Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease (original) (raw)
Chao, M. V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Rev. Neurosci.4, 299–309 (2003). CAS Google Scholar
Allen, S. J. & Dawbarn, D. Clinical relevance of the neurotrophins and their receptors. Clin. Sci.110, 175–191 (2006). CAS Google Scholar
Chao, M. V., Rajagopal, R. & Lee, F. S. Neurotrophin signalling in health and disease. Clin. Sci.110, 167–173 (2006). CAS Google Scholar
Poduslo, J. F. & Curran, G. L. Permeability at the blood–brain and blood–nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res.36, 280–286 (1996). CASPubMed Google Scholar
Saltzman, W. M., Mak, M. W., Mahoney, M. J., Duenas, E. T. & Cleland, J. L. Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems. Pharm. Res.16, 232–240 (1999). CASPubMed Google Scholar
Pardridge, W. M. Neurotrophins, neuroprotection and the blood–brain barrier. Curr. Opin. Investig. Drugs3, 1753–1757 (2002). CASPubMed Google Scholar
Fahnestock, M., Michalski, B., Xu, B. & Coughlin, M. D. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease. Mol. Cell Neurosci.18, 210–220 (2001). CASPubMed Google Scholar
Mufson, E. J. et al. Hippocampal proNGF signaling pathways and β-amyloid levels in mild cognitive impairment and Alzheimer disease. J. Neuropathol. Exp. Neurol.71, 1018–1029 (2012). CASPubMed Google Scholar
Dyck, P. J. et al. Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered heat-pain threshold in humans. Neurology48, 501–505 (1997). CASPubMed Google Scholar
Bergmann, I., Reiter, R., Toyka, K. V. & Koltzenburg, M. Nerve growth factor evokes hyperalgesia in mice lacking the low-affinity neurotrophin receptor p75. Neurosci. Lett.255, 87–90 (1998). CASPubMed Google Scholar
Aboulkassim, T. et al. Ligand-dependent TrkA activity in brain differentially affects spatial learning and long-term memory. Mol. Pharmacol.80, 498–508 (2011). CASPubMed Google Scholar
Capsoni, S. et al. Taking pain out of NGF: a “painless” NGF mutant, linked to hereditary sensory autonomic neuropathy type V, with full neurotrophic activity. PLoS ONE6, e17321 (2011). CASPubMedPubMed Central Google Scholar
Bai, Y. et al. An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma. Invest. Ophthalmol. Vis. Sci.51, 4722–4731 (2010). PubMed Google Scholar
Guillemard, V. et al. An agonistic mAb directed to the TrkC receptor juxtamembrane region defines a trophic hot spot and interactions with p75 coreceptors. Dev. Neurobiol.70, 150–164 (2010). CASPubMed Google Scholar
Ugolini, G., Marinelli, S., Covaceuszach, S., Cattaneo, A. & Pavone, F. The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain. Proc. Natl Acad. Sci. USA104, 2985–2990 (2007). CASPubMedPubMed Central Google Scholar
Sahenk, Z. et al. TrkB and TrkC agonist antibodies improve function, electrophysiologic and pathologic features in Trembler J mice. Exp. Neurol.224, 495–506 (2010). CASPubMed Google Scholar
Blesch, A., Uy, H. S., Diergardt, N. & Tuszynski, M. H. Neurite outgrowth can be modulated in vitro using a tetracycline-repressible gene therapy vector expressing human nerve growth factor. J. Neurosci. Res.59, 402–409 (2000). CASPubMed Google Scholar
Taylor, L., Jones, L., Tuszynski, M. H. & Blesch, A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J. Neurosci.26, 9713–9721 (2006). CASPubMedPubMed Central Google Scholar
Nagahara, A. H. et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature Med.15, 331–337 (2009). CASPubMed Google Scholar
Chattopadhyay, M. et al. Long-term neuroprotection achieved with latency-associated promoter-driven herpes simplex virus gene transfer to the peripheral nervous system. Mol. Ther.12, 307–313 (2005). CASPubMed Google Scholar
Lessmann, V. & Brigadski, T. Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci. Res.65, 11–22 (2009). CASPubMed Google Scholar
Santos, A. R., Comprido, D. & Duarte, C. B. Regulation of local translation at the synapse by BDNF. Prog. Neurobiol.92, 505–516 (2010). CASPubMed Google Scholar
Skeldal, S., Matusica, D., Nykjaer, A. & Coulson, E. J. Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling? Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75NTR. Bioessays33, 614–625 (2011). CASPubMed Google Scholar
Fenner, B. M. Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev.23, 15–24 (2012). CASPubMed Google Scholar
Lessmann, V., Gottmann, K. & Malcangio, M. Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol.69, 341–374 (2003). CASPubMed Google Scholar
Bruno, M. A. & Cuello, A. C. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc. Natl Acad. Sci. USA103, 6735–6740 (2006). CASPubMedPubMed Central Google Scholar
Feng, D. et al. Molecular and structural insight into proNGF engagement of p75NTR and sortilin. J. Mol. Biol.396, 967–984 (2010). CASPubMed Google Scholar
Roux, P. P., Bhakar, A. L., Kennedy, T. E. & Barker, P. A. The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem.276, 23097–23104 (2001). CASPubMed Google Scholar
Carter, B. D. et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science272, 542–545 (1996). CASPubMed Google Scholar
Volonte, C., Angelastro, J. M. & Greene, L. A. Association of protein kinases ERK1 and ERK2 with p75 nerve growth factor receptors. J. Biol. Chem.268, 21410–21415 (1993). CASPubMed Google Scholar
Casaccia-Bonnefil, P., Carter, B. D., Dobrowsky, R. T. & Chao, M. V. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature383, 716–719 (1996). CASPubMed Google Scholar
Yamashita, T., Tucker, K. L. & Barde, Y. A. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron24, 585–593 (1999). CASPubMed Google Scholar
Sachs, B. D. et al. p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway. J. Cell Biol.177, 1119–1132 (2007). CASPubMedPubMed Central Google Scholar
Le Moan, N., Houslay, D. M., Christian, F., Houslay, M. D. & Akassoglou, K. Oxygen-dependent cleavage of the p75 neurotrophin receptor triggers stabilization of HIF-1α. Mol. Cell44, 476–490 (2011). CASPubMedPubMed Central Google Scholar
Dobrowsky, R. T., Werner, M. H., Castellino, A. M., Chao, M. V. & Hannun, Y. A. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science265, 1596–1599 (1994). CASPubMed Google Scholar
Barbacid, M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann. NY Acad. Sci.766, 442–458 (1995). CASPubMed Google Scholar
Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem.72, 609–642 (2003). CASPubMed Google Scholar
Ip, N. Y. et al. Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc. Natl Acad. Sci. USA89, 3060–3064 (1992). CASPubMedPubMed Central Google Scholar
Brodeur, G. M. et al. Trk receptor expression and inhibition in neuroblastomas. Clin. Cancer Res.15, 3244–3250 (2009). CASPubMedPubMed Central Google Scholar
Bronfman, F. C., Tcherpakov, M., Jovin, T. M. & Fainzilber, M. Ligand-induced internalization of the p75 neurotrophin receptor: a slow route to the signaling endosome. J. Neurosci.23, 3209–3220 (2003). CASPubMedPubMed Central Google Scholar
Grimes, M. L., Beattie, E. & Mobley, W. C. A signaling organelle containing the nerve growth factor-activated receptor tyrosine kinase, TrkA. Proc. Natl Acad. Sci. USA94, 9909–9914 (1997). CASPubMedPubMed Central Google Scholar
Ginty, D. D. & Segal, R. A. Retrograde neurotrophin signaling: Trk-ing along the axon. Curr. Opin. Neurobiol.12, 268–274 (2002). CASPubMed Google Scholar
Vesa, J., Kruttgen, A. & Shooter, E. M. p75 reduces TrkB tyrosine autophosphorylation in response to brain- derived neurotrophic factor and neurotrophin 4/5. J. Biol. Chem.275, 24414–24420 (2000). CASPubMed Google Scholar
Urra, S. et al. TrkA receptor activation by nerve growth factor induces shedding of the p75 neurotrophin receptor followed by endosomal γ-secretase-mediated release of the p75 intracellular domain. J. Biol. Chem.282, 7606–7615 (2007). CASPubMed Google Scholar
Ceni, C. et al. The p75NTR intracellular domain generated by neurotrophin-induced receptor cleavage potentiates Trk signaling. J. Cell Sci.123, 2299–2307 (2010). CASPubMed Google Scholar
He, X. L. & Garcia, K. C. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science304, 870–875 (2004). CASPubMed Google Scholar
Wehrman, T. et al. Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron53, 25–38 (2007). CASPubMed Google Scholar
Iacaruso, M. F. et al. Structural model for p75NTR–TrkA intracellular domain interaction: a combined FRET and bioinformatics study. J. Mol. Biol.414, 681–698 (2011). CASPubMed Google Scholar
Matusica, D. et al. An intracellular domain fragment of the p75 neurotrophin receptor (p75NTR) enhances TrkA receptor function. J. Biol. Chem.288, 11144–11154 (2013). CASPubMedPubMed Central Google Scholar
Gong, Y., Cao, P., Yu, H. J. & Jiang, T. Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex. Nature454, 789–793 (2008). CASPubMed Google Scholar
Vilar, M. et al. Ligand-independent signaling by disulfide-crosslinked dimers of the p75 neurotrophin receptor. J. Cell Sci.122, 3351–3357 (2009). CASPubMedPubMed Central Google Scholar
Nykjaer, A. et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature427, 843–848 (2004). CASPubMed Google Scholar
Fahnestock, M. et al. The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. J. Neurochem.89, 581–592 (2004). CASPubMed Google Scholar
Clewes, O. et al. Human ProNGF: biological effects and binding profiles at TrkA, p75NTR and sortilin. J. Neurochem.107, 1124–1135 (2008). CASPubMed Google Scholar
Masoudi, R. et al. Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors. J. Biol. Chem.284, 18424–18433 (2009). CASPubMedPubMed Central Google Scholar
Unsain, N., Nunez, N., Anastasia, A. & Masco, D. H. Status epilepticus induces a TrkB to p75 neurotrophin receptor switch and increases brain-derived neurotrophic factor interaction with p75 neurotrophin receptor: an initial event in neuronal injury induction. Neuroscience154, 978–993 (2008). CASPubMed Google Scholar
Volosin, M. et al. Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J. Neurosci.26, 7756–7766 (2006). CASPubMedPubMed Central Google Scholar
Buttigieg, H., Kawaja, M. D. & Fahnestock, M. Neurotrophic activity of proNGF in vivo. Exp. Neurol.204, 832–835 (2007). CASPubMed Google Scholar
Mufson, E. J., Brashers-Krug, T. & Kordower, J. H. p75 nerve growth factor receptor immunoreactivity in the human brainstem and spinal cord. Brain Res.589, 115–123 (1992). CASPubMed Google Scholar
Kordower, J. H. & Mufson, E. J. NGF receptor (p75)-immunoreactivity in the developing primate basal ganglia. J. Comp. Neurol.327, 359–375 (1993). CASPubMed Google Scholar
Mrzljak, L. & Goldman-Rakic, P. S. Low-affinity nerve growth factor receptor (p75NGFR)- and choline acetyltransferase (ChAT)-immunoreactive axons in the cerebral cortex and hippocampus of adult macaque monkeys and humans. Cereb. Cortex3, 133–147 (1993). CASPubMed Google Scholar
Andsberg, G., Kokaia, Z. & Lindvall, O. Upregulation of p75 neurotrophin receptor after stroke in mice does not contribute to differential vulnerability of striatal neurons. Exp. Neurol.169, 351–363 (2001). CASPubMed Google Scholar
Beattie, M. S. et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron36, 375–386 (2002). CASPubMedPubMed Central Google Scholar
Harrington, A. W. et al. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc. Natl Acad. Sci. USA101, 6226–6230 (2004). CASPubMedPubMed Central Google Scholar
Tep, C. et al. Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J. Neurosci.33, 397–410 (2013). CASPubMedPubMed Central Google Scholar
Oh, J. D., Chartisathian, K., Chase, T. N. & Butcher, L. L. Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res.853, 174–185 (2000). CASPubMed Google Scholar
Angelo, M. F. et al. p75 NTR expression is induced in isolated neurons of the penumbra after ischemia by cortical devascularization. J. Neurosci. Res.87, 1892–1903 (2009). CASPubMed Google Scholar
Woo, N. H. et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neurosci.8, 1069–1077 (2005). CASPubMed Google Scholar
Lochner, J. E. et al. Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity. Dev. Neurobiol.68, 1243–1256 (2008). CASPubMedPubMed Central Google Scholar
Deinhardt, K. et al. Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Sci. Signal.4, ra82 (2011). PubMedPubMed Central Google Scholar
Je, H. S. et al. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc. Natl Acad. Sci. USA109, 15924–15929 (2012). CASPubMedPubMed Central Google Scholar
Kotlyanskaya, L., McLinden, K. A. & Giniger, E. Of proneurotrophins and their antineurotrophic effects. Sci. Signal.6, pe6 (2013). PubMedPubMed Central Google Scholar
Deinhardt, K., Reversi, A., Berninghausen, O., Hopkins, C. R. & Schiavo, G. Neurotrophins redirect p75NTR from a clathrin-independent to a clathrin-dependent endocytic pathway coupled to axonal transport. Traffic8, 1736–1749 (2007). CASPubMed Google Scholar
Terry, A. V. Jr., Kutiyanawalla, A. & Pillai, A. Age-dependent alterations in nerve growth factor (NGF)-related proteins, sortilin, and learning and memory in rats. Physiol. Behav.102, 149–157 (2011). CASPubMed Google Scholar
Peng, S., Wuu, J., Mufson, E. J. & Fahnestock, M. Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J. Neuropathol. Exp. Neurol.63, 641–649 (2004). CASPubMed Google Scholar
Wang, Y. J. et al. Effects of proNGF on neuronal viability, neurite growth and amyloid-β metabolism. Neurotox. Res.17, 257–267 (2010). PubMed Google Scholar
Le, A. P. & Friedman, W. J. Matrix metalloproteinase-7 regulates cleavage of pro-nerve growth factor and is neuroprotective following kainic acid-induced seizures. J. Neurosci.32, 703–712 (2012). CASPubMedPubMed Central Google Scholar
Cuello, A. C., Bruno, M. A., Allard, S., Leon, W. & Iulita, M. F. Cholinergic involvement in Alzheimer's disease. A link with NGF maturation and degradation. J. Mol. Neurosci.40, 230–235 (2010). CASPubMed Google Scholar
Serup Andersen, O. et al. Identification of a linear epitope in sortilin that partakes in pro-neurotrophin binding. J. Biol. Chem.285, 12210–12222 (2010). CASPubMedPubMed Central Google Scholar
Wiesmann, C., Ultsch, M. H., Bass, S. H. & de Vos, A. M. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature401, 184–188 (1999). CASPubMed Google Scholar
Banfield, M. J. et al. Specificity in Trk receptor:neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure9, 1191–1199 (2001). CASPubMed Google Scholar
Ibanez, C. F. Emerging themes in structural biology of neurotrophic factors. Trends Neurosci.21, 438–444 (1998). CASPubMed Google Scholar
Arevalo, J. C. et al. TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor. Mol. Cell. Biol.20, 5908–5916 (2000). CASPubMedPubMed Central Google Scholar
Ohira, K., Shimizu, K. & Hayashi, M. TrkB dimerization during development of the prefrontal cortex of the macaque. J. Neurosci. Res.65, 463–469 (2001). CASPubMed Google Scholar
Mischel, P. S. et al. Nerve growth factor signals via preexisting TrkA receptor oligomers. Biophys. J.83, 968–976 (2002). CASPubMedPubMed Central Google Scholar
Shen, J. & Maruyama, I. N. Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Lett.585, 295–299 (2011). CASPubMed Google Scholar
Shen, J. & Maruyama, I. N. Brain-derived neurotrophic factor receptor TrkB exists as a preformed dimer in living cells. J. Mol. Signal.7, 2 (2012). CASPubMedPubMed Central Google Scholar
Tauszig-Delamasure, S. et al. The TrkC receptor induces apoptosis when the dependence receptor notion meets the neurotrophin paradigm. Proc. Natl Acad. Sci. USA104, 13361–13366 (2007). CASPubMedPubMed Central Google Scholar
Pitts, A. F. & Miller, M. W. Expression of nerve growth factor, p75, and trk in the somatosensory and motor cortices of mature rats: evidence for local trophic support circuits. Somatosens. Mot. Res.12, 329–342 (1995). CASPubMed Google Scholar
Vega, J. A. et al. Immunohistochemical localization of the high-affinity NGF receptor (gp140-trkA) in the adult human dorsal root and sympathetic ganglia and in the nerves and sensory corpuscles supplying digital skin. Anat. Rec.240, 579–588 (1994). CASPubMed Google Scholar
Boissiere, F., Faucheux, B., Ruberg, M., Agid, Y. & Hirsch, E. C. Decreased TrkA gene expression in cholinergic neurons of the striatum and basal forebrain of patients with Alzheimer's disease. Exp. Neurol.145, 245–252 (1997). CASPubMed Google Scholar
Sofroniew, M. V., Howe, C. L. & Mobley, W. C. Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci.24, 1217–1281 (2001). CASPubMed Google Scholar
Poo, M. M. Neurotrophins as synaptic modulators. Nature Rev. Neurosci.2, 24–32 (2001). CAS Google Scholar
Yamada, K. & Nabeshima, T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J. Pharmacol. Sci.91, 267–270 (2003). CASPubMed Google Scholar
Ernfors, P., Lee, K. F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell77, 503–512 (1994). CASPubMed Google Scholar
McMahon, S. B., Armanini, M. P., Ling, L. H. & Phillips, H. S. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron12, 1161–1171 (1994). CASPubMed Google Scholar
Rabizadeh, S. & Bredesen, D. E. Ten years on: mediation of cell death by the common neurotrophin receptor p75NTR. Cytokine Growth Factor Rev.14, 225–239 (2003). CASPubMed Google Scholar
Bamji, S. X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol.140, 911–923 (1998). CASPubMedPubMed Central Google Scholar
Rabizadeh, S. et al. Induction of apoptosis by the low-affinity NGF receptor. Science261, 345–348 (1993). CASPubMed Google Scholar
Bredesen, D. E. et al. p75NTR and the concept of cellular dependence: seeing how the other half die. Cell Death Differ.5, 365–371 (1998). CASPubMed Google Scholar
Roux, P. P. & Barker, P. A. Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol.67, 203–233 (2002). CASPubMed Google Scholar
Longo, F. M. & Massa, S. M. Small molecule modulation of p75 neurotrophin receptor functions. CNS Neurol. Disord. Drug Targets7, 63–70 (2008). CASPubMed Google Scholar
Yoon, S. O., Casaccia-Bonnefil, P., Carter, B. & Chao, M. V. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci.18, 3273–3281 (1998). CASPubMedPubMed Central Google Scholar
Esposito, D. et al. The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J. Biol. Chem.276, 32687–32695 (2001). CASPubMed Google Scholar
Majdan, M., Walsh, G. S., Aloyz, R. & Miller, F. D. TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol.155, 1275–1285 (2001). CASPubMedPubMed Central Google Scholar
Jung, K. M. et al. Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor. J. Biol. Chem.278, 42161–42169 (2003). CASPubMed Google Scholar
Epa, W. R., Markovska, K. & Barrett, G. L. The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation. J. Neurochem.89, 344–353 (2004). CASPubMed Google Scholar
Wilson-Gerwing, T. D., Johnston, J. M. & Verge, V. M. p75 neurotrophin receptor is implicated in the ability of neurotrophin-3 to negatively modulate activated ERK1/2 signaling in TrkA-expressing adult sensory neurons. J. Comp. Neurol.516, 49–58 (2009). CASPubMed Google Scholar
Mi, S. et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nature Neurosci.7, 221–228 (2004). CASPubMed Google Scholar
Wong, S. T. et al. A p75NTR and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nature Neurosci.5, 1302–1308 (2002). CASPubMed Google Scholar
Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R. & He, Z. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature420, 74–78 (2002). CASPubMed Google Scholar
Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell118, 127–138 (2004). CASPubMed Google Scholar
Chang, Q., Khare, G., Dani, V., Nelson, S. & Jaenisch, R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron49, 341–348 (2006). CASPubMed Google Scholar
Gharami, K., Xie, Y., An, J. J., Tonegawa, S. & Xu, B. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice. J. Neurochem.105, 369–379 (2008). CASPubMed Google Scholar
Larimore, J. L. et al. Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiol. Dis.34, 199–211 (2009). CASPubMedPubMed Central Google Scholar
Harris, N. G., Mironova, Y. A., Hovda, D. A. & Sutton, R. L. Pericontusion axon sprouting is spatially and temporally consistent with a growth-permissive environment after traumatic brain injury. J. Neuropathol. Exp. Neurol.69, 139–154 (2010). PubMed Google Scholar
Boulle, F. et al. TrkB inhibition as a therapeutic target for CNS-related disorders. Prog. Neurobiol.98, 197–206 (2012). CASPubMed Google Scholar
He, X. P. et al. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron43, 31–42 (2004). CASPubMed Google Scholar
Dinocourt, C., Gallagher, S. E. & Thompson, S. M. Injury-induced axonal sprouting in the hippocampus is initiated by activation of trkB receptors. Eur. J. Neurosci.24, 1857–1866 (2006). PubMed Google Scholar
Yasui, M. et al. Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury. Eur. J. Pain16, 953–965 (2012). CASPubMed Google Scholar
McKelvey, L., Shorten, G. D. & O'Keeffe, G. W. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J. Neurochem.124, 276–289 (2013). CASPubMed Google Scholar
Scarpi, D. et al. Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death Dis.3, e389 (2012). CASPubMedPubMed Central Google Scholar
Eibl, J. K., Strasser, B. C. & Ross, G. M. Structural, biological, and pharmacological strategies for the inhibition of nerve growth factor. Neurochem. Int.61, 1266–1275 (2012). CASPubMed Google Scholar
Heinrich, C. et al. Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol. Dis.42, 35–47 (2011). CASPubMed Google Scholar
Jiang, G. & Hunter, T. Receptor signaling: when dimerization is not enough. Curr. Biol.9, R568–R571 (1999). CASPubMed Google Scholar
Livnah, O. et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science283, 987–990 (1999). CASPubMed Google Scholar
Remy, I., Wilson, I. A. & Michnick, S. W. Erythropoietin receptor activation by a ligand-induced conformation change. Science283, 990–993 (1999). CASPubMed Google Scholar
Couturier, C. & Jockers, R. Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J. Biol. Chem.278, 26604–26611 (2003). CASPubMed Google Scholar
Ferguson, K. M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell11, 507–517 (2003). CASPubMed Google Scholar
Schlessinger, J. Signal transduction. Autoinhibition control. Science300, 750–752 (2003). CASPubMed Google Scholar
Streaker, E. D., Gupta, A. & Beckett, D. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding. Biochemistry41, 14263–14271 (2002). CASPubMed Google Scholar
Ivanov, I. et al. Ligand-induced formation of transient dimers of mammalian 12/15-lipoxygenase: a key to allosteric behavior of this class of enzymes? Proteins80, 703–712 (2012). CASPubMed Google Scholar
Arevalo, J. C. et al. A novel mutation within the extracellular domain of TrkA causes constitutive receptor activation. Oncogene20, 1229–1234 (2001). CASPubMed Google Scholar
Spiegel, K. et al. PD 90780, a non peptide inhibitor of nerve growth factor's binding to the P75 NGF receptor. Biochem. Biophys. Res. Commun.217, 488–494 (1995). CASPubMed Google Scholar
Jang, S. W. et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl Acad. Sci. USA107, 2687–2692 (2010). This paper reports the identification of a flavinoid compound (7,8-DHF) that activates TRKB and that has subsequently been found to exhibit therapeutic effects in several mouse models of disease. CASPubMedPubMed Central Google Scholar
Jang, S. W. et al. Deoxygedunin, a natural product with potent neurotrophic activity in mice. PLoS ONE5, e11528 (2010). PubMedPubMed Central Google Scholar
Massa, S. M. et al. Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. J. Neurosci.26, 5288–5300 (2006). This paper reports the first identification of small-molecule non-peptide p75NTRligands that modulate p75NTRsignalling towards survival in neurons and oligodendroglia. CASPubMedPubMed Central Google Scholar
Belliveau, D. J. et al. NGF and neurotrophin-3 both activate TrkA on sympathetic neurons but differentially regulate survival and neuritogenesis. J. Cell Biol.136, 375–388 (1997). CASPubMedPubMed Central Google Scholar
Saragovi, H. U. et al. A TrkA-selective, fast internalizing nerve growth factor-antibody complex induces trophic but not neuritogenic signals. J. Biol. Chem.273, 34933–34940 (1998). CASPubMed Google Scholar
Minichiello, L. et al. Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron21, 335–345 (1998). CASPubMed Google Scholar
Xie, Y. & Longo, F. M. Neurotrophin small-molecule mimetics. Prog. Brain Res.128, 333–347 (2000). CASPubMed Google Scholar
Pollack, S. J. & Harper, S. J. Small molecule Trk receptor agonists and other neurotrophic factor mimetics. Curr. Drug Target CNS Neurol. Disord.1, 59–80 (2002). CAS Google Scholar
Saragovi, H. U. & Zaccaro, M. C. Small molecule peptidomimetic ligands of neurotrophin receptors, identifying binding sites, activation sites and regulatory sites. Curr. Pharm. Des.8, 2201–2216 (2002). CASPubMed Google Scholar
Longo, F. M., Vu, T. K. & Mobley, W. C. The in vitro biological effect of nerve growth factor is inhibited by synthetic peptides. Cell Regul.1, 189–195 (1990). This study is the first report of a synthetic peptide derived from NGF that can inhibit the neurotrophic activity of NGF and it illustrates the possibility of small-molecule modulation of neurotrophin signalling. CASPubMedPubMed Central Google Scholar
Ibanez, C. F. et al. Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell69, 329–341 (1992). CASPubMed Google Scholar
Yaar, M. et al. A cyclic peptide that binds p75NTR protects neurones from beta amyloid (1-40)-induced cell death. Neuropathol. Appl. Neurobiol.33, 533–543 (2007). CASPubMed Google Scholar
Botchkarev, V. A., Yaar, M., Gilchrest, B. A. & Paus, R. p75 neurotrophin receptor antagonist retards apoptosis-driven hair follicle involution (catagen). J. Invest. Dermatol.120, 168–169 (2003). CASPubMed Google Scholar
Li, S. et al. Differential actions of nerve growth factor receptors TrkA and p75NTR in a rat model of epileptogenesis. Mol. Cell Neurosci.29, 162–172 (2005). CASPubMed Google Scholar
Lebrun-Julien, F., Morquette, B., Douillette, A., Saragovi, H. U. & Di Polo, A. Inhibition of p75NTR in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Mol. Cell Neurosci.40, 410–420 (2009). CASPubMed Google Scholar
LeSauteur, L., Wei, L., Gibbs, B. F. & Saragovi, H. U. Small peptide mimics of nerve growth factor bind TrkA receptors and affect biological responses. J. Biol. Chem.270, 6564–6569 (1995). This paper reports the competitive inhibition of NGF–TRKA binding with cyclic oligopeptides from β-turn loop 1 and loop 4 of NGF; this study supports the feasibility of developing small molecules that bind to TRKA. CASPubMed Google Scholar
Maliartchouk, S. et al. Genuine monovalent ligands of TrkA nerve growth factor receptors reveal a novel pharmacological mechanism of action. J. Biol. Chem.275, 9946–9956 (2000). CASPubMed Google Scholar
Xie, Y., Tisi, M. A., Yeo, T. T. & Longo, F. M. Nerve growth factor (NGF) loop 4 dimeric mimetics activate ERK and AKT and promote NGF-like neurotrophic effects. J. Biol. Chem.275, 29868–29874 (2000). CASPubMed Google Scholar
Maliartchouk, S. et al. A designed peptidomimetic agonistic ligand of TrkA nerve growth factor receptors. Mol. Pharmacol.57, 385–391 (2000). This paper reports the development of a peptidomimetic ligand (compound D3) that is capable of activating TRKA and promoting neuronal survival. Compounds of this class are in clinical trials for ophthalmological disorders. CASPubMed Google Scholar
Bruno, M. A. et al. Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. J. Neurosci.24, 8009–8018 (2004). CASPubMedPubMed Central Google Scholar
Shi, Z., Birman, E. & Saragovi, H. U. Neurotrophic rationale in glaucoma: a TrkA agonist, but not NGF or a p75 antagonist, protects retinal ganglion cells in vivo. Dev. Neurobiol.67, 884–894 (2007). CASPubMed Google Scholar
Colangelo, A. M. et al. A new nerve growth factor-mimetic peptide active on neuropathic pain in rats. J. Neurosci.28, 2698–2709 (2008). CASPubMedPubMed Central Google Scholar
O'Leary, P. D. & Hughes, R. A. Structure–activity relationships of conformationally constrained peptide analogues of loop 2 of brain-derived neurotrophic factor. J. Neurochem.70, 1712–1721 (1998). PubMed Google Scholar
O'Leary, P. D. & Hughes, R. A. Design of potent peptide mimetics of brain-derived neurotrophic factor. J. Biol. Chem.278, 25738–25744 (2003). This paper reports the synthesis of a tricyclic oligopeptide dimer based on a BDNF domain; this was the first BDNF-derived molecule to exhibit neurotrophic activity, and this study indicates the possibility of developing small molecules with BDNF-like activity. PubMed Google Scholar
Cardenas- Aguayo Mdel, C., Kazim, S. F., Grundke-Iqbal, I. & Iqbal, K. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures. PLoS ONE8, e53596 (2013). Google Scholar
Fletcher, J. M. et al. Design of a conformationally defined and proteolytically stable circular mimetic of brain-derived neurotrophic factor. J. Biol. Chem.283, 33375–33383 (2008). CASPubMedPubMed Central Google Scholar
Xiao, J. et al. A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination. J. Neurochem.125, 386–398 (2013). CASPubMed Google Scholar
Cazorla, M. et al. Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS ONE5, e9777 (2010). PubMedPubMed Central Google Scholar
Pattarawarapan, M., Zaccaro, M. C., Saragovi, U. H. & Burgess, K. New templates for syntheses of ring-fused, C10 β-turn peptidomimetics leading to the first reported small-molecule mimic of neurotrophin-3. J. Med. Chem.45, 4387–4390 (2002). CASPubMed Google Scholar
Zhang, A. J., Khare, S., Gokulan, K., Linthicum, D. S. & Burgess, K. Dimeric β-turn peptidomimetics as ligands for the neurotrophin receptor TrkC. Bioorg. Med. Chem. Lett.11, 207–210 (2001). CASPubMed Google Scholar
Lin, B. et al. Neuroprotection by small molecule activators of the nerve growth factor receptor. J. Pharmacol. Exp. Ther.322, 59–69 (2007). CASPubMed Google Scholar
Jang, S. W. et al. Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc. Natl Acad. Sci. USA104, 16329–16334 (2007). CASPubMedPubMed Central Google Scholar
Zhang, B. et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science284, 974–977 (1999). CASPubMed Google Scholar
Jang, S. W. et al. Amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterodimerization and has potent neurotrophic activity. Chem. Biol.16, 644–656 (2009). CASPubMedPubMed Central Google Scholar
Fuh, G., Li, B., Crowley, C., Cunningham, B. & Wells, J. A. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem.273, 11197–11204 (1998). CASPubMed Google Scholar
Clackson, T. & Wells, J. A. A hot spot of binding energy in a hormone–receptor interface. Science267, 383–386 (1995). CASPubMed Google Scholar
Angell, Y., Chen, D., Brahimi, F., Saragovi, H. U. & Burgess, K. A combinatorial method for solution-phase synthesis of labeled bivalent β-turn mimics. J. Am. Chem. Soc.130, 556–565 (2008). CASPubMed Google Scholar
Chen, J. et al. Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci. Lett.499, 181–185 (2011). CASPubMed Google Scholar
Devi, L. & Ohno, M. 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer's disease. Neuropsychopharmacology37, 434–444 (2012). CASPubMed Google Scholar
Andero, R. et al. Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am. J. Psychiatry168, 163–172 (2011). PubMed Google Scholar
Andero, R., Daviu, N., Escorihuela, R. M., Nadal, R. & Armario, A. 7,8-dihydroxyflavone, a TrkB receptor agonist, blocks long-term spatial memory impairment caused by immobilization stress in rats. Hippocampus22, 399–408 (2012). CASPubMed Google Scholar
Zeng, Y. et al. Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging. J. Neurosci.31, 17800–17810 (2011). CASPubMedPubMed Central Google Scholar
Blugeot, A. et al. Vulnerability to depression: from brain neuroplasticity to identification of biomarkers. J. Neurosci.31, 12889–12899 (2011). CASPubMedPubMed Central Google Scholar
Liu, X. et al. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J. Med. Chem.53, 8274–8286 (2010). CASPubMedPubMed Central Google Scholar
Liu, X. et al. Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression. J. Med. Chem.55, 8524–8537 (2012). CASPubMedPubMed Central Google Scholar
Johnson, R. A. et al. 7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome. J. Appl. Physiol.112, 704–710 (2012). CASPubMed Google Scholar
Massa, S. M. et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest.120, 1774–1785 (2010). CASPubMedPubMed Central Google Scholar
Schmid, D. A. et al. A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. J. Neurosci.32, 1803–1810 (2012). CASPubMedPubMed Central Google Scholar
Han, J. et al. Delayed administration of a small molecule tropomyosin-related kinase B ligand promotes recovery after hypoxic-ischemic stroke. Stroke43, 1918–1924 (2012). CASPubMedPubMed Central Google Scholar
Prince, D. A. et al. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia50 (Suppl. 2), 30–40 (2009). PubMedPubMed Central Google Scholar
Cazorla, M. et al. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J. Clin. Invest.121, 1846–1857 (2011). This studyestablishes the feasibility of developing drug-like TRKB antagonists and their applicationin vivo. CASPubMedPubMed Central Google Scholar
Spaeth, A. M., Kanoski, S. E., Hayes, M. R. & Grill, H. J. TrkB receptor signaling in the nucleus tractus solitarius mediates the food intake-suppressive effects of hindbrain BDNF and leptin. Am. J. Physiol. Endocrinol. Metab.302, E1252–E1260 (2012). CASPubMedPubMed Central Google Scholar
Ren, Q. et al. Effects of TrkB agonist 7,8-dihydroxyflavone on sensory gating deficits in mice after administration of methamphetamine. Pharmacol. Biochem. Behav.106, 124–127 (2013). CASPubMed Google Scholar
Jang, S. W. et al. _N_-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc. Natl Acad. Sci. USA107, 3876–3881 (2010). CASPubMedPubMed Central Google Scholar
Shen, J. et al. _N_-acetyl serotonin derivatives as potent neuroprotectants for retinas. Proc. Natl Acad. Sci. USA109, 3540–3545 (2012). CASPubMedPubMed Central Google Scholar
Chen, D. et al. Bivalent peptidomimetic ligands of TrkC are biased agonists and selectively induce neuritogenesis or potentiate neurotrophin-3 trophic signals. ACS Chem. Biol.4, 769–781 (2009). CASPubMedPubMed Central Google Scholar
Longo, F. M., Manthorpe, M., Xie, Y. M. & Varon, S. Synthetic NGF peptide derivatives prevent neuronal death via a p75 receptor-dependent mechanism. J. Neurosci. Res.48, 1–17 (1997). CASPubMed Google Scholar
Pehar, M. et al. Modulation of p75-dependent motor neuron death by a small non-peptidyl mimetic of the neurotrophin loop 1 domain. Eur. J. Neurosci.24, 1575–1580 (2006). PubMed Google Scholar
Yang, T. et al. Small molecule, non-peptide p75 ligands inhibit Aβ-induced neurodegeneration and synaptic impairment. PLoS ONE3, e3604 (2008). PubMedPubMed Central Google Scholar
Knowles, J. K. et al. A small molecule p75NTR ligand prevents cognitive deficits and neurite degeneration in an Alzheimer's mouse model. Neurobiol. Aging34, 2052–2063 (2013). CASPubMed Google Scholar
Bachis, A. & Mocchetti, I. Brain-derived neurotrophic factor is neuroprotective against human immunodeficiency virus-1 envelope proteins. Ann. NY Acad. Sci.1053, 247–257 (2005). CASPubMed Google Scholar
Meeker, R. B., Poulton, W., Feng, W. H., Hudson, L. & Longo, F. M. Suppression of immunodeficiency virus-associated neural damage by the p75 neurotrophin receptor ligand, LM11A-31, in an in vitro feline model. J. Neuroimmune Pharmacol.7, 388–400 (2012). PubMed Google Scholar
Lu, Q., Longo, F. M., Zhou, H., Massa, S. M. & Chen, Y. H. Signaling through Rho GTPase pathway as viable drug target. Curr. Med. Chem.16, 1355–1365 (2009). CASPubMedPubMed Central Google Scholar
James, S. E. et al. Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuroprotectants. Neurotoxicology29, 605–612 (2008). CASPubMedPubMed Central Google Scholar
Bai, Y. et al. Chronic and acute models of retinal neurodegeneration TrkA activity are neuroprotective whereas p75NTR activity is neurotoxic through a paracrine mechanism. J. Biol. Chem.285, 39392–39400 (2010). CASPubMedPubMed Central Google Scholar
Thoenen, H. & Sendtner, M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nature Neurosci.5, S1046–S1050 (2002). Google Scholar
Eriksdotter Jonhagen, M. et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord.9, 246–257 (1998). CASPubMed Google Scholar
Jones, M. G., Munson, J. B. & Thompson, S. W. A role for nerve growth factor in sympathetic sprouting in rat dorsal root ganglia. Pain79, 21–29 (1999). CASPubMed Google Scholar
Pertovaara, A. Noradrenergic pain modulation. Prog. Neurobiol.80, 53–83 (2006). CASPubMed Google Scholar
Apfel, S. C. et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. JAMA284, 2215–2221 (2000). CASPubMed Google Scholar
Wellmer, A., Misra, V. P., Sharief, M. K., Kopelman, P. G. & Anand, P. A double-blind placebo-controlled clinical trial of recombinant human brain-derived neurotrophic factor (rhBDNF) in diabetic polyneuropathy. J. Peripher. Nerv. Syst.6, 204–210 (2001). CASPubMed Google Scholar
McArthur, J. C. et al. A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. Neurology54, 1080–1088 (2000). CASPubMed Google Scholar
Schifitto, G. et al. Long-term treatment with recombinant nerve growth factor for HIV-associated sensory neuropathy. Neurology57, 1313–1316 (2001). CASPubMed Google Scholar
[No authors listed.] A controlled trial of recombinant methionyl human BDNF in ALS: the BDNF Study Group (Phase III). Neurology52, 1427–1433 (1999).
Yaar, M. et al. Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest.100, 2333–2340 (1997). CASPubMedPubMed Central Google Scholar
Yaar, M. et al. Amyloid β binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J. Biol. Chem.277, 7720–7725 (2002). CASPubMed Google Scholar
Costantini, C. et al. Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in β-amyloid peptide-dependent cell death. J. Mol. Neurosci.25, 141–156 (2005). CASPubMed Google Scholar
Dinamarca, M. C., Rios, J. A. & Inestrosa, N. C. Postsynaptic receptors for amyloid-β oligomers as mediators of neuronal damage in Alzheimer's disease. Front. Physiol.3, 464 (2012). PubMedPubMed Central Google Scholar
Shankar, G. M. & Walsh, D. M. Alzheimer's disease: synaptic dysfunction and Aβ. Mol. Neurodegener.4, 48 (2009). PubMedPubMed Central Google Scholar
Shelton, D. L. et al. Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J .Neurosci.15, 477–491 (1995). CASPubMedPubMed Central Google Scholar
Jain, P. et al. An NGF mimetic, MIM-D3, stimulates conjunctival cell glycoconjugate secretion and demonstrates therapeutic efficacy in a rat model of dry eye. Exp. Eye Res.93, 503–512 (2011). CASPubMed Google Scholar