Knockouts model the 100 best-selling drugs—will they model the next 100? (original) (raw)
Drews, J. Biotechnology's metamorphosis into a drug discovery industry. Nature Biotechnol.16, (Suppl) 22–24 (1998). CAS Google Scholar
Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov.1, 727–30 (2002). This paper describes the gene families that constitute the druggable genome from the perspective of chemists in the pharmaceutical industry. CAS Google Scholar
PharmaLive.com. The Med Ad News 200- the world's best-selling medicines, May 2002. Engel Publishing Partners, Reprinted with permission from Med Ad News, (May 2002) (PharmaLive.com , West Trenton, NJ, 2002). This is a list of the top 200 selling pharmaceutical drugs of the year 2001.
FDA. FDA. (Center for Drug Evaluation and Research, Rockville, MD, CDER Report to the Nation, 1997– 2001). The annual CDER Report to the Nation describes the new molecular entities that have been approved by the FDA each year.
Vinson, M. C., Davis, W. M. & Waters, I. W. (Drug Topics, Montvale, NJ, New Drug Approvals of 1995–1997). Each year, Drug Topics publishes a review of the new drugs approved by the FDA and their mechanism of action.
Kaitin, K. I. & Manocchia, M. The new drug approvals of 1993, 1994, and 1995: trends in drug development. Am. J. Ther.4, 46–54 (1997). CASPubMed Google Scholar
Scappini, B. et al. In vitro effects of STI 571-containing drug combinations on the growth of Philadelphia-positive chronic myelogenous leukemia cells. Cancer94, 2653–2662 (2002). CASPubMed Google Scholar
Walke, D. W. et al. In vivo drug target discovery: identifying the best targets from the genome. Curr. Opin. Biotechnol.12, 626–631 (2001). CASPubMed Google Scholar
Abuin, A., Holt, K. H., Platt, K. A., Sands, A. T. & Zambrowicz, B. P. Full-speed mammalian genetics: in vivo target validation in the drug discovery process. Trends Biotechnol.20, 36–42 (2002). CASPubMed Google Scholar
Spicer, Z. et al. Stomachs of mice lacking the gastric H,K-ATPase α-subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J. Biol. Chem.275, 21555–21565 (2000). This is an example of a target knockout modelling a small-molecule antagonist of the same target. CASPubMed Google Scholar
Scarff, K. L., Judd, L. M., Toh, B. H., Gleeson, P. A. & Van Driel, I. R. Gastric H(+),K(+)-adenosine triphosphatase β subunit is required for normal function, development, and membrane structure of mouse parietal cells. Gastroenterology117, 605–668 (1999). CASPubMed Google Scholar
Kobayashi, T. et al. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J. Clin. Invest.105, 1741–1749 (2000). CASPubMedPubMed Central Google Scholar
Wu, C. S., Lim, S. K., D'Agati, V. & Costantini, F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell83, 59–67 (1996). Google Scholar
Lieschke, G. J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood84, 1737–1746 (1994). This is an example of a knockout of a therapeutic protein showing the opposite phenotype to the effect produced by treatment with the same therapeutic protein. CASPubMed Google Scholar
Banu, Y. & Watanabe, T. Augmentation of antigen receptor-mediated responses by histamine H1 receptor signaling. J. Exp. Med.189, 673–682 (1999). CASPubMedPubMed Central Google Scholar
Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature413, 420–425 (2001). CASPubMed Google Scholar
Yanai, K. et al. Behavioural characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience87, 479–487 (1998). CASPubMed Google Scholar
Inoue, I. et al. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc. Natl Acad. Sci. USA93, 13316–13320 (1996). CASPubMedPubMed Central Google Scholar
Yanai, K., Son, L. Z., Endou, M., Sakurai, E. & Watanabe, T. Targeting disruption of histamine H1 receptors in mice: behavioral and neurochemical characterization. Life Sci.62, 1607–1610 (1998). CASPubMed Google Scholar
Tilley, S. L., Coffman, T. M. & Koller, B. H. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest.108, 15–23 (2001). CASPubMedPubMed Central Google Scholar
Morteau, O. Prostaglandins and inflammation: the cyclooxygenase controversy. Arch. Immunol. Ther. Exp.48, 473–480 (2000). CAS Google Scholar
Austin, S. C. & Funk, C. D. Insight into prostaglandin, leukotriene, and other eicosanoid functions using mice with targeted gene disruptions. Prostaglandins Other Lipid Mediat.58, 231–252 (1999). CASPubMed Google Scholar
Langenbach, R., Loftin, C., Lee, C. & Tiano, H. Cyclooxygenase knockout mice: models for elucidating isoform-specific functions. Biochem. Pharmacol.58, 1237–1246 (1999). CASPubMed Google Scholar
Williams, C. S., Mann, M. & DuBois, R. N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene18, 7908–7916 (1999). CASPubMed Google Scholar
Langenbach, R. et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell83, 483–492 (1995). CASPubMed Google Scholar
Langenbach, R., Loftin, C. D., Lee, C. & Tiano, H. Cyclooxygenase-deficient mice. A summary of their characteristics and susceptibilities to inflammation and carcinogenesis. Ann. NY Acad. Sci.889, 52–61 (1999). CASPubMed Google Scholar
Reddy, S. T., Tiano, H. F., Langenbach, R., Morham, S. G. & Herschman, H. R. Genetic evidence for distinct roles of COX-1 and COX-2 in the immediate and delayed phases of prostaglandin synthesis in mast cells. Biochem. Biophys. Res. Commun.265, 205–210 (1999). CASPubMed Google Scholar
Morteau, O. et al. Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. J. Clin. Invest.105, 469–478 (2000). CASPubMedPubMed Central Google Scholar
Ballou, L. R., Botting, R. M., Goorha, S., Zhang, J. & Vane, J. R. Nociception in cyclooxygenase isozyme-deficient mice. Proc. Natl Acad. Sci. USA97, 10272–10276 (2000). CASPubMedPubMed Central Google Scholar
Chulada, P. C. et al. Cycloxygenase-1 and-2 deficiency decrease spontaneous intestinal adenomas in the Min mouse. Proc. Am. Assoc. Cancer Res.39, 195 (1998). Google Scholar
Tiano, H. F. et al. Effects of cyclooxygenase deficiency on inflammation and papilloma formation in mouse skin. Proc. Am. Assoc. Cancer Res.38, 257 (1998). Google Scholar
Morham, S. G. et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell83, 473–482 (1995). CASPubMed Google Scholar
Li, S. et al. The febrile response to lipopolysaccharide is blocked in cyclooxygenase- 2(−/−), but not in cyclooxygenase-1(−/−) mice. Brain Res.825, 86–94 (1999). CASPubMed Google Scholar
Myers, L. K. et al. The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis Rheum.43, 2687–2693 (2000). CASPubMed Google Scholar
Oshima, M. et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell87, 803–809 (1996). CASPubMed Google Scholar
Irvin, C. G., Tu, Y. P., Sheller, J. R. & Funk, C. D. 5-Lipoxygenase products are necessary for ovalbumin-induced airway responsiveness in mice. Am. J. Physiol.272, L1053–1058 (1997). CASPubMed Google Scholar
Peters-Golden, M. et al. Protection from pulmonary fibrosis in leukotriene-deficient mice. Am. J. Respir. Crit. Care Med.165, 229–235 (2002). PubMed Google Scholar
Chen, X. S., Sheller, J. R., Johnson, E. N. & Funk, C. D. Role of leukotrienes revealed by targeted disruption of the 5- lipoxygenase gene. Nature372, 179–182 (1994). CASPubMed Google Scholar
Maekawa, A., Austen, K. F. & Kanaoka, Y. Targeted gene disruption reveals the role of cysteinyl leukotriene 1 receptor in the enhanced vascular permeability of mice undergoing acute inflammatory responses. J. Biol. Chem.277, 20820–20824 (2002). CASPubMed Google Scholar
Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNF α-deficient mice: a critical requirement for TNF α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med.184, 1397–1411 (1996). This is an example of a knockout of a therapeutic antibody product showing aspects of the phenotype produced by treatment with the therapeutic antibody that neutralizes the target. CASPubMed Google Scholar
Marino, M. W. et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl Acad. Sci. USA94, 8093–8098 (1997). CASPubMedPubMed Central Google Scholar
Gu, J. J. et al. Inhibition of T lymphocyte activation in mice heterozygous for loss of the IMPDH II gene. J. Clin. Invest.106, 599–606 (2000). CASPubMedPubMed Central Google Scholar
Schmid, W., Cole, T. J., Blendy, J. A. & Schutz, G. Molecular genetic analysis of glucocorticoid signalling in development. J. Steroid Biochem. Mol. Biol.53, 33–35 (1995). CASPubMed Google Scholar
Reichardt, H. M., Tronche, F., Bauer, A. & Schutz, G. Molecular genetic analysis of glucocorticoid signaling using the Cre/loxP system. Biol. Chem.381, 961–964 (2000). CASPubMed Google Scholar
Bueno, O. F., Brandt, E. B., Rothenberg, M. E. & Molkentin, J. D. Defective T cell development and function in calcineurin A β- deficient mice. Proc. Natl Acad. Sci. USA99, 9398–9403 (2002). CASPubMedPubMed Central Google Scholar
Malleret, G., Hen, R., Guillou, J. L., Segu, L. & Buhot, M. C. 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. J. Neurosci.19, 6157–6168 (1999). CASPubMedPubMed Central Google Scholar
Grailhe, R. et al. Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Neuron22, 581–591 (1999). CASPubMed Google Scholar
Tecott, L. H., Logue, S. F., Wehner, J. M. & Kauer, J. A. Perturbed dentate gyrus function in serotonin 5-HT2C receptor mutant mice. Proc. Natl Acad. Sci. USA95, 15026–15031 (1998). CASPubMedPubMed Central Google Scholar
Ramboz, S. et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc. Natl Acad. Sci. USA95, 14476–14481 (1998). CASPubMedPubMed Central Google Scholar
Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T. & Toth, M. Increased anxiety of mice lacking the serotonin1A receptor. Proc. Natl Acad. Sci. USA95, 10734–10739 (1998). CASPubMedPubMed Central Google Scholar
Heisler, L. K. et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc. Natl Acad. Sci. USA95, 15049–15054 (1998). CASPubMedPubMed Central Google Scholar
Ramboz, S. et al. 5-HT1B receptor knock out—behavioral consequences. Behav. Brain Res.73, 305–312 (1996). CASPubMed Google Scholar
Mayorga, A. J. et al. Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5- hydroxytryptamine(1B) receptor mutant mice. J. Pharmacol. Exp. Ther.298, 1101–1107 (2001). CASPubMed Google Scholar
Dulawa, S. C., Grandy, D. K., Low, M. J., Paulus, M. P. & Geyer, M. A. Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. J. Neurosci.19, 9550–9556 (1999). CASPubMedPubMed Central Google Scholar
Kelly, M. A. et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J. Neurosc.i18, 3470–3479 (1998). CAS Google Scholar
Xu, M. et al. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron19, 837–848 (1997). CASPubMed Google Scholar
Smith, D. R. et al. Behavioural assessment of mice lacking D1A dopamine receptors. Neuroscience86, 135–146 (1998). CASPubMed Google Scholar
Xu, M. et al. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell79, 729–742 (1994). CASPubMed Google Scholar
Rubinstein, M. et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell90, 991–1001 (1997). CASPubMed Google Scholar
Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature379, 606–612 (1996). CASPubMed Google Scholar
Xu, F. et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nature Neurosci.3, 465–471 (2000). CASPubMed Google Scholar
Homanics, G. E. et al. Mice devoid of γ-aminobutyrate type A receptor β3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl Acad. Sci. USA94, 4143–4148 (1997). CASPubMedPubMed Central Google Scholar
Sora, I. et al. Opiate receptor knockout mice define μ receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc. Natl Acad. Sci. USA94, 1544–1549 (1997). This is an example of a target knockout producing the opposite phenotype compared to a small molecule agonist of the same target. CASPubMedPubMed Central Google Scholar
Schomberg, D. W. et al. Targeted disruption of the estrogen receptor-α gene in female mice: characterization of ovarian responses and phenotype in the adult. Endocrinology140, 2733–2744 (1999). CASPubMed Google Scholar
Dupont, S. et al. Effect of single and compound knockouts of estrogen receptors α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development127, 4277–4291 (2000). CASPubMed Google Scholar
Vidal, O. et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc. Natl Acad. Sci. USA97, 5474–5479. (2000). CASPubMedPubMed Central Google Scholar
Krege, J. H. et al. Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc. Natl Acad. Sci. USA95, 15677–15682 (1998). CASPubMedPubMed Central Google Scholar
Dunford, J. E. et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J. Pharmacol. Exp. Ther.296, 235–242 (2001). CASPubMed Google Scholar
Thompson, K., Dunford, J. E., Ebetino, F. H. & Rogers, M. J. Identification of a bisphosphonate that inhibits isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Biochem. Biophys. Res. Commun.290, 869–873 (2002). CASPubMed Google Scholar
Grove, J. E., Brown, R. J. & Watts, D. J. The intracellular target for the antiresorptive aminobisphosphonate drugs in Dictyostelium discoideum is the enzyme farnesyl diphosphate synthase. J. Bone. Miner. Res.15, 971–981 (2000). CASPubMed Google Scholar
Bergstrom, J. D., Bostedor, R. G., Masarachia, P. J., Reszka, A. A. & Rodan, G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch. Biochem. Biophys.373, 231–241 (2000). CASPubMed Google Scholar
Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest.108, 1167–1174 (2001). CASPubMedPubMed Central Google Scholar
Abu-Elheiga, L., Matzuk, M. M., Abo-Hasema, K. A. H. & Wakil, S. J. Continuous fatty acid oxidation and reduced fat storage in mice lacking Acetyl-CoA carboxylase 2. Science291, 2613–2616 (2001). CASPubMed Google Scholar
Leroux, L. et al. Compensatory responses in mice carrying a null mutation for Ins1 or Ins2. Diabetes50, (Suppl 1) S150–153 (2001). CASPubMed Google Scholar
Joshi, R. L. et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J.15, 1542–1547 (1996). CASPubMedPubMed Central Google Scholar
Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet12, 106–109 (1996). CASPubMed Google Scholar
Wang, J. et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Invest.103, 27–37 (1999). CASPubMedPubMed Central Google Scholar
Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest.109, 525–532 (2002). CASPubMedPubMed Central Google Scholar
Miles, P. D., Barak, Y., He, W., Evans, R. M. & Olefsky, J. M. Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency. J. Clin. Invest.105, 287–292 (2000). CASPubMedPubMed Central Google Scholar
Lowe, M. E., Kaplan, M. H., Jackson-Grusby, L., D'Agostino, D. & Grusby, M. J. Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice. J. Biol. Chem.273, 31215–31221 (1998). CASPubMed Google Scholar
Weng, W. et al. Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry38, 4143–4149 (1999). CASPubMed Google Scholar
Ito, M. et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc. Natl Acad. Sci. USA92, 3521–3525 (1995). CASPubMedPubMed Central Google Scholar
Sugaya, T. et al. Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J. Biol. Chem.270, 18719–18722 (1995). CASPubMed Google Scholar
Esther, C. R., Jr. et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab. Invest.74, 953–65 (1996). CASPubMed Google Scholar
Krege, J. H. et al. Male-female differences in fertility and blood pressure in ACE- deficient mice. Nature375, 146–148 (1995). CASPubMed Google Scholar
Foster, C. J. et al. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J. Clin. Invest.107, 1591–1598 (2001). CASPubMedPubMed Central Google Scholar
Dewerchin, M. et al. Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice. Thromb. Haemost.83, 185–190 (2000). CASPubMed Google Scholar
Chruscinski, A. et al. Differential distribution of β-adrenergic receptor subtypes in blood vessels of knockout mice lacking β1- or β2-adrenergic receptors. Mol. Pharmacol.60, 955–962 (2001). CASPubMed Google Scholar
Naga Prasad, S. V., Nienaber, J. & Rockman, H. A. β-adrenergic axis and heart disease. Trends Genet.17, S44–49 (2001). CASPubMed Google Scholar
Eckhart, A. D. & Koch, W. J. Transgenic studies of cardiac adrenergic receptor regulation. J. Pharmacol. Exp. Ther.299, 1–5 (2001). CASPubMed Google Scholar
Kaumann, A. J., Engelhardt, S., Hein, L., Molenaar, P. & Lohse, M. Abolition of (-)-CGP 12177-evoked cardiostimulation in double β1/β2-adrenoceptor knockout mice. Obligatory role of β1-adrenoceptors for putative β4-adrenoceptor pharmacology. Naunyn. Schmiedebergs Arch. Pharmacol.363, 87–93 (2001). CASPubMed Google Scholar
Rohrer, D. K., Chruscinski, A., Schauble, E. H., Bernstein, D. & Kobilka, B. K. Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J. Biol. Chem.274, 16701–8. (1999). CASPubMed Google Scholar
Chruscinski, A. J. et al. Targeted disruption of the β2 adrenergic receptor gene. J. Biol. Chem.274, 16694–700 (1999). CASPubMed Google Scholar
Rohrer, D. K. Physiological consequences of β-adrenergic receptor disruption. J. Mol. Med.76, 764–772 (1998). CASPubMed Google Scholar
Lowell, B. B. Using gene knockout and transgenic techniques to study the physiology and pharmacology of β3-adrenergic receptors. Endocr. J.45 (Suppl) S9–13 (1998). CASPubMed Google Scholar
Preitner, F. et al. Metabolic response to various β-adrenoceptor agonists in β3-adrenoceptor knockout mice: evidence for a new β-adrenergic receptor in brown adipose tissue. Br. J. Pharmacol.124, 1684–1688 (1998). CASPubMedPubMed Central Google Scholar
Rohrer, D. K., Schauble, E. H., Desai, K. H., Kobilka, B. K. & Bernstein, D. Alterations in dynamic heart rate control in the β1-adrenergic receptor knockout mouse. Am. J. Physiol.274, H1184–1193 (1998). CASPubMed Google Scholar
Kaumann, A. J. et al. (-)-CGP 12177 causes cardiostimulation and binds to cardiac putative β4-adrenoceptors in both wild-type and β3-adrenoceptor knockout mice. Mol. Pharmacol.53, 670–675 (1998). CASPubMed Google Scholar
Rohrer, D. K. et al. The developmental and physiological consequences of disrupting genes encoding β1 and β2 adrenoceptors. Adv. Pharmacol.42, 499–501 (1998). CASPubMed Google Scholar
Rohrer, D. K. et al. Targeted disruption of the mouse β1-adrenergic receptor gene: developmental and cardiovascular effects. Proc. Natl Acad. Sci. USA93, 7375–7380 (1996). CASPubMedPubMed Central Google Scholar
Matsui, M. et al. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc. Natl Acad. Sci. USA97, 9579–9584 (2000). CASPubMedPubMed Central Google Scholar
Li, E., Sucov, H. M., Lee, K. F., Evans, R. M. & Jaenisch, R. Normal development and growth of mice carrying a targeted disruption of the α 1 retinoic acid receptor gene. Proc. Natl Acad. Sci. USA90, 1590–1594 (1993). CASPubMedPubMed Central Google Scholar
Luo, J., Pasceri, P., Conlon, R. A., Rossant, J. & Giguere, V. Mice lacking all isoforms of retinoic acid receptor β develop normally and are susceptible to the teratogenic effects of retinoic acid. Mech. Dev.53, 61–71 (1995). CASPubMed Google Scholar
Lohnes, D. et al. Function of retinoic acid receptor γ in the mouse. Cell73, 643–658 (1993). CASPubMed Google Scholar
Kwan, K. Y. & Wang, J. C. Mice lacking DNA topoisomerase IIIβ develop to maturity but show a reduced mean lifespan. Proc. Natl Acad. Sci. USA98, 5717–5721 (2001). CASPubMedPubMed Central Google Scholar
Rao, C. V. & Lei, Z. M. Consequences of targeted inactivation of LH receptors. Mol. Cell. Endocrinol.187, 57–67 (2002). CASPubMed Google Scholar
O'Keefe, T. L., Williams, G. T., Davies, S. L. & Neuberger, M. S. Mice carrying a CD20 gene disruption. Immunogenetics48, 125–132 (1998). CASPubMed Google Scholar
Mural, R. J. et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science296, 1661–1671 (2002). CASPubMed Google Scholar
Saftig, P. et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl Acad. Sci. USA95, 13453–13458 (1998). CASPubMedPubMed Central Google Scholar
Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell88, 131–141 (1997). CASPubMed Google Scholar
Chen, A. S. et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nature Genet.26, 97–102 (2000). CASPubMed Google Scholar
Chen, Y. et al. Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology143, 2469–2477 (2002). CASPubMed Google Scholar
Marsh, D. J. et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc. Natl Acad. Sci. USA99, 3240–3245 (2002). CASPubMedPubMed Central Google Scholar
Ntambi, J. M. et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc. Natl Acad. Sci. USA99, 11482–11486 (2002). CASPubMedPubMed Central Google Scholar