scholar
Muller, W. & Crothers, D. M. Studies of the binding of actinomycin and related compounds to DNA. J. Mol. Biol.35, 251–290 (1968). ArticleCASPubMed Google Scholar
Sobell, H. M., Jain, S. C., Sakore, T. D. & Nordman, C. E. Stereochemistry of actinomycin–DNA binding. Nature New Biol.231, 200–205 (1971). ArticleCASPubMed Google Scholar
Zimmer, C. & Wahnert, U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Mol. Biol.47, 31–112 (1986). ArticleCASPubMed Google Scholar
Thuong, N. & Hélène, C. Sequence specific recognition and modification of double helical DNA by oligonucleotides. Angew. Chem. Int. Ed. Engl.32, 666–690 (1993). Article Google Scholar
Strobel, S. A., Doucette–Stamm, L. A., Riba, L., Houseman, D. E. & Dervan, P. B. Site specific cleavage of human chromosome 4 mediated by triple helix formation. Science254, 1639–1642 (1991). ArticleCASPubMed Google Scholar
Han, H. & Hurley, L. H. G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol. Sci.21, 136–142 (2000). ArticleCASPubMed Google Scholar
Kerwin, S. M. G-quadruplex DNA as a target for drug design. Curr. Pharm. Des.6, 441–471 (2000). ArticleCASPubMed Google Scholar
Sun, D. et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem.40, 2113–2116 (1997). ArticleCASPubMed Google Scholar
Broggini, M. & D'Incalci, M. Modulation of transcription factor–DNA interactions by anticancer drugs. Anticancer Drug Des9, 373–387 (1994). CASPubMed Google Scholar
Gniazdowski, M. & Czyz, M. Transcription factors as targets of anticancer drugs. Acta Biochim. Pol.46, 255–262 (1999). ArticleCASPubMed Google Scholar
Pourquier, P. & Pommier, Y. Topoisomerase I-mediated DNA damage. Adv. Cancer Res.80, 189–216 (2001). ArticleCASPubMed Google Scholar
Nitiss, J. L. Investigating the biological functions of DNA topoisomerase in eukaryotic cells. Biochim. Biophys. Acta1400, 63–81 (1998). ArticleCASPubMed Google Scholar
Vladu, B. et al. 7- and 10-substituted camptothecins: dependence of topoisomerase I–DNA cleavable complex formation and stability on the 7- and 10-substituents. Mol. Pharmacol.57, 243–251 (2000). CASPubMed Google Scholar
Pommier, Y. in Cancer Therapeutics: Experimental and Clinical Agents (ed. Teicher, B. A.) 153–173 (Humana, Totowa, New Jersey, 1997). Book Google Scholar
Rosenberg, B. & Camp, L. V. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature205, 698–699 (1965). ArticleCASPubMed Google Scholar
Bellon, S. F., Coleman, J. H. & Lippard, S. J. DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug _cis_-diamminedichloroplatinum(II). Biochemistry30, 8026–8035 (1991). ArticleCASPubMed Google Scholar
Brown, S. J., Kellett, P. J. & Lippard, S. J. Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science261, 603–605 (1993). ArticleCASPubMed Google Scholar
Treiber, D. K., Zhai, X., Jantzen, H.-M. & Essigmann, J. M. Cisplatin–DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). Proc. Natl Acad. Sci. USA91, 5672–5676 (1994).The authors introduce the idea that drugs that distort DNA, such as cisplatin, might result in high-affinity binding sites for transcriptional factors and so act as molecular decoys for them. ArticleCASPubMedPubMed Central Google Scholar
Jamieson, E. R. & Lippard, S. J. Structure, recognition, and processing of cisplatin–DNA adducts. Chem. Rev.99, 2467–2498 (1999). ArticleCASPubMed Google Scholar
Thompson, A. S., Sun, D. & Hurley, L. H. Monoalkylation and cross-linking of DNA by cyclopropapyrroloindoles entraps bent and straight forms of A-tract. J. Am. Chem. Soc.117, 2371–2372 (1995). ArticleCAS Google Scholar
Sun, D. & Hurley, L. H. Cooperative bending of the 21-base-pair repeats of the SV40 viral early promoter by human Sp1. Biochemistry33, 9578–9587 (1994). ArticleCASPubMed Google Scholar
Rinehart, K. L. et al. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinate. J. Org. Chem.55, 4512–4515 (1990). ArticleCAS Google Scholar
Zewail-Foote, M. et al. The inefficiency of incisions of Ecteinascidin 743–DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. Chem. Biol.8, 1033–1049 (2001). ArticleCASPubMed Google Scholar
Garcia-Nieto, R., Manzanares, I., Cuevas, C. & Gago, F. Increased DNA binding specificity for antitumor ecteinascidin 743 through protein–DNA interactions? J. Med. Chem.43, 4367–4369 (2000). ArticleCASPubMed Google Scholar
Zewail-Foote, M. & Hurley, L. H. Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove. J. Med. Chem.42, 2943–2947 (1999). | PubMed | ArticleCAS Google Scholar
Takebayashi, Y. et al. Antiproliferative activity of Ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nature Med.7, 961–966 (2001).The unique mechanism of action of Et-743 is shown to involve TC-NER: the drug-trapped complex results in single-stranded breaks in DNA. ArticleCASPubMed Google Scholar
Erba, E. et al. Ecteinascidin-743 (ET–743), a natural marine compound, with a unique mechanism of action. Eur. J. Cancer37, 97–105 (2001). ArticleCASPubMed Google Scholar
Reed, E. Platinum–DNA adduct, nucleotide excision repair, and platinum-based anti-cancer chemotherapy. Cancer Treat. Rev.24, 331–344 (1998). ArticleCASPubMed Google Scholar
Jin, S. Gorfajn, B., Faircloth, G. & Scotto, K. W. Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc. Natl Acad. Sci. USA97, 6775–6779 (2000). ArticleCASPubMedPubMed Central Google Scholar
Synold, T. W., Dussault, I. & Forman, B. M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nature Med.7, 584–590 (2001). ArticleCASPubMed Google Scholar
Minuzzo, M. et al. Interference of transcriptional activation by the antineoplastic drug Ecteinascidin-743. Proc. Natl Acad. Sci. USA97, 6780–6784 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hansen, M. & Hurley, L. H. Pluramycins. Old drugs having modern friends in structural biology. Acc. Chem. Res.29, 249–258 (1996). ArticleCAS Google Scholar
Hélène, C. Sequence-selective recognition and cleavage of double-helical DNA. Curr. Opin. Biotechnol.4, 29–36 (1993). ArticlePubMed Google Scholar
Pelton, J. G. & Wemmer, D. E. Structural characterization of a 2-1 distamycin A●d(CGCAAATTTGGC)2 complex by two-dimensional NMR. Proc. Natl Acad. Sci. USA86, 5723–5727 (1989). The first report of the side-by-side or 2:1 ligand:DNA complex that was determined by nuclear magnetic resonance. This was the clue that the Dervan lab needed to explain the unexpected footprinting pattern observed in gels in which the same 2:1 antiparallel side-by-side dimer was present (see reference90). ArticleCASPubMedPubMed Central Google Scholar
Dervan, P. B. & Bürli, R. W. Sequence-specific DNA recognition by polyamides. Curr Opin Chem Biol3, 688–693 (1999). ArticleCASPubMed Google Scholar
Trauger, J. W., Baird, E. E., Mrksich, M. & Dervan, P. B. Extension of sequence-specific recognition in the minor groove of DNA by pyrrole–imidazole polyamides to 9–13 base pairs. J. Am. Chem. Soc.118, 6160–6166 (1996). ArticleCAS Google Scholar
Swalley, S. E., Baird, E. E. & Dervan, P. B. A pyrrole–imidazole polyamide motif for recognition of eleven base pair sequences in the minor groove of DNA. Chem. Eur. J.3, 1600–1607 (1997). ArticleCAS Google Scholar
Wurtz, N. R. & Dervan, P. B. Sequence specific alkylation of DNA by hairpin pyrrole–imidazole polyamide conjugates. Chem. Biol.7, 153–161 (2000). ArticleCASPubMed Google Scholar
Zhi-Fu, T., Fujiwara, T., Saito, I. & Sugiyama, H. Rational design of sequence-specific DNA alkylating agents based on duocarmycin A and pyrrole–imidazole hairpin polyamides. J. Am. Chem. Soc.121, 4961–4967 (1999). Article Google Scholar
Kohn, K. W., Hartley, J. A. & Mattes, W. B. Mechanisms of DNA sequence selective alkylation of guanine–N7 positions by nitrogen mustards. Nucleic Acids Res. 15, 10531–10549 (1987).The first critical insight based on experimental data for the origin of the sequence specificity of nitrogen mustards. ArticleCASPubMedPubMed Central Google Scholar
Seaman, F. & Hurley, L. H. Molecular basis for the DNA sequence selectivity of ecteinascidin 736 and 743: evidence for the dominant role of direct readout via hydrogen bonding. J. Am. Chem. Soc.120, 13028–13041 (1998). ArticleCAS Google Scholar
Tomasz, M. et al. Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA. Science235, 1204–1208 (1987).The long-sought-after structure of crosslinked DNA with mitomycin C. ArticleCASPubMed Google Scholar
Nielsen, P. E. Peptide nucleic acids as therapeutic agents. Curr. Opin. Struct. Biol.9, 353–357 (1999). ArticleCASPubMed Google Scholar
Lohse, J. Dahl, O. & Nielsen, P. E. Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double stranded DNA. Proc. Natl Acad. Sci. USA96, 11804–11808 (1999). ArticleCASPubMedPubMed Central Google Scholar
Majumdar, A. et al. Targeted gene knockout mediated by triple helix forming oligonucleotides. Nature Genet.20, 212–214 (1998). A proof of principle that triple-helix technology can deliver the oligomer to the anticipated site in genomic DNA. ArticleCASPubMed Google Scholar
Giovannangeli, C. & Hélène, C. Triplex technology takes off. Nature Biotechnol.18, 1245–1256 (2000). ArticleCAS Google Scholar
Arimondo, P. B. et al. Design and optimization of camptothecin conjugates of triple helix-forming oligonucleotides for sequence-specfic DNA cleavage by topoisomerase I. J. Biol. Chem.277, 3132–3140 (2002). ArticleCASPubMed Google Scholar
Keniry, M. A. Quadruplex structures in nucleic acids. Biopolymers (Nucleic Acid Sci.)56, 123–146 (2001). ArticleCAS Google Scholar
Gehring, K., Leroy, J. L. & Gueron, M. A tetrameric DNA structure with protonated cytosine·cytosine base pairs. Nature363, 561–565 (1993). ArticleCASPubMed Google Scholar
Fang, G. & Cech, T. R. The β-subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell74, 875–885 (1993). ArticleCASPubMed Google Scholar
Sun, H., Bennett, R. J. & Maizels, N. The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G–G paired DNAs. Nucleic Acids Res.27, 1978–1984 (1999). ArticleCASPubMedPubMed Central Google Scholar
Damm, D. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J.20, 6958–6968 (2001).The first small-molecule catalytic inhibitor of telomerase to be described in which telomere shortening and senescence characteristics were shown. The long time period that is required to produce these effects will be a challenge for clinical use. ArticleCASPubMedPubMed Central Google Scholar
Duan, W. et al. Design and synthesis of fluoroquinophenoxazines that interact with G-quadruplexes and their biological effects. Mol. Cancer Ther.1, 103–120 (2001). CASPubMed Google Scholar
Hemann, M. T., Strong, M. A., Hao, L.-Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell107, 67–77 (2001). ArticleCASPubMed Google Scholar
Simonsson, T., Pecinka, P. & Kubista, M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res.26, 1167–1172 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bazarov, A. V. et al. A modest reduction in c-myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to ras and raf transformation. Cancer Res.61, 1178–1186 (2001). CASPubMed Google Scholar
Waters, J. S. et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J. Clin. Oncol.18, 1812–1823 (2000).The first demonstration of the clinical use of antisense therapy in treating cancer through downregulation of an oncogene. ArticleCASPubMed Google Scholar
Woynarowski, J. M., Trevino, A. V., Rodriguez, K. A., Hardies, S. C. & Benham, C. J. AT-rich islands in genomic DNA as a novel target for AT-specific DNA-reactive antitumor drugs. J. Biol. Chem.276, 40555–40566 (2001). ArticleCASPubMed Google Scholar
Janssen, S., Cuvier, O., Müller, M. & Laemmli, U. K. Specific gain- and loss-of-function phenotypes induced by satellite-specific DNA-binding drugs fed to Drosophila melanogaster. Mol. Cell6, 1013–1024 (2000).Proof of principle that polyamides can target A●T regions in a whole organism after oral administration. ArticleCASPubMed Google Scholar
Kohn, K. W., Shao, R. G. & Pommier, Y. How do drug-induced topoisomerase I–DNA lesions signal to the molecular interaction network that regulates cell cycle checkpoints, DNA replication, and DNA repair? Cell Biochem. Biophys.33, 175–180 (2000). ArticleCASPubMed Google Scholar
Westin, L., Blomquist, P., Milligan, J. F. & Wrange, O. Triple helix DNA alters nucleosomal histone–DNA interactions and acts as a nucleosome barrier. Nucleic Acids Res.23, 2184–2191 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gottesfeld, J. M. et al. Sequence-specific recognition of DNA in the nucleosome by pyrrole–imidazole polyamides. J. Mol. Biol.309, 615–629 (2001). ArticleCASPubMed Google Scholar
Portugal, J. Drug interactions with nucleosomes and chromatin. Methods Enzymol.340, 503–518 (2001). ArticleCASPubMed Google Scholar
Han, H., Langley, D. R., Rangan, A. & Hurley, L. H. Selective interactions of cationic porphyrins with G-quadruplex structures. J. Am. Chem. Soc.123, 8902–8913 (2001). ArticleCASPubMed Google Scholar
Rangan, A., Fedoroff, O. Y. & Hurley, L. H. Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule. J. Biol. Chem.276, 4640–4646 (2001). ArticleCASPubMed Google Scholar
Bremer, R. E., Baird, E. E. & Dervan, P. B. Inhibition of major-groove-binding proteins by pyrrole–imidazole polyamides with an Arg–Pro–Arg positive patch. Chem. Biol.5, 119–133 (1998). ArticleCASPubMed Google Scholar
Dervan, P. B. Molecular recognition of DNA by small molecules. Bioorg. Med. Chem.9, 2215–2236 (2001). ArticleCASPubMed Google Scholar