Molecular predictors of response to trastuzumab and lapatinib in breast cancer (original) (raw)
King, C. R., Kraus, M. H. & Aaronson, S. A. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science229, 974–976 (1985). ArticleCASPubMed Google Scholar
Di Fiore, P. P. et al. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell51, 1063–1070 (1987). ArticleCASPubMed Google Scholar
Finkle, D. et al. HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin. Cancer Res.10, 2499–2511 (2004). ArticleCASPubMed Google Scholar
Drebin, J. A., Link, V. C., Stern, D. F., Weinberg, R. A. & Greene, M. I. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell41, 697–706 (1985). ArticleCASPubMed Google Scholar
Hudziak, R. M. et al. P185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol. Cell Biol.9, 1165–1172 (1989). ArticleCASPubMedPubMed Central Google Scholar
Sarup, J. C. et al. Characterization of an anti-p185her2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Regul.1, 72–82 (1991). CASPubMed Google Scholar
Shepard, H. M. et al. Monoclonal antibody therapy of human cancer: taking the her2 protooncogene to the clinic. J. Clin. Immunol.11, 117–127 (1991). ArticleCASPubMed Google Scholar
Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235, 177–182 (1987). ArticleCASPubMed Google Scholar
Naruse, I., Fukumoto, H., Saijo, N. & Nishio, K. Enhanced anti-tumor effect of trastuzumab in combination with cisplatin. Jpn. J. Cancer Res.93, 574–581 (2002). ArticleCASPubMedPubMed Central Google Scholar
Baselga, J. Phase I and II clinical trials of trastuzumab. Ann. Oncol.12, 49–55 (2001). Article Google Scholar
Baselga, J. et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol.14, 737–744 (1996). ArticleCASPubMed Google Scholar
Esteva, F. J. et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J. Clin. Oncol.20, 1800–1808 (2002). ArticleCASPubMed Google Scholar
Pegram, M. D. et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol.16, 2659–2671 (1998). ArticleCASPubMed Google Scholar
Pegram, M. D. et al. Results of two open-label, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J. Natl Cancer Inst.96, 759–769 (2004). ArticleCASPubMed Google Scholar
Pegram, M. D. et al. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J. Natl Cancer Inst.96, 739–749 (2004). ArticleCASPubMed Google Scholar
Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med.344, 783–792 (2001). ArticleCASPubMed Google Scholar
Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med.353, 1673–1684 (2005). ArticleCASPubMed Google Scholar
Smith, I. et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet369, 29–36 (2007). ArticleCASPubMed Google Scholar
Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med.353, 1659–1672 (2005). ArticleCASPubMed Google Scholar
Xia, W. et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene21, 6255–6263 (2002). ArticleCASPubMed Google Scholar
Fabian, M. A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol.23, 329–336 (2005). ArticleCASPubMed Google Scholar
Gomez, H. L. et al. Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J. Clin. Oncol.26, 2999–3005 (2008). ArticleCASPubMed Google Scholar
Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med.355, 2733–2743 (2006). ArticleCASPubMed Google Scholar
Esteva, F. J. & Hortobagyi, G. N. Gaining ground on breast cancer. Sci. Am.298, 58–65 (2008). ArticleCASPubMed Google Scholar
Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst.92, 205–216 (2000). ArticleCASPubMed Google Scholar
Dybdal, N. et al. Determination of HER2 gene amplification by fluorescence in situ hybridization and concordance with the clinical trials immunohistochemical assay in women with metastatic breast cancer evaluated for treatment with trastuzumab. Breast Cancer Res. Treat.93, 3–11 (2005). ArticleCASPubMed Google Scholar
Gong, Y. et al. Chromogenic in situ hybridization is a reliable method for detecting HER2 gene status in breast cancer: a multicenter study using conventional scoring criteria and the new ASCO/CAP recommendations. Am. J. Clin. Pathol.131, 490–497 (2009). ArticleCASPubMed Google Scholar
Paik, S. et al. Real-world performance of HER2 testing--National Surgical Adjuvant Breast and Bowel Project experience. J. Natl Cancer Inst.94, 852–854 (2002). ArticlePubMed Google Scholar
Wolff, A. C. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol.25, 118–145 (2007). ArticleCASPubMed Google Scholar
Esteva, F. J. et al. CD40 signaling predicts response to preoperative trastuzumab and concomitant paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide in HER-2-overexpressing breast cancer. Breast Cancer Res.9, R87 (2007). ArticlePubMedPubMed Central Google Scholar
Untch, M. et al. Estimating the magnitude of trastuzumab effects within patient subgroups in the HERA trial. Ann. Oncol.19, 1090–1096 (2008). ArticleCASPubMed Google Scholar
Seidman, A. D. et al. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J. Clin. Oncol.26, 1642–1649 (2008). ArticleCASPubMed Google Scholar
Kaufman, P. A. et al. CALGB 150002: Correlation of HER2 and chromosome 17 copy number with trastuzumab (T) efficacy in CALGB 9840, paclitaxel with or without T in HER2+ and HER2- metastatic breast cancer [abstract]. J. Clin. Oncol.25, a1009 (2007). Article Google Scholar
Paik, S., Kim, C. & Wolmark, N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N. Engl. J. Med.358, 1409–1411 (2008). ArticleCASPubMed Google Scholar
Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signaling network. Nat. Rev. Mol. Cell Biol.2, 127–137 (2001). ArticleCASPubMed Google Scholar
Spivak-Kroizman, T. et al. Heterodimerization of c-erbB2 with different epidermal growth factor receptor mutants elicits stimulatory or inhibitory responses. J. Biol. Chem.267, 8056–8063 (1992). CASPubMed Google Scholar
Ferguson, K. M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell11, 507–517 (2003). ArticleCASPubMed Google Scholar
Garrett, T. P. et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell11, 495–505 (2003). ArticleCASPubMed Google Scholar
Cai, Z. et al. Differential binding patterns of monoclonal antibody 2C4 to the ErbB3-p185her2/neu and the EGFR-p185her2/neu complexes. Oncogene27, 3870–3874 (2008). ArticleCASPubMedPubMed Central Google Scholar
Scott, G. K. et al. p185HER2 signal transduction in breast cancer cells. J. Biol. Chem.266, 14300–14305 (1991). CASPubMed Google Scholar
Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell6, 117–127 (2004). ArticleCASPubMed Google Scholar
Nahta, R., Yuan, L. X., Du, Y. & Esteva, F. J. Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: effects on insulin-like growth factor I signaling. Mol. Cancer Ther.6, 667–674 (2007). ArticleCASPubMed Google Scholar
Shi, Y. et al. A novel proximity assay for the detection of proteins and protein complexes: quantitation of HER1 and HER2 total protein expression and homodimerization in formalin-fixed, paraffin-embedded cell lines and breast cancer tissue. Diagn. Mol. Pathol.18, 11–21 (2009). ArticleCASPubMed Google Scholar
Molina, M. A. et al. NH2-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin. Cancer Res.8, 347–353 (2002). CASPubMed Google Scholar
Esteva, F. J. et al. Clinical utility of serum HER2/neu in monitoring and prediction of progression-free survival in metastatic breast cancer patients treated with trastuzumab-based therapies. Breast Cancer Res.7, 436–443 (2005). ArticleCAS Google Scholar
Saez, R. et al. p95HER-2 predicts worse outcome in patients with HER-2-positive breast cancer. Clin. Cancer Res.12, 424–431 (2006). ArticleCASPubMed Google Scholar
Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst.99, 628–638 (2007). ArticleCASPubMed Google Scholar
Xia, W., Liu, L. H., Ho, P. & Spector, N. L. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016. Oncogene23, 646–653 (2004). ArticleCASPubMed Google Scholar
Xia, W. et al. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene24, 6213–6221 (2005). ArticleCASPubMed Google Scholar
Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med.14, 518–527 (2008). ArticleCASPubMed Google Scholar
Gong, Y. et al. Determination of estrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol.8, 203–211 (2007). ArticleCASPubMed Google Scholar
Symmans, W. F. et al. Total RNA yield and microarray gene expression profiles from fine-needle aspiration biopsy and core-needle biopsy samples of breast carcinoma. Cancer97, 2960–2971 (2003). ArticleCASPubMed Google Scholar
Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351, 2817–2826 (2004). ArticleCASPubMed Google Scholar
Thor, A. D. et al. Activation (tyrosine phosphorylation) of ErbB-2 (HER-2/neu): a study of incidence and correlation with outcome in breast cancer. J. Clin. Oncol.18, 3230–3239 (2000). ArticleCASPubMed Google Scholar
DiGiovanna, M. P. et al. Influence of activation state of ErbB-2 (HER-2) on response to adjuvant cyclophosphamide, doxorubicin, and fluorouracil for stage II, node-positive breast cancer: study 8541 from the Cancer and Leukemia Group B. J. Clin. Oncol.26, 2364–2372 (2008). ArticleCASPubMedPubMed Central Google Scholar
Frogne, T., Laenkholm, A. V., Lyng, M. B., Henriksen, K. L. & Lykkesfeldt, A. E. Determination of HER2 phosphorylation at tyrosine 1221/1222 improves prediction of poor survival for breast cancer patients with hormone receptor-positive tumors. Breast Cancer Res.11, R11 (2009). ArticleCASPubMedPubMed Central Google Scholar
Johnston, S. et al. Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J. Clin. Oncol.26, 1066–1072 (2008). ArticleCASPubMed Google Scholar
Meric-Bernstam, F. & Gonzalez-Angulo, A. M. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol.27, 2278–2287 (2009). ArticleCASPubMedPubMed Central Google Scholar
Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell12, 395–402 (2007). ArticleCASPubMed Google Scholar
Yakes, F. M. et al. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res.62, 4132–4141 (2002). CASPubMed Google Scholar
Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res.68, 9221–9230 (2008). ArticleCASPubMedPubMed Central Google Scholar
Stemke-Hale, K. et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res.68, 6084–6091 (2008). ArticleCASPubMedPubMed Central Google Scholar
Steck, P. A. et al. Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet.15, 356–362 (1997). ArticleCASPubMed Google Scholar
Scaltriti, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene28, 803–814 (2009). ArticleCASPubMed Google Scholar
Lu, C. H. et al. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin. Cancer Res.13, 5883–5888 (2007). ArticleCASPubMed Google Scholar
Xia, W. et al. Lapatinib antitumor activity is not dependent upon phosphatase and tensin homolog deleted on chromosome 10 in ErbB2-overexpressing breast cancers. Cancer Res.67, 1170–1175 (2007). ArticleCASPubMed Google Scholar
Kim, C. et al. Trastuzumab sensitivity of breast cancer with coamplification of HER2 and C-MYC suggests proapoptotic function of dysregulated c-MYC in-vivo. Breast Cancer Res. Treat.88 (Suppl. 1), S6a (2005). Google Scholar
Perez, E. A. et al. c-MYC amplification and correlation with patient outcome in early stage HER2+ breast cancer from the NCCTG adjuvant intergroup trial N9831 [abstract]. Breast Cancer Res. Treat. (Suppl.), a56 (2008).
Harris, L. N. et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin. Cancer Res.13, 1198–1207 (2007). ArticleCASPubMed Google Scholar
Lewis Phillips, G. D. et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res.68, 9280–9290 (2008). ArticleCASPubMed Google Scholar
Nahta, R. & Esteva, F. J. In vitro effects of trastuzumab and vinorelbine in trastuzumab-resistant breast cancer cells. Cancer Chemother. Pharmacol.53, 186–190 (2004). ArticleCASPubMed Google Scholar
Burstein, H. J. et al. Trastuzumab and vinorelbine as first-line therapy for HER2-overexpressing metastatic breast cancer: multicenter phase II trial with clinical outcomes, analysis of serum tumor markers as predictive factors, and cardiac surveillance algorithm. J. Clin. Oncol.21, 2889–2895 (2003). ArticleCASPubMed Google Scholar
Vogel, C. L. et al. A phase II study of trastuzumab-DM1 (T-DM1), a HER2 antibody-drug conjugate (ADC), in patients (pts) with HER2+ metastatic breast cancer (MBC): Final results [abstract]. J. Clin. Oncol.27 (Suppl.), a1017 (2009). Google Scholar
Adams, C. W. et al. Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol. Immunother.55, 717–727 (2006). ArticleCASPubMed Google Scholar
Agus, D. B. et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell2, 127–137 (2002). ArticleCASPubMed Google Scholar
Nahta, R., Hung, M. C. & Esteva, F. J. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res.64, 2343–2346 (2004). ArticleCASPubMed Google Scholar
Lee-Hoeflich, S. T. et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res.68, 5878–5887 (2008). ArticleCASPubMed Google Scholar
Scheuer, W. et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. (in press).
Baselga, J. et al. Objective response rate in a phase II multicenter trial of pertuzumab (P), a HER2 dimerization inhibiting monoclonal antibody, in combination with trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC) which has progressed during treatment with T [abstract]. J. Clin. Oncol.25 (Suppl. 18), a1004 (2007). Google Scholar
Oda, K. et al. PIK3CA cooperates with other phosphatidylinositol 3'-kinase pathway mutations to effect oncogenic transformation. Cancer Res.68, 8127–8136 (2008). ArticleCASPubMed Google Scholar
Junttila, T. T. et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell15, 429–440 (2009). ArticleCASPubMed Google Scholar
Folkes, A. J. et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3, 2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem.51, 5522–5532 (2008). ArticleCASPubMed Google Scholar
O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66, 1500–1508 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lu, Y., Zi, X., Zhao, Y., Mascarenhas, D. & Pollak, M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (herceptin). J. Natl Cancer Inst.93, 1852–1857 (2001). ArticleCASPubMed Google Scholar
Munster, P. N., Basso, A., Solit, D., Norton, L. & Rosen, N. Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule- dependent manner. Clin. Cancer Res.7, 2228–2236 (2001). CASPubMed Google Scholar
Modi, S. et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J. Clin. Oncol.25, 5410–5417 (2007). ArticleCASPubMed Google Scholar
Swaby, R. et al. Neratinib in combination with trastuzumab for the treatment of advanced breast cancer: A phase I/II study [abstract]. J. Clin. Oncol.27 (Suppl.), a1004 (2009). Google Scholar
Tripathy, D. et al. Safety of treatment of metastatic breast cancer with trastuzumab beyond disease progression. J. Clin. Oncol.22, 1063–1070 (2004). ArticleCASPubMed Google Scholar
von Minckwitz, G. et al. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03–05 study. J. Clin. Oncol.27, 1999–2006 (2009). ArticleCASPubMed Google Scholar
O'Shaughnessy, J. A. et al. A randomized study of lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy [abstract]. J. Clin. Oncol.26, a101 (2008). Article Google Scholar
Mittendorf, E. A. et al. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin. Cancer Res.15, 7381–7388 (2009). ArticleCASPubMedPubMed Central Google Scholar
Xia, W. et al. Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res.66, 1640–1647 (2006). ArticleCASPubMed Google Scholar
Xia, W. et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc. Natl Acad. Sci. USA103, 7795–7800 (2006). ArticleCASPubMedPubMed Central Google Scholar
Le, X. F. et al. The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J. Biol. Chem.278, 23441–23450 (2003). ArticleCASPubMed Google Scholar
Chu, I., Blackwell, K., Chen, S. & Slingerland, J. The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res.65, 18–25 (2005). CASPubMed Google Scholar
Mohsin, S. K. et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J. Clin. Oncol.23, 2460–2468 (2005). ArticleCASPubMed Google Scholar
Molina, M. A. et al. Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells. Cancer Res.61, 4744–4749 (2001). CASPubMed Google Scholar
Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. K. Tumor biology: herceptin acts as an anti-angiogenic cocktail. Nature416, 279–280 (2002). ArticleCASPubMed Google Scholar
Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med.6, 443–446 (2000). ArticleCASPubMed Google Scholar
Lin, N. U. et al. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol.26, 1993–1999 (2008). ArticleCASPubMed Google Scholar
Kaufman, B. et al. Lapatinib monotherapy in patients with HER2-overexpressing relapsed or refractory inflammatory breast cancer: final results and survival of the expanded HER2+ cohort in EGF103009, a phase II study. Lancet Oncol.10, 581–588 (2009). ArticleCASPubMed Google Scholar
Burstein, H. J. et al. A phase II study of lapatinib monotherapy in chemotherapy-refractory HER2-positive and HER2-negative advanced or metastatic breast cancer. Ann. Oncol.19, 1068–1074 (2008). ArticleCASPubMed Google Scholar
Cameron, D. et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat.112, 533–543 (2008). ArticleCASPubMed Google Scholar