Friedewald, V. E. Jr, Ballantyne, C. M., Davidson, M. H., Guyton, J. R. & Roberts, W. C. The editor's roundtable: lipid management beyond statins—reducing residual cardiovascular risk. Am. J. Cardiol102, 559–567 (2008). Article Google Scholar
Brewer, H. B. Jr. Clinical review: The evolving role of HDL in the treatment of high-risk patients with cardiovascular disease. J. Clin. Endocrinol. Metab.96, 1246–1257 (2011). ArticleCAS Google Scholar
Barter, P. HDL-C: role as a risk modifier. Atheroscler. Suppl.12, 267–270 (2011). ArticleCAS Google Scholar
Emerging Risk Factors Collaboration et al. Lipid-related markers and cardiovascular disease prediction. JAMA307, 2499–2506 (2012).
Barter, P. et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med.357, 1301–1310 (2007). ArticleCAS Google Scholar
Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation125, 1905–1919 (2012). Article Google Scholar
Alwaili, K., Awan, Z., Alshahrani, A. & Genest, J. High-density lipoproteins and cardiovascular disease: 2010 update. Expert Rev. Cardiovasc. Ther.8, 413–423 (2010). ArticleCAS Google Scholar
Vucic, E. & Rosenson, R. S. Recombinant high-density lipoprotein formulations. Curr. Atheroscler Rep.13, 81–87 (2011). ArticleCAS Google Scholar
Tabet, F. & Rye, K. A. High-density lipoproteins, inflammation and oxidative stress. Clin. Sci. (Lond.)116, 87–98 (2009). ArticleCAS Google Scholar
Joy, T. & Hegele, R. A. Is raising HDL a futile strategy for atheroprotection? Nat. Rev. Drug Discov.7, 143–155 (2008). ArticleCAS Google Scholar
Duffy, D. & Rader, D. J. Update on strategies to increase HDL quantity and function. Nat. Rev. Cardiol.6, 455–463 (2009). Article Google Scholar
Asztalos, B. F., Tani, M. & Schaefer, E. J. Metabolic and functional relevance of HDL subspecies. Curr. Opin. Lipidol.22, 176–185 (2011). ArticleCAS Google Scholar
Vaisar, T. et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest.117, 746–756 (2007). ArticleCAS Google Scholar
Mackness, B. & Mackness, M. Anti-inflammatory properties of paraoxonase-1 in atherosclerosis. Adv. Exp. Med. Biol.660, 143–151 (2010). ArticleCAS Google Scholar
Soran, H., Hama, S., Yadav, R. & Durrington, P. N. HDL functionality. Curr. Opin. Lipidol.23, 353–366 (2012). ArticleCAS Google Scholar
Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med.364, 127–135 (2011). ArticleCAS Google Scholar
de la Llera-Moya, M. et al. The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler. Thromb. Vasc. Biol.30, 796–801 (2010). ArticleCAS Google Scholar
Degoma, E. M. & Rader, D. J. Novel HDL-directed pharmacotherapeutic strategies. Nat. Rev. Cardiol.8, 266–277 (2011). ArticleCAS Google Scholar
Tardif, J. C., Heinonen, T. & Noble, S. High-density lipoprotein/apolipoprotein A-I infusion therapy. Curr. Atheroscler. Rep.11, 58–63 (2009). ArticleCAS Google Scholar
Calabresi, L., Simonelli, S., Gomaraschi, M. & Franceschini, G. Genetic lecithin: cholesterol acyltransferase deficiency and cardiovascular disease. Atherosclerosis222, 299–306 (2012). ArticleCAS Google Scholar
Iatan, I., Palmyre, A., Alrasheed, S., Ruel, I. & Genest, J. Genetics of cholesterol efflux. Curr. Atheroscler. Rep.14, 235–246 (2012). ArticleCAS Google Scholar
Ng, D. S. et al. Apolipoprotein A-I deficiency. Biochemical and metabolic characteristics. Arterioscler. Thromb. Vasc Biol.15, 2157–2164 (1995). ArticleCAS Google Scholar
Tietjen, I. et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochim. Biophys. Acta1821, 416–424 (2012). ArticleCAS Google Scholar
Oliveira, H. C. & de Faria, E. C. Cholesteryl ester transfer protein: the controversial relation to atherosclerosis and emerging new biological roles. IUBMB Life63, 248–257 (2011). ArticleCAS Google Scholar
Vergeer, M. et al. Genetic variant of the scavenger receptor BI in humans. N. Engl. J. Med.364, 136–145 (2011). ArticleCAS Google Scholar
Hegele, R. A. et al. Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics. Arterioscler. Thromb.13, 720–728 (1993). ArticleCAS Google Scholar
Frikke-Schmidt, R. et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA299, 2524–2532 (2008). ArticleCAS Google Scholar
Johannsen, T. H. et al. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease. J. Clin. Endocrinol. Metab.94, 1264–1273 (2009). ArticleCAS Google Scholar
Haase, C. L. et al. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J. Clin. Endocrinol. Metab.97, E248–E256 (2012). ArticleCAS Google Scholar
Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet380, 572–580 (2012). ArticleCAS Google Scholar
Canner, P. L. et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol.8, 1245–1255 (1986). ArticleCAS Google Scholar
Frick, M. H. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med.317, 1237–1245 (1987). ArticleCAS Google Scholar
Rubins, H. B. et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med.341, 410–418 (1999). ArticleCAS Google Scholar
ACCORD Study Group et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med.362, 1563–1574 (2010).
AIM-HIGH Investigators et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med.365, 2255–2267 (2011).
Goldenberg, I. et al. Long-term benefit of high-density lipoprotein cholesterol-raising therapy with bezafibrate: 16-year mortality follow-up of the bezafibrate infarction prevention trial. Arch. Intern. Med.169, 508–514 (2009). ArticleCAS Google Scholar
Jun, M. et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet375, 1875–1884 (2010). ArticleCAS Google Scholar
Merck. Merck announces HPS2-THRIVE study of Tredaptive™ (Extended-Release Niacin/Laropiprant) did not achieve primary endpoint [online] (2012).
Tall, A. R., Yvan-Charvet, L., Terasaka, N., Pagler, T. & Wang, N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab.7, 365–375 (2008). ArticleCAS Google Scholar
Hewing, B. & Fisher, E. A. Rationale for cholesteryl ester transfer protein inhibition. Curr. Opin. Lipidol.23, 372–376 (2012). ArticleCAS Google Scholar
Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med.357, 2109–2122 (2007). ArticleCAS Google Scholar
Hu, X. et al. Torcetrapib induces aldosterone and cortisol production by an intracellular calcium-mediated mechanism independently of cholesteryl ester transfer protein inhibition. Endocrinology150, 2211–2219 (2009). ArticleCAS Google Scholar
Nissen, S. E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med.356, 1304–1316 (2007). ArticleCAS Google Scholar
Vergeer, M. et al. Cholesteryl ester transfer protein inhibitor torcetrapib and off-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials. Circulation118, 2515–2522 (2008). ArticleCAS Google Scholar
Nicholls, S. J., Tuzcu, E. M., Brennan, D. M., Tardif, J. C. & Nissen, S. E. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation118, 2506–2514 (2008). ArticleCAS Google Scholar
Barter, P. J. & Rye, K. A. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. J. Lipid Res.53, 1755–1766 (2012). ArticleCAS Google Scholar
Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med.367, 2089–2099 (2012). ArticleCAS Google Scholar
Hooper, A. J. & Burnett, J. R. Dalcetrapib, a cholesteryl ester transfer protein modulator. Expert Opin. Investig. Drugs21, 1427–1432 (2012). ArticleCAS Google Scholar
Niesor, E. J. Different effects of compounds decreasing cholesteryl ester transfer protein activity on lipoprotein metabolism. Curr. Opin. Lipidol.22, 288–295 (2011). ArticleCAS Google Scholar