Between genotype and phenotype: protein chaperones and evolvability (original) (raw)
Feder, M. E. & Hoffmann, G. E. Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann. Rev. Physiol.61, 243–282 (1999). ArticleCAS Google Scholar
Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295, 1852–1858 (2002). ArticleCASPubMed Google Scholar
Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem.70, 603–647 (2001). ArticleCASPubMed Google Scholar
Fares, M. A., Ruiz-Gonzalez, M. X., Moya, A., Elena, S. F. & Barrio, E. Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature417, 398 (2002). ArticleCASPubMed Google Scholar
Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature396, 336–342 (1998). The introduction of the 'evolutionary capacitor' hypothesis. ArticleCASPubMed Google Scholar
Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature417, 618–624 (2002). ArticleCASPubMed Google Scholar
Roberts, S. P. & Feder, M. E. Natural hyperthermia and expression of the heat shock protein Hsp70 affect developmental abnormalities in Drosophila melanogaster. Oecologia121, 323–329 (1999). ArticleCASPubMed Google Scholar
Ali, A., Bharadwaj, S., O'Carroll, R. & Ovsenek, N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol. Cell Biol.18, 4949–4960 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell94, 471–480 (1998). ArticleCASPubMed Google Scholar
van der Straten, A., Rommel, C., Dickson, B. & Hafen, E. The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J.16, 1961–1969 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dickson, B., van der Straten, A., Dominguez, M. & Hafen, E. Mutations modulating raf signaling in Drosophila eye development. Genetics142, 163–171 (1996). CASPubMedPubMed Central Google Scholar
Cutforth, T. & Rubin, G. M. Mutations in Hsp83 and Cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell77, 1027–1036 (1994). ArticleCASPubMed Google Scholar
Rutherford, S. L. From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays22, 1095–1105 (2000). ArticleCASPubMed Google Scholar
Gould, S. J. The Structure of Evolutionary Theory (Belknap Press of Harvard Univ. Press, Cambridge, Massachusetts, 2002). Book Google Scholar
Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA95, 8420–8427 (1998). An influential and original description of the developmental processes that promote evolvability. ArticleCASPubMedPubMed Central Google Scholar
Wagner, G. P., Chiu, C. H. & Hansen, T. F. Is Hsp90 a regulator of evolvability? J. Exp. Zool.285, 116–118 (1999). ArticleCASPubMed Google Scholar
Muir, W. D. Group selection for adaptation to multiple hen cages. Poult. Sci.75, 447–458 (1995). Article Google Scholar
Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of mutation rates: separating causes from consequences. Bioessays22, 1057–1066 (2000). Describes the population-genetic consequences of regulated mutation rates in bacteria. ArticleCASPubMed Google Scholar
Wade, M. J. & Griesemer, J. R. Populational heritability: empirical studies of evolution in metapopulations. Am. Nat.151, 135–147 (1998). ArticleCASPubMed Google Scholar
Wade, M. J. Group selections among laboratory populations of Tribolium. Proc. Natl Acad. Sci. USA73, 4604–4607 (1976). A laboratory demonstration of the efficacy of group selection on fitness traits. ArticleCASPubMedPubMed Central Google Scholar
Goodnight, C. J. Quantitative trait loci and gene interaction: the quantitative genetics of metapopulations. Heredity84, 587–598 (2000). ArticlePubMed Google Scholar
Nair, S. et al. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor HSF1, and the arylhydrocarbon receptor. Cell Stress Chaperones1, 237–250 (1996). ArticleCASPubMedPubMed Central Google Scholar
Nathan, D. F., Vos, M. H. & Lindquist, S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc. Natl Acad. Sci. USA94, 12949–12956 (1997). ArticleCASPubMedPubMed Central Google Scholar
Richter, K. & Buchner, J. Hsp90: chaperoning signal transduction. J. Cell Physiol.188, 281–290 (2001). ArticleCASPubMed Google Scholar
Rutherford, S. L. & Zuker, C. S. Protein folding and the regulation of signaling pathways. Cell79, 1129–1132 (1994). ArticleCASPubMed Google Scholar
Freeman, B. C. & Morimoto, R. I. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J.15, 2969–2979 (1996). ArticleCASPubMedPubMed Central Google Scholar
Jakob, U., Lilie, H., Meyer, I. & Buchner, J. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase: implications for heat shock in vivo. J. Biol. Chem.270, 7288–7294 (1995). ArticleCASPubMed Google Scholar
Helmbrecht, K., Zeise, E. & Rensing, L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif.33, 341–365 (2000). ArticleCASPubMed Google Scholar
Kimura, Y. et al. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev.11, 1775–1785 (1997). ArticleCASPubMed Google Scholar
Jakob, U. & Buchner, J. Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem. Sci.19, 205–211 (1994). ArticleCASPubMed Google Scholar
Xu, Y., Singer, M. A. & Lindquist, S. Maturation of the tyrosine kinase c-Src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc. Natl Acad. Sci. USA96, 109–114 (1999). ArticleCASPubMedPubMed Central Google Scholar
Van Dyk, T. K., Gatenby, A. A. & LaRossa, R. A. Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature342, 451–453 (1989). This paper describes the buffering of mutant proteins by the GroE operon. ArticleCASPubMed Google Scholar
Koonin, E. V., Wolf, Y. I. & Karev, G. P. The structure of the protein universe and genome evolution. Nature420, 218–223 (2002). ArticleCASPubMed Google Scholar
Schuster, P., Fontana, W., Stadler, P. F. & Hofacker, I. L. From sequences to shapes and back: a case study in RNA secondary structures. Proc. R. Soc. Lond. B255, 279–284 (1994). ArticleCAS Google Scholar
Huynen, M. A., Stadler, P. F. & Fontana, W. Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl Acad. Sci. USA93, 397–401 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ancel, L. W. & Fontana, W. Plasticity, evolvability, and modularity in RNA. J. Exp. Zool.288, 242–283 (2000). ArticleCASPubMed Google Scholar
Burch, C. L. & Chao, L. Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature406, 625–628 (2000). ArticleCASPubMed Google Scholar
Tong, A. H. Y. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science294, 2364–2368 (2001). ArticleCASPubMed Google Scholar
Bell, G. Recombination and immortality of the germ line. J. Evol. Biol.1, 67–82 (1988). Article Google Scholar
Wernegreen, J. J. Genome evolution in bacterial endosymbionts of insects. Nature Rev. Genet.3, 850–861 (2002). ArticleCASPubMed Google Scholar
Wernegreen, J. J. & Moran, N. A. Evidence for genetic drift in endosymbionts (Buchnera): analysis of protein coding genes. Mol. Biol. Evol.16, 83–97 (1999). ArticleCASPubMed Google Scholar
Fares, M. A., Barrio, E., Sabater-Munoz, B. & Moya, A. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol. Biol. Evol.19, 1162–1170 (2002). ArticleCASPubMed Google Scholar
Dietz, T. J. & Somero, G. N. The threshold induction temperature of the 90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proc. Natl Acad. Sci. USA89, 3389–3393 (1992). ArticleCASPubMedPubMed Central Google Scholar
Hoffmann, A. A. & Parsons, P. A. Extreme Environmental Change and Evolution (Cambridge Univ. Press, Cambridge, New York, 1997). A comprehensive discussion of the role of environmental stress in fitness and evolution. Google Scholar
Welte, M. A., Terrault, J. M., Dellavalle, R. P. & Lindquist, S. A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism. Curr. Biol.3, 842–853 (1993). ArticleCASPubMed Google Scholar
Feder, M. E., Cartano, N. V., Milos, L., Krebs, R. A. & Lindquist, S. L. Effect of engineering Hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J. Exp. Biol.199, 1837–1844 (1996). CASPubMed Google Scholar
Feder, M. E. & Krebs, R. A. Ecological and evolutionary physiology of heat shock proteins and the stress response in Drosophila: complementary insights from genetic engineering and natural variation. EXS83, 155–173 (1997). CASPubMed Google Scholar
Mitchell, H. K. & Petersen, N. S. Developmental abnormalities in Drosophila induced by heat shock. Dev. Genet.3, 91–102 (1982). ArticleCAS Google Scholar
Waddington, C. H. The Strategy of the Genes: a Discussion of Some Aspects of Theroetical Biology (Macmillan, New York, 1957). A classical description of genetic buffering and its implications for evolution and development. Google Scholar
Xu, Y. & Lindquist, S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc. Natl Acad. Sci. USA90, 7074–7078 (1993). ArticleCASPubMedPubMed Central Google Scholar
Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature348, 166–168 (1990). ArticleCASPubMed Google Scholar
Gibson, G. & Hogness, D. S. Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science271, 200–203 (1996). ArticleCASPubMed Google Scholar
Polaczyk, P. J., Gasperini, R. & Gibson, G. Naturally occurring genetic variation affects Drosophila photoreceptor determination. Dev. Genes Evol.207, 462–470 (1998). ArticleCASPubMed Google Scholar
Powell, J. R. Progress and Prospects in Evolutionary Biology: the Drosophila Model (Oxford Univ. Press, New York, 1997). Google Scholar
Frankel, J., Williams, N. E., Nelsen, E. M. & Keeling, P. J. An evaluation of Hsp90 as a mediator of cortical patterning in Tetrahymena. J. Eukaryot. Microbiol.48, 147–160 (2001). ArticleCASPubMed Google Scholar
Frankel, J. & Nelsen, E. M. The effects of supraoptimal temperatures on population growth and cortical patterning in Tetrahymena pyriformis and Tetrahymena thermophila: a comparison. J. Eukaryot. Microbiol.48, 135–46 (2001). ArticleCASPubMed Google Scholar
Brunt, S. A., Perdew, G. H., Toft, D. O. & Silver, J. C. Hsp90-containing multiprotein complexes in the eukaryotic microbe Achlya. Cell Stress Chaperones3, 44–56 (1998). ArticleCASPubMedPubMed Central Google Scholar
Brunt, S. A., Riehl, R. & Silver, J. C. Steroid hormone regulation of the Achlya ambisexualis 85-kilodalton heat shock protein, a component of the Achlya steroid receptor complex. Mol. Cell Biol.10, 273–281 (1990). ArticleCASPubMedPubMed Central Google Scholar
Loubradou, G., Begueret, J. & Turcq, B. MOD-D, a Gα subunit of the fungus Podospora anserina, is involved in both regulation of development and vegetative incompatibility. Genetics152, 519–528 (1999). CASPubMedPubMed Central Google Scholar
Loubradou, G., Begueret, J. & Turcq, B. A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina. Genetics147, 581–588 (1997). CASPubMedPubMed Central Google Scholar
Bishop, C. D. & Brandhorst, B. P. NO/cGMP signaling and HSP90 activity represses metamorphosis in the sea urchin Lytechinus pictus. Biol. Bull.201, 394–404 (2001). ArticleCASPubMed Google Scholar
Bishop, C. D., Bates, W. R. & Brandhorst, B. P. Regulation of metamorphosis in ascidians involves NO/cGMP signaling and HSP90. J. Exp. Zool.289, 374–384 (2001). ArticleCASPubMed Google Scholar
Gottlieb, T. M., Wade, M. J. & Rutherford, S. L. Potential genetic variance and the domestication of maize. Bioessays24, 685–689 (2002). ArticlePubMed Google Scholar
Gerhart, J. & Kirschner, M. Cells, Embryos, and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability (Blackwell Science, Malden, Massachusetts, 1997). Google Scholar
Milo, R. et al. Network motifs: simple building blocks of complex networks. Science298, 824–827 (2002). ArticleCASPubMed Google Scholar
Dai, K., Kobayashi, R. & Beach, D. Physical interaction of mammalian CDC37 with CDK4. J. Biol. Chem.271, 22030–22034 (1996). ArticleCASPubMed Google Scholar
Aligue, R., Akhavan-Niak, H. & Russell, P. A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J.13, 6099–6106 (1994). ArticleCASPubMedPubMed Central Google Scholar
Gerber, M. R., Farrell, A., Deshaies, R. J., Herskowitz, I. & Morgan, D. O. Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. Proc. Natl Acad. Sci. USA92, 4651–4655 (1995). ArticleCASPubMedPubMed Central Google Scholar
Stepanova, L., Leng, X., Parker, S. B. & Harper, J. W. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev.10, 1491–1502 (1996). ArticleCASPubMed Google Scholar
Munoz, M. J. & Jimenez, J. Genetic interactions between Hsp90 and the Cdc2 mitotic machinery in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet.261, 242–250 (1999). ArticleCASPubMed Google Scholar
Billecke, S. S. et al. hsp90 is required for heme binding and activation of apo-neuronal nitric-oxide synthase: geldanamycin-mediated oxidant generation is unrelated to any action of hsp90. J. Biol. Chem.277, 20504–20509 (2002). ArticleCASPubMed Google Scholar
Arbeitman, M. N. & Hogness, D. S. Molecular chaperones activate the Drosophila ecdysone receptor, an RXR heterodimer. Cell101, 67–77 (2000). ArticleCASPubMed Google Scholar
Chang, H. C. & Lindquist, S. Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J. Biol. Chem.269, 24983–24988 (1994). CASPubMed Google Scholar
Harrell, J. M. et al. All of the protein interactions that link steroid receptor hsp90 immunophilin heterocomplexes to cytoplasmic dynein are common to plant and animal cells. Biochemistry41, 5581–5587 (2002). ArticleCASPubMed Google Scholar
Stancato, L. F., Hutchison, K. A., Krishna, P. & Pratt, W. B. Animal and plant cell lysates share a conserved chaperone system that assembles the glucocorticoid receptor into a functional heterocomplex with hsp90. Biochemistry35, 554–561 (1996). ArticleCASPubMed Google Scholar
Bell, G. Selection: the Mechanism of Evolution (Chapman and Hall, New York, 1997). Book Google Scholar
Walker, G. C. Skiing the black diamond slope: progress on the biochemistry of translesion DNA synthesis. Proc. Natl Acad. Sci. USA95, 10348–10350 (1998). ArticleCASPubMedPubMed Central Google Scholar
Radman, M., Taddei, F. & Matic, I. Evolution-driving genes. Res. Microbiol.151, 91–95 (2000). ArticleCASPubMed Google Scholar
Rosenberg, S. M. Evolving responsively: adaptive mutation. Nature Rev. Genet.2, 504–515 (2001). ArticleCASPubMed Google Scholar
Drake, J. W. The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann. NY Acad. Sci.870, 100–107 (1999). ArticleCASPubMed Google Scholar
Kimura, M. On the evolutionary adjustment of spontaneous mutation rates. Genet. Res.9, 23–34 (1967). Article Google Scholar
Arjan, J. A. et al. Diminishing returns from mutation supply rate in asexual populations. Science283, 404–406 (1999). ArticleCASPubMed Google Scholar
McKenzie, G. J., Lee, P. L., Hastings, P. J. & Rosenberg, S. M. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol. Cell.7, 571–579 (2001). A demonstration that an inducible error-prone DNA polymerase underlies adaptive mutation. ArticleCASPubMed Google Scholar
Goodman, M. F. & Tippin, B. Sloppier copier DNA polymerases involved in genome repair. Curr. Opin. Genet. Dev.10, 162–168 (2000). ArticleCASPubMed Google Scholar
Faili, A. et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase ι. Nature419, 944–947 (2002). ArticleCASPubMed Google Scholar
Deitsch, K. W., Moxon, E. R. & Wellems, T. E. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol. Mol. Biol. Rev.61, 281–293 (1997). CASPubMedPubMed Central Google Scholar
Raabe, T. The sevenless signaling pathway: variations of a common theme. Biochim. Biophys. Acta.1496, 151–163 (2000). ArticleCASPubMed Google Scholar
Hafen, E., Dickson, B., Brunner, D. & Raabe, T. Genetic dissection of signal transduction mediated by the sevenless receptor tyrosine kinase in Drosophila. Prog. Neurobiol.42, 287–292 (1994). ArticleCASPubMed Google Scholar
Daga, A. & Banerjee, U. Resolving the sevenless pathway using sensitized genetic backgrounds. Cell. Mol. Biol. Res.40, 245–251 (1994). CASPubMed Google Scholar
Simon, M., Bowtell, D., Dodson, G., Laverty, T. & Rubin, G. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell67, 701–716 (1991). ArticleCASPubMed Google Scholar
Stancato, L. et al. Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J. Biol. Chem.268, 21711–21716 (1993). CASPubMed Google Scholar
Wartmann, M. & Davis, R. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J. Biol. Chem.269, 6695–6701 (1994). CASPubMed Google Scholar
Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution50, 967–976 (1996). ArticlePubMed Google Scholar
Yang, A. S. Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evol. Dev.3, 59–72 (2001). ArticleCASPubMed Google Scholar
Houle, D. Comparing evolvability and variability of quantitative traits. Genetics130, 195–204 (1992). A population genetics description of evolvability. CASPubMedPubMed Central Google Scholar
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, Essex, England, 1996). Google Scholar
Radman, M., Matic, I. & Taddei, F. Evolution of evolvability. Ann. NY Acad. Sci.870, 146–155 (1999). ArticleCASPubMed Google Scholar
Meiklejohn, C. D. & Hartl, D. L. A single mode of canalization. Trends Ecol. Evol.17, 468–473 (2002). Article Google Scholar
Hansen, T. F. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropty and evolvability. Biosystems (in the press).
Fujita, N., Sato, S., Ishida, A. & Tsuruo, T. Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J. Biol. Chem.277, 10346–10353 (2002). ArticleCASPubMed Google Scholar
Pandey, P. et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J.19, 4310–4322 (2000). ArticleCASPubMedPubMed Central Google Scholar
Peng, Y., Chen, L., Li, C., Lu, W. & Chen, J. Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J. Biol. Chem.276, 40583–40590 (2001). ArticleCASPubMed Google Scholar
Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci.21, 289–296 (1996). ArticleCASPubMed Google Scholar
Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature372, 475–478 (1994). ArticleCASPubMed Google Scholar