Anti-inflammatory therapies for atherosclerosis (original) (raw)
Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.352, 1685–1695 (2005). ArticleCASPubMed Google Scholar
Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature473, 317–325 (2011). ArticleCASPubMed Google Scholar
Jonasson, L., Holm, J., Skalli, O., Gabbiani, G. & Hansson, G. K. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J. Clin. Invest.76, 125–131 (1985). ArticleCASPubMedPubMed Central Google Scholar
Hansson, G. K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med.170, 1595–1608 (1989). ArticleCASPubMed Google Scholar
Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation105, 1135–1143 (2002). ArticleCASPubMed Google Scholar
Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA92, 3893–3897 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mach, F., Schonbeck, U., Sukhova, G. K., Atkinson, E. & Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature394, 200–203 (1998). ArticleCASPubMed Google Scholar
Nicoletti, A., Kaveri, S., Caligiuri, G., Bariety, J. & Hansson, G. K. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J. Clin. Invest.102, 910–918 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hansson, G. K. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol.12, 204–212 (2011). ArticleCASPubMed Google Scholar
Jonasson, L., Holm, J. & Hansson, G. K. Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc. Natl Acad. Sci. USA85, 2303–2306 (1988). ArticleCASPubMedPubMed Central Google Scholar
Marks, A. R. Sirolimus for the prevention of in-stent restenosis in a coronary artery. N. Engl. J. Med.349, 1307–1309 (2003). ArticleCASPubMed Google Scholar
Lutgens, E. et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J. Exp. Med.207, 391–404 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chatzigeorgiou, A. et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc. Natl Acad. Sci. USA111, 2686–2691 (2014). ArticleCASPubMedPubMed Central Google Scholar
Cutolo, M., Sulli, A., Pizzorni, C., Seriolo, B. & Straub, R. H. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann. Rheum. Dis.60, 729–735 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bulgarelli, A., Martins Dias, A. A., Caramelli, B. & Maranhao, R. C. Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. J. Cardiovasc. Pharmacol.59, 308–314 (2012). ArticleCASPubMed Google Scholar
Westlake, S. L. et al. The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford)49, 295–307 (2010). ArticleCAS Google Scholar
Micha, R. et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am. J. Cardiol.108, 1362–1370 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ahlehoff, O. et al. Cardiovascular disease event rates in patients with severe psoriasis treated with systemic anti-inflammatory drugs: a Danish real-world cohort study. J. Intern. Med.273, 197–204 (2013). ArticleCASPubMed Google Scholar
Everett, B. M. et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am. Heart J.166, 199–207.e15 (2013). ArticlePubMedPubMed Central Google Scholar
Nidorf, S. M., Eikelboom, J. W. & Thompson, P. L. Colchicine for secondary prevention of cardiovascular disease. Curr. Atheroscler. Rep.16, 391 (2014). ArticleCASPubMed Google Scholar
Nuki, G. Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Curr. Rheumatol. Rep.10, 218–227 (2008). ArticleCASPubMed Google Scholar
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). ArticleCASPubMed Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). ArticleCASPubMedPubMed Central Google Scholar
Crittenden, D. B. et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J. Rheumatol.39, 1458–1464 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol.61, 404–410 (2013). ArticleCASPubMed Google Scholar
Ridker, P. M., Thuren, T., Zalewski, A. & Libby, P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J.162, 597–605 (2011). ArticleCASPubMed Google Scholar
Kaya, E. B. et al. Serum uric acid levels predict the severity and morphology of coronary atherosclerosis detected by multidetector computed tomography. Atherosclerosis213, 178–183 (2010). ArticleCASPubMed Google Scholar
Higgins, P. et al. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc. Ther.30, 217–226 (2012). ArticleCASPubMed Google Scholar
George, J., Carr, E., Davies, J., Belch, J. J. & Struthers, A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation114, 2508–2516 (2006). ArticleCASPubMed Google Scholar
Kushiyama, A. et al. Xanthine oxidoreductase is involved in macrophage foam cell formation and atherosclerosis development. Arterioscler. Thromb. Vasc. Biol.32, 291–298 (2012). ArticleCASPubMed Google Scholar
Noman, A., Ang, D. S., Ogston, S., Lang, C. C. & Struthers, A. D. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet375, 2161–2167 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rentoukas, E. et al. The prognostic impact of allopurinol in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Int. J. Cardiol.145, 257–258 (2010). ArticleCASPubMed Google Scholar
Topol, E. J. et al. Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. The EPIC Investigators. Lancet343, 881–886 (1994). ArticleCASPubMed Google Scholar
Wallberg-Jonsson, S., Ohman, M. L. & Dahlqvist, S. R. Cardiovascular morbidity and mortality in patients with seropositive rheumatoid arthritis in Northern Sweden. J. Rheumatol.24, 445–451 (1997). CASPubMed Google Scholar
Holmqvist, M. E. et al. No increased occurrence of ischemic heart disease prior to the onset of rheumatoid arthritis: results from two Swedish population-based rheumatoid arthritis cohorts. Arthritis Rheum.60, 2861–2869 (2009). ArticlePubMed Google Scholar
Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol.5, 578–582 (2009). ArticleCASPubMed Google Scholar
Jacobsson, L. T. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol.32, 1213–1218 (2005). CASPubMed Google Scholar
Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor α therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum.56, 2905–2912 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bevilacqua, M. P., Pober, J. S., Majeau, G. R., Cotran, R. S. & Gimbrone, M. A. Jr. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J. Exp. Med.160, 618–623 (1984). ArticleCASPubMed Google Scholar
Libby, P., Warner, S. J. & Friedman, G. B. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest.81, 487–98 (1988). ArticleCASPubMedPubMed Central Google Scholar
Rajamaki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE5, e11765 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ridker, P. M. et al. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation126, 2739–2748 (2012). ArticleCASPubMed Google Scholar
Lee, T. S., Yen, H. C., Pan, C. C. & Chau, L. Y. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol.19, 734–742 (1999). ArticleCASPubMed Google Scholar
Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol.163, 1117–1125 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yong, K. et al. Interleukin-12 is associated with arterial stiffness in healthy individuals. Am. J. Hypertens.26, 159–162 (2013). ArticleCASPubMed Google Scholar
David, A. et al. Interleukin-23 serum levels in patients affected by peripheral arterial disease. Clin. Biochem.45, 275–258 (2012). ArticleCASPubMed Google Scholar
Gistera, A. et al. Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl. Med.5, 196ra100 (2013). ArticleCASPubMed Google Scholar
Ryan, C. et al. Association between biologic therapies for chronic plaque psoriasis and cardiovascular events: a meta-analysis of randomized controlled trials. JAMA306, 864–871 (2011). CASPubMed Google Scholar
Tzellos, T., Kyrgidis, A. & Zouboulis, C. C. Re-evaluation of the risk for major adverse cardiovascular events in patients treated with anti-IL-12/23 biological agents for chronic plaque psoriasis: a meta-analysis of randomized controlled trials. J. Eur. Acad. Dermatol. Venereol.27, 622–627 (2013). ArticleCASPubMed Google Scholar
Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394, 894–897 (1998). ArticleCASPubMed Google Scholar
Gilbert, J. et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am. J. Cardiol.107, 906–911 (2011). ArticleCASPubMed Google Scholar
Weber, C. et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest.121, 2898–2910 (2011). ArticleCASPubMedPubMed Central Google Scholar
Burke, J. E. & Dennis, E. A. Phospholipase A2 structure/function, mechanism, and signaling. J. Lipid. Res.50 (Suppl.), S237–S242 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rosenson, R. S. & Gelb, M. H. Secretory phospholipase A2: a multifaceted family of proatherogenic enzymes. Curr. Cardiol. Rep.11, 445–451 (2009). ArticlePubMed Google Scholar
Suckling, K. E. Phospholipase A2 inhibitors in the treatment of atherosclerosis: a new approach moves forward in the clinic. Expert Opin. Investig. Drugs18, 1425–1430 (2009). ArticleCASPubMed Google Scholar
Rosenson, R. S. & Hurt-Camejo, E. Phospholipase A2 enzymes and the risk of atherosclerosis. Eur. Heart J.33, 2899–2909 (2012). ArticleCASPubMed Google Scholar
Fraser, H. et al. Varespladib (A-002), a secretory phospholipase A2 inhibitor, reduces atherosclerosis and aneurysm formation in ApoE−/− mice. J. Cardiovasc. Pharmacol.53, 60–65 (2009). ArticleCASPubMed Google Scholar
Shaposhnik, Z., Wang, X., Trias, J., Fraser, H. & Lusis, A. J. The synergistic inhibition of atherogenesis in apoE−/− mice between pravastatin and the sPLA2 inhibitor varespladib (A-002). J. Lipid Res.50, 623–629 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rosenson, R. S. et al. Effects of varespladib methyl on biomarkers and major cardiovascular events in acute coronary syndrome patients. J. Am. Coll. Cardiol.56, 1079–1088 (2010). ArticleCASPubMed Google Scholar
Nicholls, S. J. et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA311, 252–262 (2014). ArticleCASPubMed Google Scholar
Ait-Oufella, H. et al. Group X secreted phospholipase A2 limits the development of atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol.33, 466–473 (2013). ArticleCASPubMed Google Scholar
Tsimikas, S., Tsironis, L. D. & Tselepis, A. D. New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol.27, 2094–2099 (2007). ArticleCASPubMed Google Scholar
Kolodgie, F. D. et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol.26, 2523–2529 (2006). ArticleCASPubMed Google Scholar
Wilensky, R. L. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat. Med.14, 1059–1066 (2008). ArticleCASPubMedPubMed Central Google Scholar
Serruys, P. W. et al. Effects of the direct lipoprotein-associated phospholipase A2 inhibitor darapladib on human coronary atherosclerotic plaque. Circulation118, 1172–1182 (2008). ArticleCASPubMed Google Scholar
STABILITY Investigators. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med.370, 1702–1711 (2014).
O'Donoghue, M. L. et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID–TIMI 52 randomized clinical trial. JAMA312, 1006–1015 (2014). ArticleCASPubMed Google Scholar
Capra, V., Bäck, M., Angiolillo, D. J., Cattaneo, M. & Sakariassen, K. S. Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J. Thromb. Haemost.12, 126–137 (2014). ArticleCASPubMed Google Scholar
Gabrielsen, A. et al. Thromboxane synthase expression and thromboxane A2 production in the atherosclerotic lesion. J. Mol. Med. (Berl.)88, 795–806 (2010). ArticleCAS Google Scholar
Petri, M. H. et al. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells. Biochem. Biophys. Res. Commun.441, 393–398 (2013). ArticleCASPubMed Google Scholar
Bousser, M. G. et al. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet377, 2013–2022 (2011). ArticleCASPubMed Google Scholar
Stemme, V., Swedenborg, J., Claesson, H. & Hansson, G. K. Expression of cyclo-oxygenase-2 in human atherosclerotic carotid arteries. Eur. J. Vasc. Endovasc. Surg.20, 146–152 (2000). ArticleCASPubMed Google Scholar
Bäck, M., Yin, L. & Ingelsson, E. Cyclooxygenase-2 inhibitors and cardiovascular risk in a nation-wide cohort study after the withdrawal of rofecoxib. Eur. Heart J.33, 1928–1933 (2012). ArticleCASPubMed Google Scholar
Foudi, N. et al. Altered reactivity to norepinephrine through COX-2 induction by vascular injury in hypercholesterolemic rabbits. Am. J. Physiol. Heart Circ. Physiol.297, H1882–H1888 (2009). ArticleCASPubMed Google Scholar
Tang, S. Y. et al. Cyclooxygenase-2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation129, 1761–1769 (2014). ArticleCASPubMedPubMed Central Google Scholar
Babaev, V. R. et al. Cyclooxygenase-1 deficiency in bone marrow cells increases early atherosclerosis in apolipoprotein E- and low-density lipoprotein receptor-null mice. Circulation113, 108–117 (2006). ArticleCASPubMed Google Scholar
Rådmark, O. & Samuelsson, B. Regulation of the activity of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis. Biochem. Biophys. Res. Commun.396, 105–110 (2010). ArticleCASPubMed Google Scholar
Bäck, M. & Hansson, G. K. Leukotriene receptors in atherosclerosis. Ann. Med.38, 493–502 (2006). ArticleCASPubMed Google Scholar
Nagy, E. et al. Upregulation of the 5-lipoxygenase pathway in human aortic valves correlates with severity of stenosis and leads to leukotriene-induced effects on valvular myofibroblasts. Circulation123, 1316–1325 (2011). ArticleCASPubMed Google Scholar
Bäck, M., Gasser, T. C., Michel, J. B. & Caligiuri, G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res.99, 232–241 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kwak, B. R. et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J.14, 3013–3020 (2014). ArticleCAS Google Scholar
Otsuka, F., Sakakura, K., Yahagi, K., Joner, M. & Virmani, R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler. Thromb. Vasc. Biol.34, 724–736 (2014). ArticleCASPubMedPubMed Central Google Scholar
Spanbroek, R. et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc. Natl Acad. Sci. USA100, 1238–1243 (2003). ArticleCASPubMedPubMed Central Google Scholar
Allen, S., Dashwood, M., Morrison, K. & Yacoub, M. Differential leukotriene constrictor responses in human atherosclerotic coronary arteries. Circulation97, 2406–2413 (1998). ArticleCASPubMed Google Scholar
De Caterina, R. et al. Sulfido-peptide leukotrienes in coronary heart disease—relationship with disease instability and myocardial ischaemia. Eur. J. Clin. Invest.40, 258–272 (2010). ArticleCASPubMed Google Scholar
Labat, C. et al. Inflammatory mediators in saliva associated with arterial stiffness and subclinical atherosclerosis. J. Hypertens.31, 2251–2258 (2013). ArticleCASPubMedPubMed Central Google Scholar
Stanke-Labesque, F. et al. Leukotriene B4 pathway activation and atherosclerosis in obstructive sleep apnea. J. Lipid Res.53, 1944–1951 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bäck, M. Inhibitors of the 5-lipoxygenase pathway in atherosclerosis. Curr. Pharm. Des.15, 3116–3132 (2009). ArticlePubMed Google Scholar
Jawien, J. et al. Inhibition of five lipoxygenase activating protein (FLAP) by MK-886 decreases atherosclerosis in apoE/LDLR-double knockout mice. Eur. J. Clin. Invest.36, 141–146 (2006). ArticleCASPubMed Google Scholar
Bäck, M., Sultan, A., Ovchinnikova, O. & Hansson, G. K. 5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation. Circ. Res.100, 946–949 (2007). ArticleCASPubMed Google Scholar
Yu, Z. et al. Disruption of the 5-lipoxygenase pathway attenuates atherogenesis consequent to COX-2 deletion in mice. Proc. Natl Acad. Sci. USA109, 6727–6732 (2012). ArticlePubMedPubMed Central Google Scholar
Bäck, M. et al. Leukotriene B4 signaling through NF-κB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc. Natl Acad. Sci. USA102, 17501–17506 (2005). ArticleCASPubMedPubMed Central Google Scholar
Heller, E. A. et al. Inhibition of atherogenesis in BLT1-deficient mice reveals a role for LTB4 and BLT1 in smooth muscle cell recruitment. Circulation112, 578–586 (2005). ArticlePubMed Google Scholar
Hlawaty, H. et al. Leukotriene receptor antagonism and the prevention of extracellular matrix degradation during atherosclerosis and in-stent stenosis. Arterioscler. Thromb. Vasc. Biol.29, 518–524 (2009). ArticleCASPubMed Google Scholar
Mueller, C. F. et al. Multidrug resistance protein-1 affects oxidative stress, endothelial dysfunction, and atherogenesis via leukotriene C4 export. Circulation117, 2912–2918 (2008). ArticleCASPubMed Google Scholar
Allayee, H. et al. The effect of montelukast and low-dose theophylline on cardiovascular disease risk factors in asthmatics. Chest132, 868–874 (2007). ArticleCASPubMed Google Scholar
Ingelsson, E., Yin, L. & Bäck, M. Nationwide cohort study of the leukotriene receptor antagonist montelukast and incident or recurrent cardiovascular disease. J. Allergy Clin. Immunol.129, 702–707 e2 (2012). ArticleCASPubMed Google Scholar
Hakonarson, H. et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA293, 2245–2256 (2005). ArticleCASPubMed Google Scholar
Tardif, J. C. et al. Treatment with 5-lipoxygenase inhibitor VIA-2291 (Atreleuton) in patients with recent acute coronary syndrome. Circ. Cardiovasc. Imaging3, 298–307 (2010). ArticlePubMed Google Scholar
Liu, H. Q. et al. NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.33, 2193–2201 (2013). ArticleCASPubMed Google Scholar
Bitto, A. et al. Evidence for markers of hypoxia and apoptosis in explanted human carotid atherosclerotic plaques. J. Vasc. Surg.52, 1015–1021 (2010). ArticlePubMed Google Scholar
Seeger, F. H. et al. Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res. Cardiol.105, 389–397 (2010). ArticleCASPubMed Google Scholar
Morris, J. B. et al. p38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment. Arterioscler. Thromb. Vasc. Biol.28, 265–271 (2008). ArticleCASPubMed Google Scholar
Fisk, M., Gajendragadkar, P. R., Maki-Petaja, K. M., Wilkinson, I. B. & Cheriyan, J. Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease. Am. J. Cardiovasc. Drugs14, 155–165 (2014). ArticleCASPubMed Google Scholar
Sarov-Blat, L. et al. Inhibition of p38 mitogen-activated protein kinase reduces inflammation after coronary vascular injury in humans. Arterioscler. Thromb. Vasc. Biol.30, 2256–2263 (2010). ArticleCASPubMed Google Scholar
Natarajan, P. & Cannon, C. P. Could direct inhibition of inflammation be the “next big thing” in treating atherosclerosis? Arterioscler. Thromb. Vasc. Biol.30, 2081–2083 (2010). ArticleCASPubMed Google Scholar
Cheriyan, J. et al. Inhibition of p38 mitogen-activated protein kinase improves nitric oxide-mediated vasodilatation and reduces inflammation in hypercholesterolemia. Circulation123, 515–523 (2011). ArticleCASPubMed Google Scholar
Elkhawad, M. et al. Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. JACC Cardiovasc. Imaging5, 911–922 (2012). ArticlePubMed Google Scholar
Melloni, C. et al. The study of LoSmapimod treatment on inflammation and InfarCtSizE (SOLSTICE): design and rationale. Am. Heart J.164, 646–653.e3 (2012). ArticleCASPubMed Google Scholar
Newby, L. K. et al. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet384, 1187–1195 (2014). ArticleCASPubMed Google Scholar
Parmar, K. M. et al. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem.280, 26714–26719 (2005). ArticleCASPubMed Google Scholar
Ali, F. et al. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J. Biol. Chem.284, 18882–18892 (2009). ArticleCASPubMedPubMed Central Google Scholar
van Thienen, J. V. et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc. Res.72, 231–240 (2006). ArticleCASPubMed Google Scholar
Sorescu, D. et al. Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation105, 1429–1435 (2002). ArticleCASPubMed Google Scholar
Guzik, T. J. et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation105, 1656–1662 (2002). ArticleCASPubMed Google Scholar
Judkins, C. P. et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am. J. Physiol. Heart Circ. Physiol.298, H24–H32 (2010). ArticleCASPubMed Google Scholar
Gray, S. P. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation127, 1888–1902 (2013). ArticleCASPubMed Google Scholar
Di Marco, E. et al. Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe−/− mice. Diabetologia57, 633–642 (2014). ArticleCASPubMed Google Scholar
Iida, O. et al. Cilostazol reduces angiographic restenosis after endovascular therapy for femoropopliteal lesions in the Sufficient Treatment of Peripheral Intervention by Cilostazol study. Circulation127, 2307–2315 (2013). ArticleCASPubMed Google Scholar
Douglas, J. S. Jr et al. Coronary stent restenosis in patients treated with cilostazol. Circulation112, 2826–2832 (2005). ArticleCASPubMed Google Scholar
Souness, J. E., Hassall, G. A. & Parrott, D. P. Inhibition of pig aortic smooth muscle cell DNA synthesis by selective type III and type IV cyclic AMP phosphodiesterase inhibitors. Biochem. Pharmacol.44, 857–866 (1992). ArticleCASPubMed Google Scholar
Ishizaka, N. et al. Effects of a single local administration of cilostazol on neointimal formation in balloon-injured rat carotid artery. Atherosclerosis142, 41–46 (1999). ArticleCASPubMed Google Scholar
Takase, H. et al. Anti-atherosclerotic effect of cilostazol in apolipoprotein-E knockout mice. Arzneimittelforschung57, 185–191 (2007). CASPubMed Google Scholar
Beghe, B., Rabe, K. F. & Fabbri, L. M. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am. J. Respir. Crit. Care Med.188, 271–278 (2013). ArticleCASPubMed Google Scholar
White, W. B. et al. Cardiovascular safety in patients receiving roflumilast for the treatment of COPD. Chest144, 758–765 (2013). ArticleCASPubMed Google Scholar
Xu, Q., Kleindienst, R., Waitz, W., Dietrich, H. & Wick, G. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J. Clin. Invest.91, 2693–2702 (1993). ArticleCASPubMedPubMed Central Google Scholar
Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA92, 821–825 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ameli, S. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol.16, 1074–1079 (1996). ArticleCASPubMed Google Scholar
George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis138, 147–152 (1998). ArticleCASPubMed Google Scholar
Zhou, X., Caligiuri, G., Hamsten, A., Lefvert, A. K. & Hansson, G. K. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol.21, 108–114 (2001). ArticleCASPubMed Google Scholar
Ketelhuth, D. F., Gistera, A., Johansson, D. K. & Hansson, G. K. T cell-based therapies for atherosclerosis. Curr. Pharm. Des.19, 5850–5858 (2013). ArticleCASPubMed Google Scholar
van Puijvelde, G. H. et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation114, 1968–1976 (2006). ArticleCASPubMed Google Scholar
Klingenberg, R. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol.30, 946–952 (2010). ArticleCASPubMed Google Scholar
Shah, P. K., Chyu, K., Dimayuga, P. C. & Nilsson, J. Vaccine for atherosclerosis. J. Am. Coll. Cardiol.64, 2779–2791 (2014). ArticleCASPubMed Google Scholar
Xu, Q. et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler. Thromb.12, 789–799 (1992). ArticleCASPubMed Google Scholar
George, J. et al. Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler. Thromb. Vasc. Biol.19, 505–510 (1999). ArticleCASPubMed Google Scholar
Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation106, 1708–1715 (2002). ArticleCASPubMed Google Scholar
Ait-Oufella, H. et al. Measles virus nucleoprotein induces a regulatory immune response and reduces atherosclerosis in mice. Circulation116, 1707–1713 (2007). ArticlePubMed Google Scholar
Ovchinnikova, O. A. et al. Mycobacterium bovis BCG killed by extended freeze-drying induces an immunoregulatory profile and protects against atherosclerosis. J. Intern. Med.275, 49–58 (2014). ArticleCASPubMed Google Scholar