Neurosteroids as regenerative agents in the brain: therapeutic implications (original) (raw)
Baulieu, E. E. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog. Horm. Res.52, 1–32 (1997). CASPubMed Google Scholar
Baulieu, E. E. & Schumacher, M. Neurosteroids, with special reference to the effect of progesterone on myelination in peripheral nerves. Mult. Scler.3, 105–112 (1997). ArticleCASPubMed Google Scholar
Melcangi, R. C. & Panzica, G. Neuroactive steroids: an update of their roles in central and peripheral nervous system. Psychoneuroendocrinology34 (Suppl 1), S1–S8 (2009). ArticleCASPubMed Google Scholar
Mellon, S. H. & Griffin, L. D. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol. Metab.13, 35–43 (2002). ArticleCASPubMed Google Scholar
Skovronsky, D. M., Lee, V. M. & Trojanowski, J. Q. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol.1, 151–170 (2006). ArticleCASPubMed Google Scholar
Encinas, J. M. et al. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell8, 566–579 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci.16, 2027–2033 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W. & van Praag, H. When neurogenesis encounters aging and disease. Trends Neurosci.33, 569–579 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lugert, S. et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell6, 445–456 (2010). ArticleCASPubMed Google Scholar
Lugert, S. & Taylor, V. Neural stem cells: disposable, end-state glia? Cell Stem Cell8, 464–465 (2011). ArticleCASPubMed Google Scholar
Singh, C. et al. Allopregnanolone restores hippocampal-dependent learning and memory and neural progenitor survival in aging 3×TgAD and nonTg mice. Neurobiol. Aging33, 1493–1506 (2012). ArticleCASPubMed Google Scholar
Wang, J. M. et al. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA107, 6498–6503 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rodriguez, J. J. et al. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer's disease. PLoS ONE3, e2935 (2008). ArticlePubMedPubMed Central Google Scholar
Brinton, R. D. The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci.31, 529–537 (2008). ArticleCASPubMed Google Scholar
Brinton, R. D. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends Pharmacol. Sci.30, 212–222 (2009). ArticleCASPubMedPubMed Central Google Scholar
Naylor, J. C. et al. Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer's disease compared to cognitively intact control subjects. Biochim. Biophys. Acta1801, 951–959 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yang, S. Y., He, X. Y. & Schulz, H. Multiple functions of type 10 17beta-hydroxysteroid dehydrogenase. Trends Endocrinol. Metab.16, 167–175 (2005). ArticleCASPubMed Google Scholar
Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci.8, 368–378 (2007). ArticleCASPubMed Google Scholar
Schumacher, M. et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front. Neurosci.6, 10 (2012). ArticlePubMedPubMed Central Google Scholar
Sun, C. et al. Allopregnanolone increases the number of dopaminergic neurons in substantia nigra of a triple transgenic mouse model of Alzheimer's disease. Curr. Alzheimer Res.9, 473–480 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. M., Johnston, P. B., Ball, B. G. & Brinton, R. D. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J. Neurosci.25, 4706–4718 (2005). ArticleCASPubMedPubMed Central Google Scholar
Melcangi, R. C. et al. Role of neuroactive steroids in the peripheral nervous system. Front. Endocrinol. (Lausanne)2, 104 (2011). Article Google Scholar
Deng, W., Saxe, M. D., Gallina, I. S. & Gage, F. H. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J. Neurosci.29, 13532–13542 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rodriguez, J. J., Jones, V. C. & Verkhratsky, A. Impaired cell proliferation in the subventricular zone in an Alzheimer's disease model. Neuroreport20, 907–912 (2009). ArticleCASPubMed Google Scholar
Haughey, N. J. et al. Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer's disease. Neuromolecular Med.1, 125–135 (2002). ArticleCASPubMed Google Scholar
Aimone, J. B., Deng, W. & Gage, F. H. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron70, 589–596 (2011). ArticleCASPubMedPubMed Central Google Scholar
Deng, W., Aimone, J. B. & Gage, F. H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci.11, 339–350 (2010). CASPubMedPubMed Central Google Scholar
Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y. & Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus12, 578–584 (2002). ArticlePubMedPubMed Central Google Scholar
Shors, T. J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature410, 372–376 (2001). ArticleCASPubMed Google Scholar
Bartzokis, G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging32, 1341–1371 (2011). ArticleCASPubMed Google Scholar
Kuczynski, B. et al. White matter integrity and cortical metabolic associations in aging and dementia. Alzheimers Dement.6, 54–62 (2010). ArticlePubMedPubMed Central Google Scholar
Ringman, J. M. et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer's disease mutations. Brain130, 1767–1776 (2007). ArticlePubMed Google Scholar
Yao, J., Rettberg, J. R., Klosinski, L. P., Cadenas, E. & Brinton, R. D. Shift in brain metabolism in late onset Alzheimer's disease: implications for biomarkers and therapeutic interventions. Mol. Aspects Med.32, 247–257 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chen, S. et al. Allopregnanolone promotes regeneration and reduces beta-amyloid burden in a preclinical model of Alzheimer's disease. PLoS ONE6, e24293 (2011). ArticleCASPubMedPubMed Central Google Scholar
Desai, M. K. et al. Triple-transgenic Alzheimer's disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia57, 54–65 (2009). ArticlePubMedPubMed Central Google Scholar
Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci.8, 468–475 (2005). ArticleCASPubMed Google Scholar
Rupprecht, R. et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. Rev. Drug Discov.9, 971–988 (2010). ArticleCASPubMed Google Scholar
Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med.367, 795–804 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jack, C. R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol.9, 119–128 (2010). ArticleCASPubMedPubMed Central Google Scholar
Reiman, E. M. & Jagust, W. J. Brain imaging in the study of Alzheimer's disease. Neuroimage61, 505–516 (2012). ArticlePubMed Google Scholar
Weiner, M. W. et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers. Dement.8 (Suppl 1) S1–68 (2012). ArticlePubMed Google Scholar
Lesne, S. et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature440, 352–357 (2006). ArticleCASPubMed Google Scholar
De Strooper, B., Vassar, R. & Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol.6, 99–107 (2010). ArticleCASPubMedPubMed Central Google Scholar
Irwin, R. W., Wang, J. M., Chen, S. & Brinton, R. D. Neuroregenerative mechanisms of allopregnanolone in Alzheimer's disease. Front. Endocrinol. (Lausanne)2, 117 (2011). Google Scholar
Kang, J. & Rivest, S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr. Rev.33, 2011–1049 (2012). Article Google Scholar
Mandrekar-Colucci, S., Karlo, J. C. & Landreth, G. E. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J. Neurosci.32, 10117–10128 (2012). ArticleCASPubMedPubMed Central Google Scholar
Repa, J. J. et al. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J. Neurosci.27, 14470–14480 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science335, 1503–1506 (2012). ArticleCASPubMedPubMed Central Google Scholar
Riddell, D. R. et al. The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol. Cell Neurosci.34 621–628 (2007). ArticleCASPubMed Google Scholar
Langmade, S. J. et al. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc. Natl Acad. Sci. USA103, 13807–13812 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kliewer, S. A. & Willson, T. M. Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J. Lipid Res.43, 359–364 (2002). CASPubMed Google Scholar
Willson, T. M. & Kliewer, S. A. PXR, CAR and drug metabolism. Nat. Rev. Drug Discov.1, 259–266 (2002). ArticleCASPubMed Google Scholar
Porter, F. D. et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci. Transl. Med.2, 56ra81 (2010). ArticlePubMedPubMed Central Google Scholar
Hagemeyer, C. E., Rosenbrock, H., Ditter, M., Knoth, R. & Volk, B. Predominantly neuronal expression of cytochrome P450 isoforms CYP3A11 and CYP3A13 in mouse brain. Neuroscience117, 521–529 (2003). ArticleCASPubMed Google Scholar
Bengtsson, S. K., Johansson, M., Backstrom, T. & Wang, M. Chronic allopregnanolone treatment accelerates Alzheimer's disease development in AbetaPP(Swe)PSEN1(DeltaE9) mice. J. Alzheimers Dis.31, 71–84 (2012). ArticleCASPubMed Google Scholar
Zampieri, S. et al. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J. Cell. Mol. Med.13, 3786–3796 (2009). ArticlePubMed Google Scholar
He, J., Hoffman, S. W. & Stein, D. G. Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury. Restor. Neurol. Neurosci.22, 19–31 (2004). CASPubMed Google Scholar
Griffin, L. D., Gong, W., Verot, L. & Mellon, S. H. Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat. Med.10, 704–711 (2004). ArticleCASPubMed Google Scholar
Adeosun, S. O. et al. Allopregnanolone reinstates tyrosine hydroxylase immunoreactive neurons and motor performance in an MPTP-lesioned mouse model of Parkinson's disease. PLoS ONE7, e50040 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gee, K. W., Bolger, M. B., Brinton, R. E., Coirini, H. & McEwen, B. S. Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J. Pharmacol. Exp. Ther.246, 803–812 (1988). CASPubMed Google Scholar
Belelli, D. & Lambert, J. J. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci.6, 565–575 (2005). ArticleCASPubMed Google Scholar
Kask, K., Backstrom, T., Nilsson, L. G. & Sundstrom-Poromaa, I. Allopregnanolone impairs episodic memory in healthy women. Psychopharmacology (Berl)199, 161–168 (2008). ArticleCAS Google Scholar
ClinicalTrials.gov. Allopregnanolone for the Treatment of Traumatic Brain Injury[online], (2012).
Sperling, R. et al. Amyloid-related imaging abnormalities in patients with Alzheimer's disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol.11, 241–249 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sperling, R. A. et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer's Association Research Roundtable Workgroup. Alzheimer's Dement.7, 367–385 (2011). Article Google Scholar
Alzheimer Research Forum. CTAD: New Data on Sola, Bapi, Spark Theragnostics Debate[online], (2012).
Alzheimer Research Forum. Phase 3 Solanezumab Trials “Fail”—Is There a Silver Lining?[online], (2012).
Alzheimer Research Forum. Drugs In Clinical Trials[online], (2012).
Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med.4, 1313–1317 (1998). ArticleCASPubMed Google Scholar
Hosie, A. M., Wilkins, M. E., da Silva, H. M. & Smart, T. G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature444, 486–489 (2006). ArticleCASPubMed Google Scholar
Wang, J. M. & Brinton, R. D. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential. BMC Neurosci.9 (Suppl 2), 2–11 (2008). Article Google Scholar
Manganas, L. N. et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science318, 980–985 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pereira, A. C. et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA104, 5638–5643 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.46, 3–26 (2001). ArticleCASPubMed Google Scholar