Targeting bromodomains: epigenetic readers of lysine acetylation (original) (raw)
Holliday, R. The inheritance of epigenetic defects. Science238, 163–170 (1987). CASPubMed Google Scholar
Magnaghi-Jaulin, L. et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature391, 601–605 (1998). CASPubMed Google Scholar
Sugita, K. et al. MLL-CBP fusion transcript in a therapy-related acute myeloid leukemia with the t(11;16)(q23;p13) which developed in an acute lymphoblastic leukemia patient with Fanconi anemia. Genes Chromosomes Cancer27, 264–269 (2000). CASPubMed Google Scholar
Hennekam, R. C. Rubinstein-Taybi syndrome. Eur. J. Hum. Genet.14, 981–985 (2006). CASPubMed Google Scholar
Lee, J. H., Choy, M. L. & Marks, P. A. Mechanisms of resistance to histone deacetylase inhibitors. Adv. Cancer Res.116, 39–86 (2012). CASPubMed Google Scholar
Buurman, R. et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology143, 811–820.e15 (2012). CASPubMed Google Scholar
Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nature Rev. Drug Discov.5, 769–784 (2006). CAS Google Scholar
Garber, K. HDAC inhibitors overcome first hurdle. Nature Biotech.25, 17–19 (2007). CAS Google Scholar
McConkey, D. J., White, M. & Yan, W. HDAC inhibitor modulation of proteotoxicity as a therapeutic approach in cancer. Adv. Cancer Res.116, 131–163 (2012). CASPubMed Google Scholar
Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature478, 529–533 (2011). CASPubMedPubMed Central Google Scholar
Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell146, 904–917 (2011). CASPubMedPubMed Central Google Scholar
Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature478, 524–528 (2011). CASPubMedPubMed Central Google Scholar
Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell19, 535–545 (2005). CASPubMed Google Scholar
Marushige, K. Activation of chromatin by acetylation of histone side chains. Proc. Natl Acad. Sci. USA73, 3937–3941 (1976). CASPubMedPubMed Central Google Scholar
Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science311, 844–847 (2006). CASPubMed Google Scholar
Celic, I. et al. The sirtuins Hst3 and Hst4p preserve genome integrity by controlling histone H3 lysine 56 deacetylation. Curr. Biol.16, 1280–1289 (2006). CASPubMed Google Scholar
Kouzarides, T. Chromatin modifications and their function. Cell128, 693–705 (2007). CASPubMed Google Scholar
Jenuwein, T. & Allis, C. D. Translating the histone code. Science293, 1074–1080 (2001). CASPubMed Google Scholar
Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science325, 834–840 (2009). ArticleCASPubMed Google Scholar
Kazantsev, A. G. & Thompson, L. M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Rev. Drug Discov.7, 854–868 (2008). CAS Google Scholar
Thurn, K. T., Thomas, S., Moore, A. & Munster, P. N. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol.7, 263–283 (2011). CASPubMed Google Scholar
Tamkun, J. W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell68, 561–572 (1992). CASPubMed Google Scholar
Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature382, 319–324 (1996). CASPubMed Google Scholar
Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature399, 491–496 (1999). CASPubMed Google Scholar
Gregory, G. D. et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol. Cell. Biol.27, 8466–8479 (2007). CASPubMedPubMed Central Google Scholar
Malik, S. & Bhaumik, S. R. Mixed lineage leukemia: histone H3 lysine 4 methyltransferases from yeast to human. FEBS J.277, 1805–1821 (2010). CASPubMedPubMed Central Google Scholar
Trotter, K. W. & Archer, T. K. The BRG1 transcriptional coregulator. Nucl. Recept. Signal6, e004 (2008). PubMedPubMed Central Google Scholar
Cavellan, E., Asp, P., Percipalle, P. & Farrants, A. K. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J. Biol. Chem.281, 16264–16271 (2006). CASPubMed Google Scholar
Venturini, L. et al. TIF1γ, a novel member of the transcriptional intermediary factor 1 family. Oncogene18, 1209–1217 (1999). CASPubMed Google Scholar
Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science288, 1422–1425 (2000). CASPubMed Google Scholar
Xue, Y. et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast Rsc and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA97, 13015–13020 (2000). CASPubMedPubMed Central Google Scholar
Wu, S. Y. & Chiang, C. M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem.282, 13141–13145 (2007). CASPubMed Google Scholar
Muller, S., Filippakopoulos, P. & Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med.13, e29 (2011). PubMedPubMed Central Google Scholar
Prinjha, R. K., Witherington, J. & Lee, K. Place your BETs: the therapeutic potential of bromodomains. Trends Pharmacol. Sci.33, 146–153 (2012). CASPubMed Google Scholar
Belkina, A. C. & Denis, G. V. BET domain co-regulators in obesity, inflammation and cancer. Nature Rev. Cancer12, 465–477 (2012). CAS Google Scholar
Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell149, 214–231 (2012). CASPubMedPubMed Central Google Scholar
Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. EMBO J.19, 6141–6149 (2000). CASPubMedPubMed Central Google Scholar
Moriniere, J. et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature461, 664–668 (2009). CASPubMed Google Scholar
Zeng, L. et al. Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J. Am. Chem. Soc.127, 2376–2377 (2005). CASPubMed Google Scholar
Sueoka, H., Kobayashi, H., Ehara, S. & Komatsu, H. Thienotriazolodiazepine compounds & medicinal uses thereof. WO 98/11111 A1 (1998).
Adachi, K. et al. Thienotriazolodiazepine compound and a medicinal use thereof. WO 2006/1 29623 A1 (2006).
Miyoshi, S., Ooike, S., Iwata, K., Hikawa, H. & Sugaraha, K. Anti tumor agent. WO 2009/084693 (2009).
Sachchidanand et al. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Chem. Biol.13, 81–90 (2006).
Borah, J. C. et al. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem. Biol.18, 531–541 (2011). CASPubMedPubMed Central Google Scholar
Zhang, G. et al. Structure-guided design of potent diazobenzene inhibitors for the BET bromodomains. J. Med. Chem.56, 9251–9264 (2013). CASPubMedPubMed Central Google Scholar
Ito, T. et al. Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem. Biol.18, 495–507 (2011). CASPubMed Google Scholar
Zhang, G. et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J. Biol. Chem.287, 28840–28851 (2012). CASPubMedPubMed Central Google Scholar
Devaiah, B. N. et al. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc. Natl Acad. Sci. USA109, 6927–6932 (2012). CASPubMedPubMed Central Google Scholar
Chung, C. W. et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J. Med. Chem.54, 3827–3838 (2011). CASPubMed Google Scholar
Filippakopoulos, P. et al. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg. Med. Chem.20, 1878–1886 (2012). CASPubMedPubMed Central Google Scholar
Hewings, D. S. et al. 3,5-dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J. Med. Chem.54, 6761–6770 (2011). CASPubMedPubMed Central Google Scholar
Hewings, D. S. et al. Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands. J. Med. Chem.56, 3217–3227 (2013). CASPubMedPubMed Central Google Scholar
Bamborough, P. et al. Fragment-based discovery of bromodomain inhibitors part 2: optimization of phenylisoxazole sulfonamides. J. Med. Chem.55, 587–596 (2012). CASPubMed Google Scholar
Gehling, V. S. et al. Discovery, design, and optimization of isoxazole azepine BET inhibitors. ACS Med. Chem. Lett.4, 835–840 (2013). CASPubMedPubMed Central Google Scholar
Hay, D. et al. The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains. Medchemcomm4, 140–144 (2013). CASPubMed Google Scholar
Mirguet, O. et al. Naphthyridines as novel BET family bromodomain inhibitors. ChemMedChem9, 580–589 (2014). CASPubMed Google Scholar
Fish, P. V. et al. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J. Med. Chem.55, 9831–9837 (2012). CASPubMedPubMed Central Google Scholar
Khmelnitsky, Y. L. et al. In vitro biosynthesis, isolation, and identification of predominant metabolites of 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3_H_)-one (RVX-208). Eur. J. Med. Chem.64, 121–128 (2013). CASPubMed Google Scholar
Fedorov, O. et al. [1,2,4]Triazolo[4,3-a]phthalazines: inhibitors of diverse bromodomains. J. Med. Chem.57, 462–476 (2014). CASPubMed Google Scholar
Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nature Chem. Biol.10, 305–312 (2014). CAS Google Scholar
Lucas, X. et al. 4-acyl pyrroles: mimicking acetylated lysines in histone code reading. Angew. Chem. Int. Ed Engl.52, 14055–14059 (2013). CASPubMed Google Scholar
Zhao, L. et al. Fragment-based drug discovery of 2-thiazolidinones as inhibitors of the histone reader BRD4 bromodomain. J. Med. Chem.56, 3833–3851 (2013). CASPubMed Google Scholar
Vidler, L. R. et al. Discovery of novel small-molecule inhibitors of BRD4 using structure-based virtual screening. J. Med. Chem.56, 8073–8088 (2013). CASPubMedPubMed Central Google Scholar
Chung, C. W., Dean, A. W., Woolven, J. M. & Bamborough, P. Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery. J. Med. Chem.55, 576–586 (2012). CASPubMed Google Scholar
Ferguson, F. M. et al. Targeting low-druggability bromodomains: fragment based screening and inhibitor design against the BAZ2B bromodomain. J. Med. Chem.56, 10183–10187 (2013). CASPubMedPubMed Central Google Scholar
Vidler, L. R., Brown, N., Knapp, S. & Hoelder, S. Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J. Med. Chem.55, 7346–7359 (2012). CASPubMedPubMed Central Google Scholar
Zhou, M.-M., Zeng, L. & Wang, Z. Preparation of modulators of histone acetyltransferase bromodomain binding to protein partners for use in treating viral infections by affecting transcription. WO 2006/083692 A2 (2006).
Sasaki, K., Ito, T., Nishino, N., Khochbin, S. & Yoshida, M. Real-time imaging of histone H4 hyperacetylation in living cells. Proc. Natl Acad. Sci. USA106, 16257–16262 (2009). CASPubMedPubMed Central Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.46, 3–26 (2001). CASPubMed Google Scholar
Olkkola, K. T. & Ahonen, J. Midazolam and other benzodiazepines. Handb Exp. Pharmacol.182, 335–360 (2008). CAS Google Scholar
Verster, J. C. & Volkerts, E. R. Clinical pharmacology, clinical efficacy, and behavioral toxicity of alprazolam: a review of the literature. CNS Drug Rev.10, 45–76 (2004). CASPubMedPubMed Central Google Scholar
Sofou, K., Kristjansdottir, R., Papachatzakis, N. E., Ahmadzadeh, A. & Uvebrant, P. Management of prolonged seizures and status epilepticus in childhood: a systematic review. J. Child Neurol.24, 918–926 (2009). PubMed Google Scholar
Quirk, K. et al. [3_H_]L-655,708, a novel ligand selective for the benzodiazepine site of GABAA receptors which contain the alpha 5 subunit. Neuropharmacology35, 1331–1335 (1996). CASPubMed Google Scholar
Casula, M. A. et al. Identification of amino acid residues responsible for the α5 subunit binding selectivity of L-655,708, a benzodiazepine binding site ligand at the GABAA receptor. J. Neurochem.77, 445–451 (2001). CASPubMed Google Scholar
Atack, J. R. The benzodiazepine binding site of GABAA receptors as a target for the development of novel anxiolytics. Expert Opin. Investig. Drugs14, 601–618 (2005). CASPubMed Google Scholar
Korpi, E. R., Mattila, M. J., Wisden, W. & Luddens, H. GABA(A)-receptor subtypes: clinical efficacy and selectivity of benzodiazepine site ligands. Ann. Med.29, 275–282 (1997). CASPubMed Google Scholar
Dubnick, B. et al. The separation of 3_H_-benzodiazepine binding sites in brain and of benzodiazepine pharmacological properties. Pharmacol. Biochem. Behav.18, 311–318 (1983). CASPubMed Google Scholar
Richter, P. H. & Scheefeldt, U. [Synthesis and biological activity of 5-phenyl-1,3,4-benzotriazepines. 25. Synthesis of (1,2,4)triazolo(4,3-a)(1,3,4)benzotriazepines and related tricyclics]. Pharmazie46, 701–705 (in German) (1991). CASPubMed Google Scholar
McDonald, I. M. et al. Novel, achiral 1,3,4-benzotriazepine analogues of 1,4-benzodiazepine-based CCK2 antagonists that display high selectivity over CCK1 receptors. J. Med. Chem.49, 2253–2261 (2006). CASPubMed Google Scholar
Fernandez, P. et al. A novel indazolo-triazolo-benzotriazepine exerts anti-inflammatory effects by inhibition of cyclooxygenase-2 activity and nitric oxide synthase-2 expression. Naunyn Schmiedebergs Arch. Pharmacol.368, 26–32 (2003). CASPubMed Google Scholar
Morgenstern, O. Chemistry and biological activity of 1,3,4-benzotriazepines, part 3. Pharmazie55, 871–891 (2000). CASPubMed Google Scholar
Lange, B. et al. Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood70, 192–199 (1987). CASPubMed Google Scholar
Kempen, H. Use of a thienotriazolodiazepine to increase apolipoprotein A-I levels. WO 1997/09048 A1 (1997).
Kempen, H. J. et al. Stimulation of hepatic apolipoprotein A-I production by novel thieno-triazolodiazepines. Lipid Insights6, 47–54 (2013). PubMedPubMed Central Google Scholar
Mirguet, O. et al. Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J. Med. Chem.56, 7501–7515 (2013). CASPubMed Google Scholar
Mirguet, O. et al. From ApoA1 upregulation to BET family bromodomain inhibition: discovery of I-BET151. Bioorg. Med. Chem. Lett.22, 2963–2967 (2012). CASPubMed Google Scholar
Bradner, J. E. & Qi, J. Compositions and methods for treating neoplasia, inflammatory disease and other disorders. WO 2011/143669 A2 (2011).
Bradner, J. E. & Brown, J. Compositions and methods for modulating metabolism. WO 2011/143651 A1 (2011).
Bradner, J. E., Zuber, J., Shi, J. & Vakoc, C. R. Compositions and methods for treating leukemia. WO 2011/143660 A2 (2011).
Bradner, J. E., Matzuk, M. & Qi, J. Male contraceptive compositions and methods of use. WO 2011/143657 A1 (2011).
Albrecht, B. K. et al. Preparation of triazole derivatives as bromodomain inhibitors for treatment of cancers and disorders. WO 2012/075456 A1 (2012).
Schmees, N. et al. 6_H_-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepines as anticancer agents. WO 2013/030150 A1 (2013).
Gosmini, R. L. M. & Mirguet, O. Benzodiazepine bromodomain inhibitor. WO 2011/054553 A1 (2011).
Crowe, M. et al. Condensed azepine derivatives as bromodomain inhibitors. WO 2011/054844 A1 (2011).
Bailey, J., Gosmini, R. L. M., Mirguet, O. & Witherington, J. Benzodiazepine bromodomain inhibitor. WO 2011/054845 A1 (2011).
Bailey, J. M. Benzotriazolodiazepine compounds inhibitors of bromodomains. WO 2011/161031 A1 (2011).
Albrecht, B. K. et al. Bromodomain inhibitors and uses thereof. WO 2012/151512 A2 (2012).
Albrecht, B. K. et al. Bromodomain inhibitors and uses thereof. WO 2012/075383 A2 (2012).
Chung, C.-W. & Nicodeme, E. Bromodomain inhibitors for treating autoimmune and inflammatory diseases. WO 2011/054843 A1 (2011).
Seal, J. et al. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg. Med. Chem. Lett.22, 2968–2972 (2012). CASPubMed Google Scholar
Demont, E. H., Jones, K. L. & Watson, R. J. 4-(8-methoxy-1-((1-methoxypropan-2-Yl)-2-(tetrahydro-2h-pyran-4-Yl)-1_H_-imidazo[4,5-C]quinolin-7-Yl)-3,5-dimethylisoxazole and its use as bromodomain inhibitor. WO 2013/024104 A1 (2013).
Bouillot, A. M. J. et al. Imidazo [4, 5-c] quinoline derivates as bromodomain inhibitors. WO 2011/054846 A1 (2011).
Demont, E. H. & Gosmini, R. L. M. Thetrahydroquinolines derivatives as bromodomain inhibitors. WO 2011/054848 A1 (2011).
Bamborough, P. & Chung, C. W. Novel process. WO 2011/054851 A1 (2011).
Picaud, S. et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res.73, 3336–3346 (2013). CASPubMedPubMed Central Google Scholar
Fish, P. V. et al. Novel heterocyclic compounds as bromodomain inhibitors. WO 2013/027168 A1 (2013).
Hansen, H. Compounds for the prevention and treatment of cardiovascular diseases. WO 2008/092231 A1 (2008).
Hansen, H. C. et al. Methods of preparing quinazolinone derivatives. WO 2009/158404 A1 (2009).
Hansen, H. C. et al. Novel anti-inflammatory agents. WO 2010/123975 A1 (2010).
Bailey, D. et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J. Am. Coll. Cardiol.55, 2580–2589 (2010). CASPubMed Google Scholar
Nicholls, S. J. et al. ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc. Drugs Ther.26, 181–187 (2012). CASPubMed Google Scholar
Joy, T. R. Novel HDL-based therapeutic agents. Pharmacol. Ther.135, 18–30 (2012). CASPubMed Google Scholar
McLure, K. G. & Young, P. R. Preparation of substituted 2-phenyl-3_H_-quinazolin-4-ones and analogs as inhibitors of BET for treating cancer. WO 2013/156869 A1 (2013).
Picaud, S. et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl Acad. Sci. USA110, 19754–19759 (2013). CASPubMedPubMed Central Google Scholar
McLure, K. G. et al. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS ONE8, e83190 (2013). PubMedPubMed Central Google Scholar
Martin, M. P., Olesen, S. H., Georg, G. I. & Schonbrunn, E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol.8, 2360–2365 (2013). CASPubMed Google Scholar
Dittmann, A. et al. The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem. Biol.9, 495–502 (2014). CASPubMed Google Scholar
Ember, S. W. et al. The acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem. Biol.http://dx.doi.org/10.1021/cb500072z (2014).
Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res.40, D1100–D1107 (2012). CASPubMed Google Scholar
Albrecht, B. K., Harmange, J. C., Cote, A. & Taylor, A. M. Bromodomain inhibitors for cancer therapy. WO 2012/174487 A2 (2012).
Wang, L. et al. Bromodomain inhibitors. WO 2013/097601 A1 (2013).
Arnold, L. D., Foreman, K. W. & Werner, D. S. Bivalent bromodomain ligands and methods of using same. WO 2013/033268 A2 (2013).
French, C. A. et al. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res.63, 304–307 (2003). CASPubMed Google Scholar
French, C. A. Demystified molecular pathology of NUT midline carcinomas. J. Clin. Pathol.63, 492–496 (2010). PubMed Google Scholar
French, C. A. Pathogenesis of NUT midline carcinoma. Annu. Rev. Pathol.7, 247–265 (2012). CASPubMed Google Scholar
Reynoird, N. et al. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J.29, 2943–2952 (2010). CASPubMedPubMed Central Google Scholar
Schwartz, B. E. et al. Differentiation of NUT midline carcinoma by epigenomic reprogramming. Cancer Res.71, 2686–2696 (2011). CASPubMedPubMed Central Google Scholar
Katsumoto, T., Yoshida, N. & Kitabayashi, I. Roles of the histone acetyltransferase monocytic leukemia zinc finger protein in normal and malignant hematopoiesis. Cancer Sci.99, 1523–1527 (2008). CASPubMed Google Scholar
Ohnishi, H. et al. A complex t(1;22;11)(q44;q13;q23) translocation causing MLL-p300 fusion gene in therapy-related acute myeloid leukemia. Eur. J. Haematol.81, 475–480 (2008). CASPubMed Google Scholar
Camos, M. et al. Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res.66, 6947–6954 (2006). CASPubMed Google Scholar
Zhang, Y. et al. Characterization of genomic breakpoints in MLL and CBP in leukemia patients with t(11;16). Genes Chromosomes Cancer41, 257–265 (2004). CASPubMed Google Scholar
Iyer, N. G., Ozdag, H. & Caldas, C. p300/CBP and cancer. Oncogene23, 4225–4231 (2004). CASPubMed Google Scholar
Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature471, 189–195 (2011). CASPubMedPubMed Central Google Scholar
Nebral, K. et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia23, 134–143 (2009). CASPubMed Google Scholar
Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell19, 523–534 (2005). CASPubMed Google Scholar
Gaucher, J. et al. Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J.31, 3809–3820 (2012). CASPubMedPubMed Central Google Scholar
Zhang, W. et al. Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J. Biol. Chem.287, 43137–43155 (2012). CASPubMedPubMed Central Google Scholar
Chaidos, A. et al. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood123, 697–705 (2014). CASPubMed Google Scholar
Henssen, A. et al. BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget4, 2080–2095 (2013). PubMedPubMed Central Google Scholar
Mertz, J. A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA108, 16669–16674 (2011). CASPubMedPubMed Central Google Scholar
Herrmann, H. et al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget3, 1588–1599 (2012). PubMedPubMed Central Google Scholar
Fiskus, W. et al. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myeloid leukemia (AML) cells. Mol. Cancer Ther.http://dx.doi.org/10.1158/1535-7163.MCT-13-0770 (2014).
Ott, C. J. et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood120, 2843–2852 (2012). CASPubMedPubMed Central Google Scholar
Da Costa, D. et al. BET inhibition as a single or combined therapeutic approach in primary paediatric B-precursor acute lymphoblastic leukaemia. Blood Cancer J.3, e126 (2013). CASPubMedPubMed Central Google Scholar
Roderick, J. E. et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood123, 1040–1050 (2014). CASPubMedPubMed Central Google Scholar
Cheng, Z. et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin. Cancer Res.19, 1748–1759 (2013). CASPubMedPubMed Central Google Scholar
Segura, M. F. et al. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res.73, 6264–6276 (2013). CASPubMedPubMed Central Google Scholar
Wyce, A. et al. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget4, 2419–2429 (2013). PubMedPubMed Central Google Scholar
Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov.3, 308–323 (2013). CASPubMedPubMed Central Google Scholar
Wyce, A. et al. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS ONE8, e72967 (2013). CASPubMedPubMed Central Google Scholar
Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell153, 320–334 (2013). CASPubMedPubMed Central Google Scholar
Kim, T. K. & Maniatis, T. The mechanism of transcriptional synergy of an in vitro assembled interferon-β enhanceosome. Mol. Cell1, 119–129 (1997). CASPubMed Google Scholar
Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature435, 637–645 (2005). CASPubMed Google Scholar
Emadali, A. et al. Identification of a novel BET bromodomain inhibitor-sensitive, gene regulatory circuit that controls rituximab response and tumour growth in aggressive lymphoid cancers. EMBO Mol. Med.5, 1180–1195 (2013). CASPubMedPubMed Central Google Scholar
Pastori, C. et al. BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics9, 611–620 (2014). CASPubMedPubMed Central Google Scholar
Stewart, H. J., Horne, G. A., Bastow, S. & Chevassut, T. J. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer Med.2, 826–835 (2013). CASPubMedPubMed Central Google Scholar
Liu, S. et al. Targeting STAT5 in hematological malignancies through inhibition of the bromodomain and extra-terminal (BET) bromodomain protein BRD2. Mol. Cancer Ther.http://dx.doi.org/10.1158/1535-7163.MCT-13-0341 (2014).
Wyspianska, B. S. et al. BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms. Leukemia28, 88–97 (2014). CASPubMed Google Scholar
Khochbin, S. When are the BET factors the most sensitive to bromodomain inhibitors? Transcription4, 54–57 (2013). PubMedPubMed Central Google Scholar
Chapuy, B. et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell24, 777–790 (2013). CASPubMedPubMed Central Google Scholar
Tolani, B., Gopalakrishnan, R., Punj, V., Matta, H. & Chaudhary, P. M. Targeting Myc in KSHV-associated primary effusion lymphoma with BET bromodomain inhibitors. Oncogenehttp://dx.doi.org/10.1038/onc.2013.242 (2013).
Pasparakis, M. Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases. Nature Rev. Immunol.9, 778–788 (2009). CAS Google Scholar
Huang, B., Yang, X. D., Zhou, M. M., Ozato, K. & Chen, L. F. Brd4 coactivates transcriptional activation of NF-κB via specific binding to acetylated RelA. Mol. Cell. Biol.29, 1375–1387 (2009). CASPubMed Google Scholar
Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell138, 129–145 (2009). CASPubMedPubMed Central Google Scholar
Zou, Z. et al. Brd4 maintains constitutively active NF-κB in cancer cells by binding to acetylated RelA. Oncogenehttp://dx.doi.org/10.1038/onc.2013.179 (2013).
Mele, D. A. et al. BET bromodomain inhibition suppresses TH17-mediated pathology. J. Exp. Med.210, 2181–2190 (2013). CASPubMedPubMed Central Google Scholar
Bandukwala, H. S. et al. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc. Natl Acad. Sci. USA109, 14532–14537 (2012). CASPubMedPubMed Central Google Scholar
Mahdi, H. et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated α-enolase in the etiology of rheumatoid arthritis. Nature Genet.41, 1319–1324 (2009). CASPubMed Google Scholar
Wang, F. et al. Brd2 disruption in mice causes severe obesity without type 2 diabetes. Biochem. J.425, 71–83 (2010). CAS Google Scholar
Belkina, A. C., Nikolajczyk, B. S. & Denis, G. V. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J. Immunol.190, 3670–3678 (2013). CASPubMed Google Scholar
Wienerroither, S. et al. Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family Proteins. Mol. Cell. Biol.34, 415–427 (2014). PubMed Google Scholar
Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell154, 569–582 (2013). CASPubMedPubMed Central Google Scholar
Cullen, S. J., Ponnappan, S. & Ponnappan, U. Catalytic activity of the proteasome fine-tunes Brg1-mediated chromatin remodeling to regulate the expression of inflammatory genes. Mol. Immunol.47, 600–605 (2009). CASPubMedPubMed Central Google Scholar
Roscioli, T. et al. Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immunodeficiency and hepatic veno-occlusive disease. Nature Genet.38, 620–622 (2006). CASPubMed Google Scholar
Li, Z., Guo, J., Wu, Y. & Zhou, Q. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res.41, 277–287 (2013). CASPubMed Google Scholar
Bisgrove, D. A., Mahmoudi, T., Henklein, P. & Verdin, E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc. Natl Acad. Sci. USA104, 13690–13695 (2007). CASPubMedPubMed Central Google Scholar
Boehm, D. et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle12, 452–462 (2013). CASPubMedPubMed Central Google Scholar
Kundu, M., Guermah, M., Roeder, R. G., Amini, S. & Khalili, K. Interaction between cell cycle regulator, E2F-1, and NF-κB mediates repression of HIV-1 gene transcription. J. Biol. Chem.272, 29468–29474 (1997). CASPubMed Google Scholar
Richman, D. D. et al. The challenge of finding a cure for HIV infection. Science323, 1304–1307 (2009). CASPubMed Google Scholar
Karn, J. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr. Opin. HIV AIDS6, 4–11 (2011). PubMedPubMed Central Google Scholar
Wang, X. et al. Bromodomain protein Brd4 plays a key role in Merkel cell polyomavirus DNA replication. PLoS Pathog.8, e1003021 (2012). CASPubMedPubMed Central Google Scholar
Wang, X., Helfer, C. M., Pancholi, N., Bradner, J. E. & You, J. Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J. Virol.87, 3871–3884 (2013). CASPubMedPubMed Central Google Scholar
Yan, J., Li, Q., Lievens, S., Tavernier, J. & You, J. Abrogation of the Brd4-positive transcription elongation factor B complex by papillomavirus E2 protein contributes to viral oncogene repression. J. Virol.84, 76–87 (2010). CASPubMed Google Scholar
Sharma, A. et al. BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc. Natl Acad. Sci. USA110, 12036–12041 (2013). CASPubMedPubMed Central Google Scholar
Gupta, S. S. et al. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J. Virol.87, 12721–12736 (2013). CASPubMedPubMed Central Google Scholar
Gamsjaeger, R. et al. Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol. Cell. Biol.31, 2632–2640 (2011). CASPubMedPubMed Central Google Scholar
Lamonica, J. M. et al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl Acad. Sci. USA108, E159–E168 (2011). PubMedPubMed Central Google Scholar
Tsume, M. et al. Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochem. Biophys. Res. Commun.425, 762–768 (2012). CASPubMed Google Scholar
Berkovits, B. D. & Wolgemuth, D. J. The first bromodomain of the testis-specific double bromodomain protein Brdt is required for chromocenter organization that is modulated by genetic background. Dev. Biol.360, 358–368 (2011). CASPubMedPubMed Central Google Scholar
Liu, L., Zhen, X. T., Denton, E., Marsden, B. D. & Schapira, M. ChromoHub: a data hub for navigators of chromatin-mediated signalling. Bioinformatics28, 2205–2206 (2012). CASPubMedPubMed Central Google Scholar