Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota (original) (raw)
Gearhart, P. J. & Wood, R. D. Emerging links between hypermutation of antibody genes and DNA polymerases. Nature Rev. Immunol.1, 187–192 (2001) ArticleCAS Google Scholar
Weill, J.-C. et al. Ig gene hypermutation: a mechanism is due. Adv. Immunol.80, 183–202 (2002) ArticleCAS Google Scholar
Friedberg, E. C., Wagner, R. & Radman, M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science296, 1627–1630 (2002) ArticleADSCAS Google Scholar
Goodman, M. F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem.71, 17–50 (2002) ArticleCAS Google Scholar
Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity9, 859–869 (1998) ArticleCAS Google Scholar
Denepoux, S. et al. Induction of somatic mutation in a human B cell line in vitro. Immunity6, 35–46 (1997) ArticleCAS Google Scholar
Zan, H. et al. Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+IgD+ B cell line in vitro: definition of the requirements and modalities of hypermutation. J. Immunol.162, 3437–3447 (1999) CASPubMed Central Google Scholar
Faili, A. et al. AID-dependent somatic hypermutation occurs as a DNA single strand event in the BL2 cell line. Nature Immunol.3, 815–821 (2002) ArticleCAS Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000) ArticleCAS Google Scholar
Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell102, 565–575 (2000) ArticleCAS Google Scholar
Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. Pol iota, a remarkably error-prone human DNA polymerase. Genes Dev.14, 1642–1650 (2000) CASPubMed Central Google Scholar
Frank, E. G. et al. Altered nucleotide misinsertion fidelity associated with pol iota-dependent replication at the end of a DNA template. EMBO J.20, 2914–2922 (2001) ArticleCAS Google Scholar
McDonald, J. P. et al. Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase η. Genomics60, 20–30 (1999) ArticleCAS Google Scholar
Poltoratsky, V. et al. Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation. Proc. Natl Acad. Sci. USA98, 7976–7981 (2001) ArticleADSCAS Google Scholar
Zhang, W. et al. Clonal instability of V region hypermutation in the Ramos Burkitt's lymphoma cell line. Int. Immunol.13, 975–984 (2001) ArticleCAS Google Scholar
Bebenek, K. et al. 5′-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science291, 2156–2159 (2001) ArticleADSCAS Google Scholar
Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature418, 99–103 (2002) ArticleADSCAS Google Scholar
Papavasiliou, F. N. & Schatz, D. G. The activation-induced deaminase functions in a postcleavage step of the somatic hypermutation process. J. Exp. Med.195, 993–998 (2002) Article Google Scholar
Zeng, X. et al. DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunol.2, 537–541 (2001) ArticleCAS Google Scholar
Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nature Immunol.2, 530–536 (2001) ArticleCAS Google Scholar
Pavlov, Y. I. et al. Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase η during copying of a mouse immunoglobulin κ light chain transgene. Proc. Natl Acad. Sci. USA99, 9954–9959 (2002) ArticleADSCAS Google Scholar
Dörner, T., Foster, S. J., Brezinschek, H.-P. & Lipsky, P. E. Analysis of the targeting of the hypermutational machinery and the impact of subsequent selection on the distribution of nucleotides changes in human VhDhJ rearrangements. Immunol. Rev.162, 161–171 (1998) Article Google Scholar
Bachl, J. & Wabl, M. An immunoglobulin mutator that targets G.C base pairs. Proc. Natl Acad. Sci. USA93, 851–855 (1996) ArticleADSCAS Google Scholar
Zan, H. et al. The translesion DNA polymerase zeta plays a major role in Ig and bcl-6 somatic hypermutation. Immunity14, 643–653 (2001) ArticleCAS Google Scholar
Diaz, M., Verkoczy, L. K., Flajnik, M. F. & Klinman, N. R. Decreased frequency of somatic hypermutation and impaired affinity maturation but intact germinal center formation in mice expressing antisense RNA to DNA polymerase zeta. J. Immunol.167, 327–335 (2001) ArticleCAS Google Scholar
Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature406, 1015–1019 (2000) ArticleADSCAS Google Scholar
Mittrucker, H. W., Muller-Fleckenstein, I., Fleckenstein, B. & Fleischer, B. Herpes virus saimiri-transformed human T lymphocytes: normal functional phenotype and preserved T cell receptor signalling. Int. Immunol.5, 985–990 (1993) ArticleCAS Google Scholar
de Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell82, 321–330 (1995) ArticleCAS Google Scholar