Adaptive immunity in obesity and insulin resistance (original) (raw)
Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol.11, 85–97 (2011). ArticleCASPubMedPubMed Central Google Scholar
Després, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature444, 881–887 (2006). ArticleCASPubMed Google Scholar
Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol.72, 219–246 (2010). ArticleCASPubMed Google Scholar
Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112, 1821–1830 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res.46, 2347–2355 (2005). ArticleCASPubMed Google Scholar
Murano, I. et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res.49, 1562–1568 (2008). ArticleCASPubMed Google Scholar
Fischer-Posovszky, P., Wang, Q. A., Asterholm, I. W., Rutkowski, J. M. & Scherer, P. E. Targeted deletion of adipocytes by apoptosis leads to adipose tissue recruitment of alternatively activated M2 macrophages. Endocrinology152, 3074–3081 (2011). ArticleCASPubMedPubMed Central Google Scholar
Trayhurn, P. & Wood, I. S. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr.92, 347–355 (2004). ArticleCASPubMed Google Scholar
Chen, B. et al. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem. Biophys. Res. Commun.341, 549–556 (2006). ArticleCASPubMed Google Scholar
Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes56, 901–911 (2007). ArticleCASPubMed Google Scholar
Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes58, 718–725 (2009). ArticleCASPubMedPubMed Central Google Scholar
Goossens, G. H. et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation124, 67–76 (2011). ArticleCASPubMed Google Scholar
Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest.117, 175–184 (2007). ArticleCASPubMedPubMed Central Google Scholar
Meijer, K. et al. Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS ONE6, e17154 (2011). ArticleCASPubMedPubMed Central Google Scholar
Strissel, K. J. et al. T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring)18, 1918–1925 (2010). ArticleCAS Google Scholar
Caspar-Bauguil, S. et al. Adipose tissue lymphocytes: types and roles. J. Physiol. Biochem.65, 423–436 (2009). ArticleCASPubMed Google Scholar
Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med.15, 930–939 (2009). ArticleCASPubMedPubMed Central Google Scholar
Caspar-Bauguil, S. et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett.579, 3487–3492 (2005). ArticleCASPubMed Google Scholar
Zúñiga, L. A. et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J. Immunol.185, 6947–6959 (2010). ArticleCASPubMed Google Scholar
Duffaut, C. et al. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler. Thromb. Vasc. Biol.29, 1608–1614 (2009). ArticleCASPubMed Google Scholar
Wu, H. et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation115, 1029–1038 (2007). ArticleCASPubMed Google Scholar
O'Rourke, R. W. et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-γ in inflammation in human adipose tissue. Int. J. Obes. (Lond.)33, 978–990 (2009). ArticleCAS Google Scholar
Kintscher, U. et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol.28, 1304–1310 (2008). ArticleCASPubMed Google Scholar
Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature447, 1116–1120 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tiemessen, M. M. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl Acad. Sci. USA104, 19446–19451 (2007). ArticleCASPubMedPubMed Central Google Scholar
Foryst-Ludwig, A. et al. PPARγ activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice. Cardiovasc. Diabetol.9, 64 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stienstra, R. et al. Peroxisome proliferator-activated receptor γ activation promotes infiltration of alternatively activated macrophages into adipose tissue. J. Biol. Chem.283, 22620–22627 (2008). ArticleCASPubMed Google Scholar
Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med.17, 610–617 (2011). ArticleCASPubMedPubMed Central Google Scholar
Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med.13, 423–431 (2007). ArticleCASPubMedPubMed Central Google Scholar
De Rosa, V. et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity26, 241–255 (2007). ArticleCASPubMed Google Scholar
Deiuliis, J. et al. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS ONE6, e16376 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med.15, 914–920 (2009). ArticleCASPubMed Google Scholar
Ohmura, K. et al. Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arterioscler. Thromb. Vasc. Biol.30, 193–199 (2010). ArticleCASPubMed Google Scholar
Van Kaer, L., Parekh, V. V. & Wu, L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res.343, 43–55 (2011). ArticleCASPubMed Google Scholar
Van Kaer, L. NKT cells: T lymphocytes with innate effector functions. Curr. Opin. Immunol.19, 354–364 (2007). ArticleCASPubMed Google Scholar
Duffaut, C., Galitzky, J., Lafontan, M. & Bouloumie, A. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem. Biophys. Res. Commun.384, 482–485 (2009). ArticleCASPubMed Google Scholar
Jagannathan, M. et al. Toll-like receptors regulate B cell cytokine production in patients with diabetes. Diabetologia53, 1461–1471 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rocha, V. Z. et al. Interferon-γ, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ. Res.103, 467–476 (2008). ArticleCASPubMedPubMed Central Google Scholar
Suganami, T. et al. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler. Thromb. Vasc. Biol.27, 84–91 (2007). ArticleCASPubMed Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). ArticlePubMed Google Scholar
Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science328, 228–231 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ding, S. et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE5, e12191 (2010). ArticleCASPubMedPubMed Central Google Scholar
Delzenne, N. M., Neyrinck, A. M. & Cani, P. D. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb. Cell Fact.10 (Suppl. 1), S10 (2011). ArticlePubMedPubMed Central Google Scholar
Kvietys, P. R., Specian, R. D., Grisham, M. B. & Tso, P. Jejunal mucosal injury and restitution: role of hydrolytic products of food digestion. Am. J. Physiol.261, G384–G391 (1991). CASPubMed Google Scholar
Wang, Y. et al. Chylomicrons promote intestinal absorption and systemic dissemination of dietary antigen (ovalbumin) in mice. PLoS ONE4, e8442 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ghoshal, S., Witta, J., Zhong, J., de Villiers, W. & Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res.50, 90–97 (2009). ArticleCASPubMed Google Scholar
Bickerton, A. S. et al. Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period. Diabetes56, 168–176 (2007). ArticleCASPubMed Google Scholar
Karpe, F., Humphreys, S. M., Samra, J. S., Summers, L. K. & Frayn, K. N. Clearance of lipoprotein remnant particles in adipose tissue and muscle in humans. J. Lipid Res.38, 2335–2343 (1997). CASPubMed Google Scholar
Wang, Y. et al. T-lymphocyte responses to intestinally absorbed antigens can contribute to adipose tissue inflammation and glucose intolerance during high fat feeding. PLoS ONE5, e13951 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chehade, M. & Mayer, L. Oral tolerance and its relation to food hypersensitivities. J. Allergy Clin. Immunol.115, 3–12; quiz 13 (2005). ArticlePubMed Google Scholar
Mingrone, G. & Castagneto-Gissey, L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab.35, 518–523 (2009). ArticleCASPubMed Google Scholar
Clément, K. Bariatric surgery, adipose tissue and gut microbiota. Int. J. Obes. (Lond.)35 (Suppl. 3), S7–S15 (2011). Article Google Scholar
Furet, J. P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes59, 3049–3057 (2010). ArticleCASPubMedPubMed Central Google Scholar
Delzenne, N. M., Neyrinck, A. M., Backhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol.7, 639–646 (2011). ArticleCASPubMed Google Scholar
Cani, P. D. & Delzenne, N. M. The gut microbiome as therapeutic target. Pharmacol. Ther.130, 202–212 (2011). ArticleCASPubMed Google Scholar
Sultan, A. et al. T cell-mediated inflammation in adipose tissue does not cause insulin resistance in hyperlipidemic mice. Circ. Res.104, 961–968 (2009). ArticleCASPubMed Google Scholar
Lee, Y. S. et al. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes60, 2474–2483 (2011). ArticleCASPubMedPubMed Central Google Scholar
Thewissen, M. M. et al. Abdominal fat mass is associated with adaptive immune activation: the CODAM Study. Obesity (Silver Spring)19, 1690–1698 (2011). ArticleCAS Google Scholar
Viardot, A., Grey, S. T., Mackay, F. & Chisholm, D. Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype. Endocrinology148, 346–353 (2007). ArticleCASPubMed Google Scholar
Viardot, A., Lord, R. V. & Samaras, K. The effects of weight loss and gastric banding on the innate and adaptive immune system in type 2 diabetes and prediabetes. J. Clin. Endocrinol. Metab.95, 2845–2850.
Jagannathan-Bogdan, M. et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J. Immunol.186, 1162–1172.
Surendar, J., Mohan, V., Rao, M. M., Babu, S. & Aravindhan, V. Increased levels of both TH1 and TH2 cytokines in subjects with metabolic syndrome (CURES-103). Diabetes Technol. Ther.13, 477–482 (2011). ArticleCASPubMed Google Scholar
Liu, Z., Stanojevic, V., Avadhani, S., Yano, T. & Habener, J. F. Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances β cell survival. Diabetologia54, 2067–2076 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell. Metab.7, 485–495 (2008). ArticleCASPubMedPubMed Central Google Scholar
Arkan, M. C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med.11, 191–198 (2005). ArticleCASPubMed Google Scholar
Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature420, 333–336 (2002). ArticleCASPubMed Google Scholar
Coletta, D. K. & Mandarino, L. J. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am. J. Physiol. Endocrinol. Metab.301, E749–E755 (2011). ArticleCASPubMedPubMed Central Google Scholar
Clynes, R. B cell therapy is β-tested: Rituximab puts a pause on β-cell destruction. Islets2, 130–132 (2010). ArticlePubMed Google Scholar
Scott, D. L., Wolfe, F. & Huizinga, T. W. Rheumatoid arthritis. Lancet376, 1094–1098 (2010). ArticlePubMed Google Scholar
Kanakasabai, S. et al. Peroxisome proliferator-activated receptor delta agonists inhibit T helper type 1 (Th1) and Th17 responses in experimental allergic encephalomyelitis. Immunology130, 572–588 (2010). ArticleCASPubMedPubMed Central Google Scholar
Miller, A. M. et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ. Res.107, 650–658 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kowalski, G. M. et al. Deficiency of haematopoietic-cell-derived IL-10 does not exacerbate high-fat-diet-induced inflammation or insulin resistance in mice. Diabetologia54, 888–899 (2011). ArticleCASPubMed Google Scholar
Hong, E. G. et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes58, 2525–2535 (2009). ArticleCASPubMedPubMed Central Google Scholar
Deiuliis, J. A., Kampfrath, T., Ying, Z., Maiseyeu, A. & Rajagopalan, S. Lipoic acid attenuates innate immune infiltration and activation in the visceral adipose tissue of obese insulin resistant mice. Lipids46, 1021–1032 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bruun, J. M., Helge, J. W., Richelsen, B. & Stallknecht, B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am. J. Physiol. Endocrinol. Metab.290, E961–E967 (2006). ArticleCASPubMed Google Scholar
Klöting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab.299, E506–E515 (2010). ArticleCASPubMed Google Scholar
Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes54, 2277–2286 (2005). ArticleCASPubMed Google Scholar
Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science332, 243–247 (2011). ArticleCASPubMedPubMed Central Google Scholar