Wilson, J. F. Long-suffering lipids gain respect. The Scientist17, 34–46 (2003). Google Scholar
Lagarde, M., Geloen, A., Record, M., Vance, D. & Spener, F. Lipidomics is emerging. Biochim. Biophys. Acta1634, 61 (2003). CASPubMed Google Scholar
Feng, L. & Prestwich, G. D. (eds) Functional Lipidomics (Dekker-CRC, New York, 2005). First comprehensive reference text on various aspects of functional lipidomics with contributions from leading researchers in the field. Google Scholar
Glomset, J. A. Protein–lipid interactions on the surfaces of cell membranes. Curr. Opin. Struct. Biol.9, 425–427 (1999). CASPubMed Google Scholar
Scott, D. L. & Sigler, P. B. Structure and catalytic mechanism of secretory phospholipases A2. Adv. Protein Chem.45, 53–88 (1994). CASPubMed Google Scholar
Gelb, M. H., Min, J. H. & Jain, M. K. Do membrane-bound enzymes access their substrates from the membrane or aqueous phase: interfacial versus non-interfacial enzymes. Biochim. Biophys. Acta1488, 20–27 (2000). CASPubMed Google Scholar
Rao, V. D., Misra, S., Boronenkov, I. V., Anderson, R. A. & Hurley, J. H. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell94, 829–839 (1998). CASPubMed Google Scholar
Tsujishita, Y., Guo, S., Stolz, L. E., York, J. D. & Hurley, J. H. Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell105, 379–389 (2001). CASPubMed Google Scholar
Roberts, M. F. Phospholipases: structural and functional motifs for working at an interface. FASEB J.10, 1159–1172 (1996). CASPubMed Google Scholar
Kunz, J. et al. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell5, 1–11 (2000). CASPubMed Google Scholar
Goni, F. M. & Alonso, A. in Lipases and Phospholipases in Drug Development (eds Muller, G. & Petry, S.) 79–100 (Wiley-VCH, Weinheim, Germany, 2004). Google Scholar
Israelachvili, J. N. Refinement of the fluid-mosaic model of membrane structure. Biochim. Biophys. Acta469, 221–225 (1977). CASPubMed Google Scholar
Duzgunes, N., Straubinger, R. M., Baldwin, P. A., Friend, D. S. & Papahadjopoulos, D. Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry24, 3091–3098 (1985). CASPubMed Google Scholar
Chernomordik, L., Kozlov, M. M. & Zimmerberg, J. Lipids in biological membrane fusion. J. Membr. Biol.146, 1–14 (1995). CASPubMed Google Scholar
Feigenson, G. W. & Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J.80, 2775–2788 (2001). CASPubMedPubMed Central Google Scholar
Berridge, M. J. Inositol trisphosphate and calcium signaling. Nature361, 315–325 (1993). CASPubMed Google Scholar
Tanaka, C. & Nishizuka, Y. The protein kinase C family for neuronal signaling. Annu. Rev. Neurosci.17, 551–567 (1994). CASPubMed Google Scholar
Luo, B., Regier, D. S., Prescott, S. M. & Topham, M. K. Diacylglycerol kinases. Cell Signal.16, 983–989 (2004). CASPubMed Google Scholar
Athenstaedt, K. & Daum, G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem.266, 1–16 (1999). CASPubMed Google Scholar
Balazy, M. Eicosanomics: targeted lipidomics of eicosanoids in biological systems. Prostaglandins Other Lipid Mediat.73, 173–180 (2004). CASPubMed Google Scholar
Barenholz, Y. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Subcell. Biochem.37, 167–215 (2004). CASPubMed Google Scholar
Pettus, B. J., Chalfant, C. E. & Hannun, Y. A. Sphingolipids in inflammation: roles and implications. Curr. Mol. Med.4, 405–418 (2004). CASPubMed Google Scholar
Reynolds, C. P., Maurer, B. J. & Kolesnick, R. N. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett.206, 169–180 (2004). CASPubMed Google Scholar
Hla, T. Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol.15, 513–520 (2004). CASPubMed Google Scholar
Kee, T. H., Vit, P. & Melendez, A. J. Sphingosine kinase signalling in immune cells. Clin. Exp. Pharmacol. Physiol.32, 153–161 (2005). CASPubMed Google Scholar
Takenawa, T. & Itoh, T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta1533, 190–206 (2001). CASPubMed Google Scholar
Wenk, M. R. & De Camilli, P. Inaugural article: Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: Insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA101, 8262–8269 (2004). CASPubMedPubMed Central Google Scholar
Hurley, J. H. & Meyer, T. Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol.13, 146–152 (2001). CASPubMed Google Scholar
Balla, T. & Varnai, P. Visualizing cellular phosphoinositide pools with GFP-fused protein- modules. Sci STKE L3 (2002).
van Rossum, D. B. et al. Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature434, 99–104 (2005). CASPubMed Google Scholar
Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol.6, 393–404 (2004). CASPubMed Google Scholar
Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol.13, 485–492 (2001). CASPubMed Google Scholar
Rudge, S. A., Anderson, D. M. & Emr, S. D. Vacuole size control: regulation of PtdIns(3, 5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3, 5)P2-specific phosphatase. Mol. Biol. Cell15, 24–36 (2004). CASPubMedPubMed Central Google Scholar
Stone, S. J. et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem.279, 11767–11776 (2004). CASPubMed Google Scholar
Shi, Y. & Burn, P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nature Rev. Drug Discov.3, 695–710 (2004). CAS Google Scholar
Muller, G. in Lipases and Phospholipases in Drug Development 231–331 (Wiley-VCH, Weinheim, Germany, 2004). Google Scholar
Hollander, P. Orlistat in the treatment of obesity. Prim. Care30, 427–440 (2003). PubMed Google Scholar
Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature409, 92–97 (2001). CASPubMed Google Scholar
Sleeman, M. W. et al. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nature Med.11, 199–205 (2005). CASPubMed Google Scholar
Cohen, P. et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science297, 240–243 (2002). CASPubMed Google Scholar
Watson, R. T. & Pessin, J. E. Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog. Horm. Res.56, 175–193 (2001). CASPubMed Google Scholar
Roden, M. et al. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest97, 2859–2865 (1996). CASPubMedPubMed Central Google Scholar
Anderson, R. G. Joe Goldstein and Mike Brown: from cholesterol homeostasis to new paradigms in membrane biology. Trends Cell Biol.13, 534–539 (2003). CASPubMed Google Scholar
Rawson, R. B. The SREBP pathway — insights from Insigs and insects. Nature Rev. Mol. Cell Biol.4, 631–640 (2003). CAS Google Scholar
Watkins, S. M., Reifsnyder, P. R., Pan, H. J., German, J. B. & Leiter, E. H. Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J. Lipid Res.43, 1809–1817 (2002). CASPubMed Google Scholar
Santagata, S. et al. G-protein signaling through tubby proteins. Science292, 2041–2050 (2001). Study which shows, based in structural analysis, that tubby proteins bind to phosphoinositides and that cellular stimulation leads to release of tubby from the membrane. CASPubMed Google Scholar
Carroll, K., Gomez, C. & Shapiro, L. Tubby proteins: the plot thickens. Nature Rev. Mol. Cell Biol.5, 55–63 (2004). CAS Google Scholar
Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P. & Cantley, L. C. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell57, 167–175 (1989). CASPubMed Google Scholar
Czech, M. P. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol.65, 791–815 (2003). CASPubMed Google Scholar
Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol. Chem.273, 13375–13378 (1998). CASPubMed Google Scholar
Pendaries, C., Tronchere, H., Plantavid, M. & Payrastre, B. Phosphoinositide signaling disorders in human diseases. FEBS Lett.546, 25–31 (2003). CASPubMed Google Scholar
Giannakou, M. E. et al. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science305, 361 (2004). CASPubMed Google Scholar
Finan, P. M. & Thomas, M. J. PI 3-kinase inhibition: a therapeutic target for respiratory disease. Biochem. Soc. Trans.32, 378–382 (2004). Review article which summarizes recent advances in therapeutic targeting of PI-3 kinases CASPubMed Google Scholar
Fruman, D. A. Towards an understanding of isoform specificity in phosphoinositide 3-kinase signalling in lymphocytes. Biochem. Soc. Trans.32, 315–319 (2004). CASPubMed Google Scholar
Schmid, A. C. & Woscholski, R. Phosphatases as small-molecule targets: inhibiting the endogenous inhibitors of kinases. Biochem. Soc. Trans.32, 348–349 (2004). CASPubMed Google Scholar
Wetzker, R. & Rommel, C. Phosphoinositide 3-kinases as targets for therapeutic intervention. Curr. Pharm. Des10, 1915–1922 (2004). CASPubMed Google Scholar
Heinrich, M. et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and-3 activation. Cell Death. Differ.11, 550–563 (2004). CASPubMed Google Scholar
Bose, R. et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell82, 405–414 (1995). CASPubMed Google Scholar
Ogretmen, B. & Hannun, Y. A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nature Rev. Cancer4, 604–616 (2004). CAS Google Scholar
Xia, P. et al. An oncogenic role of sphingosine kinase. Curr. Biol.10, 1527–1530 (2000). CASPubMed Google Scholar
Liu, F. et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am. J. Respir. Cell Mol. Biol.24, 711–719 (2001). CASPubMed Google Scholar
Corda, D., Iurisci, C. & Berrie, C. P. Biological activities and metabolism of the lysophosphoinositides and glycerophosphoinositols. Biochim. Biophys. Acta1582, 52–69 (2002). CASPubMed Google Scholar
Hideshima, T. et al. Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma. Cancer Res.63, 8428–8436 (2003). CASPubMed Google Scholar
Basler, J. W. & Piazza, G. A. Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 selective inhibitors for prostate cancer chemoprevention. J. Urol.171, S59–S62 (2004). CASPubMed Google Scholar
Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell. Sci.114, 1041–1052 (2001). CASPubMed Google Scholar
Cutler, R. G. et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl Acad. Sci. USA101, 2070–2075 (2004). CASPubMedPubMed Central Google Scholar
Yanagisawa, K., Odaka, A., Suzuki, N. & Ihara, Y. GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer's disease. Nature Med.1, 1062–1066 (1995). CASPubMed Google Scholar
Perrin, R. J., Woods, W. S., Clayton, D. F. & George, J. M. Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J. Biol. Chem.276, 41958–41962 (2001). CASPubMed Google Scholar
Sharon, R. et al. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron37, 583–595 (2003). CASPubMed Google Scholar
Lwin, A., Orvisky, E., Goker-Alpan, O., LaMarca, M. E. & Sidransky, E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol. Genet. Metab81, 70–73 (2004). CASPubMed Google Scholar
Pentchev, P. G. et al. A defect in cholesterol esterification in Niemann–Pick disease (type C) patients. Proc. Natl Acad. Sci. USA82, 8247–8251 (1985). CASPubMedPubMed Central Google Scholar
Sturley, S. L., Patterson, M. C., Balch, W. & Liscum, L. The pathophysiology and mechanisms of NP-C disease. Biochim. Biophys. Acta1685, 83–87 (2004). CASPubMed Google Scholar
Selkoe, D. J. Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nature Cell Biol.6, 1054–1061 (2004). CASPubMed Google Scholar
Stebbins, C. E. & Galan, J. E. Structural mimicry in bacterial virulence. Nature412, 701–705 (2001). CASPubMed Google Scholar
Walburger, A. et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science304, 1800–1804 (2004). CASPubMed Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). CASPubMed Google Scholar
Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol.4, 499–511 (2004). CAS Google Scholar
Jahn, R., Lang, T. & Sudhof, T. C. Membrane fusion. Cell112, 519–533 (2003). CASPubMed Google Scholar
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature387, 569–572 (1997). CASPubMed Google Scholar
Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature392, 193–197 (1998). CASPubMed Google Scholar
Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science296, 1821–1825 (2002). CASPubMed Google Scholar
Gatfield, J. & Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science288, 1647–1650 (2000). CASPubMed Google Scholar
Ono, A., Ablan, S. D., Lockett, S. J., Nagashima, K. & Freed, E. O. Phosphatidylinositol (4, 5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc. Natl Acad. Sci. USA101, 14889–14894 (2004). CASPubMedPubMed Central Google Scholar
Lindwasser, O. W. & Resh, M. D. Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J. Virol.75, 7913–7924 (2001). CASPubMedPubMed Central Google Scholar
Nguyen, D. H. & Hildreth, J. E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol.74, 3264–3272 (2000). CASPubMedPubMed Central Google Scholar
Finnegan, C. M. et al. Ceramide, a target for antiretroviral therapy. Proc. Natl Acad. Sci. USA101, 15452–15457 (2004). CASPubMedPubMed Central Google Scholar
Scheiffele, P., Rietveld, A., Wilk, T. & Simons, K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem.274, 2038–2044 (1999). CASPubMed Google Scholar
Campbell, S. M., Crowe, S. M. & Mak, J. Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. AIDS16, 2253–2261 (2002). CASPubMed Google Scholar
Morris-Natschke, S. L., Ishaq, K. S. & Kucera, L. S. Phospholipid analogs against HIV-1 infection and disease. Curr. Pharm. Des.9, 1441–1451 (2003). CASPubMed Google Scholar
Raulin, J. Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Prog. Lipid. Res.41, 27–65 (2002). CASPubMed Google Scholar
Vergne, I., Chua, J. & Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J. Exp. Med.198, 653–659 (2003). PubMedPubMed Central Google Scholar
Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol.48, 875–888 (2003). CASPubMed Google Scholar
Fratti, R. A., Chua, J., Vergne, I. & Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl Acad. Sci. USA100, 5437–5442 (2003). CASPubMedPubMed Central Google Scholar
Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galan, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science304, 1805–1807 (2004). CASPubMed Google Scholar
Converse, S. E. et al. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl Acad. Sci. USA100, 6121–6126 (2003). CASPubMedPubMed Central Google Scholar
Thompson, C. R. et al. Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: inhibition of SK1 translocation by Mycobacterium tuberculosis. J. Immunol.174, 3551–3561 (2005). CASPubMed Google Scholar
Mota, L. J., Journet, L., Sorg, I., Agrain, C. & Cornelis, G. R. Bacterial injectisomes: needle length does matter. Science307, 1278 (2005). PubMed Google Scholar
Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA102, 4033–4038 (2005). CASPubMedPubMed Central Google Scholar
Steele-Mortimer, O. et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem.275, 37718–37724 (2000). CASPubMed Google Scholar
Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature341, 447–450 (1989). CASPubMed Google Scholar
Sieling, P. A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science269, 227–230 (1995). CASPubMed Google Scholar
Brigl, M. & Brenner, M. B. CD1: Antigen presentation and T cell function. Annu. Rev. Immunol.22, 817–890 (2004). CASPubMed Google Scholar
Hava, D. L. et al. CD1 assembly and the formation of CD1-antigen complexes. Curr. Opin. Immunol.17, 88–94 (2005). CASPubMed Google Scholar
Winau, F. et al. Saposin C is required for lipid presentation by human CD1b. Nature Immunol.5, 169–174 (2004). CAS Google Scholar
Park, J. J. et al. Lipid-protein interactions: biosynthetic assembly of CD1 with lipids in the endoplasmic reticulum is evolutionarily conserved. Proc. Natl Acad. Sci. USA101, 1022–1026 (2004). CASPubMedPubMed Central Google Scholar
Han, X. & Gross, R. W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl Acad. Sci. USA91, 10635–10639 (1994). CASPubMedPubMed Central Google Scholar
Kim, H. Y., Wang, T. C. & Ma, Y. C. Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal. Chem.66, 3977–3982 (1994). CASPubMed Google Scholar
Kerwin, J. L., Tuininga, A. R. & Ericsson, L. H. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid. Res.35, 1102–1114 (1994). CASPubMed Google Scholar
Pulfer, M. & Murphy, R. C. Electrospray mass spectrometry of phospholipids. Mass Spectrom. Rev.22, 332–364 (2003). Excellent methodological overview of LC and MS based approaches for lipid analysis. CASPubMed Google Scholar
Han, X. & Gross, R. W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI/MS: a bridge to lipidomics. J. Lipid. Res.44, 1071–1079 (2003). CASPubMed Google Scholar
Welti, R. & Wang, X. Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr. Opin. Plant Biol.7, 337–344 (2004). CASPubMed Google Scholar
Brugger, B., Erben, G., Sandhoff, R., Wieland, F. T. & Lehmann, W. D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl Acad. Sci. USA94, 2339–2344 (1997). Landmark publication demonstrating substantially improved sensitivity for analysis of phospholipids in complex mixtures based on nanoflow ESI MS. CASPubMedPubMed Central Google Scholar
Sullards, M. C. & Merrill, A. H., Jr. Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Sci STKE PL1 (2001).
Han, X. & Gross, R. W. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem.295, 88–100 (2001). CASPubMed Google Scholar
Ivanova, P. T. et al. Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc. Natl Acad. Sci. USA98, 7152–7157 (2001). CASPubMedPubMed Central Google Scholar
Han, X., Yang, J., Cheng, H., Ye, H. & Gross, R. W. Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal. Biochem.330, 317–331 (2004). CASPubMed Google Scholar
Ekroos, K., Chernushevich, I. V., Simons, K. & Shevchenko, A. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal. Chem.74, 941–949 (2002). CASPubMed Google Scholar
Schaub, T. M., Hendrickson, C. L., Qian, K., Quinn, J. P. & Marshall, A. G. High-resolution field desorption/ionization fourier transform ion cyclotron resonance mass analysis of nonpolar molecules. Anal. Chem.75, 2172–2176 (2003). CASPubMed Google Scholar
Wenk, M. R. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nature Biotechnol.21, 813–817 (2003). CAS Google Scholar
Han, X. Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem.302, 199–212 (2002). CASPubMed Google Scholar
Ivleva, V. B. et al. Coupling thin-layer chromatography with vibrational cooling matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for the analysis of ganglioside mixtures. Anal. Chem.76, 6484–6491 (2004). CASPubMed Google Scholar
Welti, R. et al. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem.277, 31994–32002 (2002). CASPubMed Google Scholar
Koivusalo, M., Haimi, P., Heikinheimo, L., Kostiainen, R. & Somerharju, P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid. Res.42, 663–672 (2001). PubMed Google Scholar
Petkovic, M. et al. Detection of individual phospholipids in lipid mixtures by matrix- assisted laser desorption/ionization time-of-flight mass spectrometry: phosphatidylcholine prevents the detection of further species. Anal. Biochem.289, 202–216 (2001). CASPubMed Google Scholar
Muller, M. et al. Limits for the detection of (poly-)phosphoinositides by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI- TOF MS). Chem. Phys. Lipids110, 151–164 (2001). CASPubMed Google Scholar
Houjou, T., Yamatani, K., Imagawa, M., Shimizu, T. & Taguchi, R. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom.19, 654–666 (2005). CASPubMed Google Scholar
Hermansson, M., Uphoff, A., Kakela, R. & Somerharju, P. Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal. Chem.77, 2166–2175 (2005). CASPubMed Google Scholar
Watkins, S. M. Lipomic profiling in drug discovery, development and clinical trial evaluation. Curr. Opin. Drug Discov. Devel.7, 112–117 (2004). CASPubMed Google Scholar
Picchioni, G. A., Watada, A. E. & Whitaker, B. D. Quantitative high-performance liquid chromatography analysis of plant phospholipids and glycolipids using light-scattering detection. Lipids31, 217–221 (1996). CASPubMed Google Scholar
Nasuhoglu, C. et al. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal. Biochem.301, 243–254 (2002). CASPubMed Google Scholar
Lin, S., Fischl, A. S., Bi, X. & Parce, W. Separation of phospholipids in microfluidic chip device: application to high-throughput screening assays for lipid-modifying enzymes. Anal. Biochem.314, 97–107 (2003). CASPubMed Google Scholar
Qi, L., Danielson, N. D., Dai, Q. & Lee, R. M. Capillary electrophoresis of cardiolipin with on-line dye interaction and spectrophotometric detection. Electrophoresis24, 1680–1686 (2003). CASPubMed Google Scholar
German, J. B., Roberts, M. A. & Watkins, S. M. Personal metabolomics as a next generation nutritional assessment. J. Nutr.133, 4260–4266 (2003). CASPubMed Google Scholar
Adams, A. & Kingsbury, J. Lipomic profiling, profiled. Modern Drug Discov. 55–56 (2004).
Seelig, A. & Seelig, J. Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry16, 45–50 (1977). CASPubMed Google Scholar
Gawrisch, K., Eldho, N. V. & Polozov, I. V. Novel NMR tools to study structure and dynamics of biomembranes. Chem. Phys. Lipids116, 135–151 (2002). CASPubMed Google Scholar
Marsh, D. & Pali, T. The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim. Biophys. Acta1666, 118–141 (2004). CASPubMed Google Scholar
Marsh, D. & Barrantes, F. J. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc. Natl Acad. Sci. USA75, 4329–4333 (1978). CASPubMedPubMed Central Google Scholar
Hilgemann, D. W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE. RE19 (2001).
Fu, R. & Cross, T. A. Solid-state nuclear magnetic resonance investigation of protein and polypeptide structure. Annu. Rev. Biophys. Biomol. Struct.28, 235–268 (1999). CASPubMed Google Scholar
Gavaghan, C. L., Holmes, E., Lenz, E., Wilson, I. D. & Nicholson, J. K. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett.484, 169–174 (2000). CASPubMed Google Scholar
Nicholson, J. K. & Wilson, I. D. Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Discov.2, 668–676 (2003). CAS Google Scholar
Prestwich, G. D. Phosphoinositide signaling; from affinity probes to pharmaceutical targets. Chem. Biol.11, 619–637 (2004). CASPubMed Google Scholar
Taylor, G. S. & Dixon, J. E. Assaying phosphoinositide phosphatases. Methods Mol. Biol.284, 217–228 (2004). CASPubMed Google Scholar
Zhu, H. et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001). Identification of lipid binding proteins using arrays of immobilized protein. CASPubMed Google Scholar
Mukherjee, S. & Maxfield, F. R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic1, 203–211 (2000). CASPubMed Google Scholar
Kol, M. A., de Kroon, A. I., Killian, J. A. & de, K. B. Transbilayer movement of phospholipids in biogenic membranes. Biochemistry43, 2673–2681 (2004). CASPubMed Google Scholar
Wenk, M. R. & De Camilli, P. Assembly of endocytosis-associated proteins on liposomes. Meth. Enzymol.372, 248–260 (2003). CAS Google Scholar
Krugmann, S. et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell9, 95–108 (2002). Biochemical work based on affinity chromatography using immobilized lipids as baits for the identification of novel lipid binding proteins. CASPubMed Google Scholar
Kolusheva, S., Boyer, L. & Jelinek, R. A colorimetric assay for rapid screening of antimicrobial peptides. Nature Biotechnol.18, 225–227 (2000). CAS Google Scholar
Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4, 5-bisphosphate at sites of phagocytosis. J. Cell Biol.151, 1353–1368 (2000). Elegant cell biological study, using fluorescent methods, of phosphoinositide and DG metabolism during phagocytosis. CASPubMedPubMed Central Google Scholar
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol.37, 911–917 (1959). CASPubMed Google Scholar
Folch, J., Ascoli, I., Lees, M., Meath, J. A. & Le, B. N. Preparation of lipide extracts from brain tissue. J. Biol. Chem.191, 833–841 (1951). CASPubMed Google Scholar
Wenk, M. R. & De Camilli, P. in Functional Lipidomics (eds. Feng, L. & Prestwich, G. D.) (Dekker-CRC, New York, in the press).
Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res.46, 839–862 (2005). Comprehensive classification scheme for lipids which will help facilitate exchange of information and databasing of large amounts of lipidomic data. CASPubMed Google Scholar
Forrester, J. S., Milne, S. B., Ivanova, P. T. & Brown, H. A. Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol.65, 813–821 (2004). CASPubMed Google Scholar
Lu, Y., Hong, S., Tjonahen, E. & Serhan, C. N. Mediator-lipidomics: databases and search algorithms for PUFA-derived mediators. J. Lipid Res.46, 790–802 (2005). Novel algorithms and databases for the identification of lipid mediators based on mass spectrometry and UV spectroscopy. CASPubMed Google Scholar
varez-Vasquez, F. et al. Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. Nature433, 425–430 (2005). Google Scholar
Vance, D. E. & Vance, J. E. (eds) Biochemistry of Lipids, Lipoproteins and Membranes (Elsevier, New York, 2001). Google Scholar
Lemmon, M. A. Pleckstrin homology domains: not just for phosphoinositides. Biochem. Soc. Trans.32, 707–711 (2004). CASPubMed Google Scholar
Weckwerth, W., Loureiro, M. E., Wenzel, K. & Fiehn, O. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl Acad. Sci. USA101, 7809–7814 (2004). CASPubMedPubMed Central Google Scholar
Cascante, M. et al. Metabolic control analysis in drug discovery and disease. Nature Biotechnol.20, 243–249 (2002). CAS Google Scholar
Hodgkin, M. N. et al. Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem. Sci.23, 200–204 (1998). CASPubMed Google Scholar
Gronert, K. et al. A molecular defect in intracellular lipid signaling in human neutrophils in localized aggressive periodontal tissue damage. J. Immunol.172, 1856–1861 (2004). CASPubMed Google Scholar
Kroesen, B. J. et al. Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J. Biol. Chem.276, 13606–13614 (2001). CASPubMed Google Scholar
Koybasi, S. et al. Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J. Biol. Chem.279, 44311–44319 (2004). CASPubMed Google Scholar
Alaimo, P. J., Shogren-Knaak, M. A. & Shokat, K. M. Chemical genetic approaches for the elucidation of signaling pathways. Curr. Opin. Chem. Biol.5, 360–367 (2001). CASPubMed Google Scholar
Zewail, A. et al. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc. Natl Acad. Sci. USA100, 3345–3350 (2003). Chemogenetic screen using yeast knock-out libraries and a kinase inhibitor. CASPubMedPubMed Central Google Scholar
Boshoff, H. I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem.279, 40174–40184 (2004). CASPubMed Google Scholar
Moody, D. B. et al. T cell activation by lipopeptide antigens. Science303, 527–531 (2004). Recent report in a series of papers which demonstrates that CD1a receptor present lipid molecules (a lipopetide in this case) during T cell activation. CASPubMed Google Scholar
Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature433, 523–527 (2005). CASPubMed Google Scholar
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature346, 561–564 (1990). CASPubMed Google Scholar
Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science258, 1946–1949 (1992). Discovery based on biochemical binding experiment and analytical chemistry of an endogenous ligand, anandamide, for the cannabinoid receptor CASPubMed Google Scholar
McFarland, M. J. & Barker, E. L. Anandamide transport. Pharmacol. Ther.104, 117–135 (2004). CASPubMed Google Scholar
Hamman, B. D., Pollok, B. A., Bennett, T., Allen, J. & Heim, R. Binding of a Pleckstrin homology domain protein to phosphoinositide in membranes: a miniaturized FRET-based assay for drug screening. J. Biomol. Screen.7, 45–55 (2002). CASPubMed Google Scholar
Gray, A., Olsson, H., Batty, I. H., Priganica, L. & Peter Downes, C. Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extracts. Anal. Biochem.313, 234–245 (2003). CASPubMed Google Scholar
Saghatelian, A. et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry43, 14332–14339 (2004). CASPubMed Google Scholar
Cicchetti, G., Biernacki, M., Farquharson, J. & Allen, P. G. A ratiometric expressible FRET sensor for phosphoinositides displays a signal change in highly dynamic membrane structures in fibroblasts. Biochemistry43, 1939–1949 (2004). CASPubMed Google Scholar
Tanimura, A., Nezu, A., Morita, T., Turner, R. J. & Tojyo, Y. Fluorescent biosensor for quantitative real-time measurements of inositol 1, 4, 5-trisphosphate in single living cells. J. Biol. Chem.279, 38095–38098 (2004). CASPubMed Google Scholar
Nieland, T. J. et al. Chemical genetic screening identifies sulfonamides that raise organellar pH and interfere with membrane traffic. Traffic.5, 478–492 (2004). CASPubMedPubMed Central Google Scholar
Rudolf, M. T., Dinkel, C., Traynor-Kaplan, A. E. & Schultz, C. Antagonists of myo-inositol 3, 4, 5, 6-tetrakisphosphate allow repeated epithelial chloride secretion. Bioorg. Med. Chem.11, 3315–3329 (2003). CASPubMed Google Scholar
Saiardi, A., Bhandari, R., Resnick, A. C., Snowman, A. M. & Snyder, S. H. Phosphorylation of proteins by inositol pyrophosphates. Science306, 2101–2105 (2004). CASPubMed Google Scholar
Andresen, T. L., Davidsen, J., Begtrup, M., Mouritsen, O. G. & Jorgensen, K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem.47, 1694–1703 (2004). CASPubMed Google Scholar
Chithalen, J. V., Luu, L., Petkovich, M. & Jones, G. HPLC-MS/MS analysis of the products generated from all-_trans_-retinoic acid using recombinant human CYP26A. J. Lipid Res.43, 1133–1142 (2002). CASPubMed Google Scholar
Robertson, D. G. Metabonomics in toxicology: a review. Toxicol. Sci.85, 809–822 (2005). CASPubMed Google Scholar
Butterfield, D. A. Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review. Free Radic. Res.36, 1307–1313 (2002). CASPubMed Google Scholar
Montine, K. S. et al. Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem. Phys. Lipids128, 117–124 (2004). CASPubMed Google Scholar
Basu, S., Whiteman, M., Mattey, D. L. & Halliwell, B. Raised levels of F(2)-isoprostanes and prostaglandin F(2alpha) in different rheumatic diseases. Ann. Rheum. Dis.60, 627–631 (2001). CASPubMedPubMed Central Google Scholar
Spickett, C. M., Pitt, A. R. & Brown, A. J. Direct observation of lipid hydroperoxides in phospholipid vesicles by electrospray mass spectrometry. Free Radic. Biol. Med.25, 613–620 (1998). CASPubMed Google Scholar
Ishida, M. et al. High-resolution analysis by nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for the identification of molecular species of phospholipids and their oxidized metabolites. Rapid Commun. Mass Spectrom.18, 2486–2494 (2004). CASPubMed Google Scholar
Leitinger, N. et al. Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc. Natl Acad. Sci. USA96, 12010–12015 (1999). CASPubMedPubMed Central Google Scholar
Lutter, M. et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nature Cell Biol.2, 754–761 (2000). CASPubMed Google Scholar
Kagan, V. E. et al. A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J. Immunol.169, 487–499 (2002). CASPubMed Google Scholar
Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol.174, 4345–4355 (2005). CASPubMed Google Scholar
Pravdova, V., Walczak, B. & Massart, D. L. A comparison of two algorithms for warping of analytical signals. Anal. Chim. Acta456, 77–92 (2002). CAS Google Scholar
Weckwerth, W. Metabolomics in systems biology. Annu. Rev. Plant Physiol. Plant Mol. Biol.54, 669–689 (2003). CAS Google Scholar
McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct.31, 151–175 (2002). CASPubMed Google Scholar
Barrantes, F. J. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res. Brain Res. Rev.47, 71–95 (2004). CASPubMed Google Scholar
Lemmon, M. A. Phosphoinositide recognition domains. Traffic4, 201–213 (2003). CASPubMed Google Scholar