Modulating Hox gene functions during animal body patterning (original) (raw)
Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature276, 565–570 (1978). ArticleCASPubMed Google Scholar
Kaufman, T. C., Seeger, M. A. & Olsen, G. Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv. Genet.27, 309–362 (1990). CASPubMed Google Scholar
McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell68, 283–302 (1992). CASPubMed Google Scholar
Beeman, R. W., Stuart, J. J., Haas, M. S. & Denell, R. E. Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Dev. Biol.133, 196–209 (1989). CASPubMed Google Scholar
Krumlauf, R. Hox genes in vertebrate development. Cell78, 191–201 (1994). CASPubMed Google Scholar
Bienz, M. Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet.10, 22–26 (1994). CASPubMed Google Scholar
Zákány, J. & Duboule, D. Hox genes in digit development and evolution. Cell Tissue Res.296, 19–25 (1999). PubMed Google Scholar
Arenas-Mena, C., Cameron, A. R. & Davidson, E. H. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development127, 4631–4643 (2000). CASPubMed Google Scholar
Arenas-Mena, C., Martinez, P., Cameron, R. A. & Davidson, E. H. Expression of the Hox gene complex in the indirect development of a sea urchin. Proc. Natl Acad. Sci. USA95, 13062–13067 (1998). CASPubMedPubMed Central Google Scholar
Ishii, M. et al. Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos. Dev. Growth Differ.41, 241–252 (1999). CASPubMed Google Scholar
Finnerty, J. R., Pang, K., Burton, P., Paulson, D. & Martindale, M. Q. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science304, 1335–1337 (2004). Using Hox anddppexpression patterns in sea anemone as evidence, the authors argue that bilateral symmetry was the basal state before the evolutionarily divergence of cnidarians from the ancestors of triploblastic animals such as chordates, arthropods and molluscs. CASPubMed Google Scholar
Castelli-Gair, J. & Akam, M. How the Hox gene Ultrabithorax specifies two different segments: the significance of spatial and temporal regulation within metameres. Development121, 2973–2982 (1995). CASPubMed Google Scholar
Salser, S. & Kenyon, C. A C. elegans Hox gene switches on, off, on and off again to regulate proliferation, differentiation and morphogenesis. Development122, 1651–1661 (1996). CASPubMed Google Scholar
Mann, R. S. & Chan, S. K. Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet.12, 258–262 (1996). CASPubMed Google Scholar
Chang, C. -P. et al. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev.9, 663–674 (1995). CASPubMed Google Scholar
Van Auken, K. et al. Roles of the Homothorax/Meis/Prep homolog UNC-62 and the Exd/Pbx homologs CEH-20 and CEH-40 in C. elegans embryogenesis. Development129, 5255–5268 (2002). CASPubMed Google Scholar
Mann, R. & Affolter, M. Hox proteins meet more partners. Curr. Opin. Genet. Dev.8, 423–429 (1998). CASPubMed Google Scholar
Kuziora, M. A. & McGinnis, W. Autoregulation of a Drosophila homeotic selector gene. Cell55, 477–485 (1988). CASPubMed Google Scholar
Pöpperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent on exd/pbx. Cell81, 1031–1042 (1995). PubMed Google Scholar
Gould, A., Morrison, A., Sproat, G., White, R. A. H. & Krumlauf, R. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev.11, 900–913 (1997). CASPubMed Google Scholar
Henderson, K. D. & Andrew, D. J. Regulation and function of Scr, exd, and hth in the Drosophila salivary gland. Developmental Biology217, 362–374 (2000). CASPubMed Google Scholar
Azpiazu, N. & Morata, G. Functional and regulatory interactions between Hox and extradenticle genes. Genes Dev.12, 261–273 (1998). CASPubMedPubMed Central Google Scholar
Weatherbee, S. D., Halder, G., Kim, J., Hudson, A. & Carroll, S. Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Genes Dev.12, 1474–1482 (1998). CASPubMedPubMed Central Google Scholar
Lei, H., Wang, H., Juan, A. H. & Ruddle, F. H. The identification of Hoxc8 target genes. Proc. Natl Acad. Sci. USA102, 2420–2424 (2005). CASPubMedPubMed Central Google Scholar
Williams, T. M. et al. Candidate downstream regulated genes of HOX group 13 transcription factors with and without monomeric DNA binding capability. Dev. Biol.279, 462–480 (2005). CASPubMed Google Scholar
Cobb, J. & Duboule, D. Comparative analysis of genes downstream of the Hoxd cluster in developing digits and external genitalia. Development132, 3055–3067 (2005). The authors use mouse microarrays to identify several genes that are regulated by the Hoxd cluster in both limb and genital appendage primordia. CASPubMed Google Scholar
Capovilla, M. & Botas, J. Functional dominance among Hox genes: repression dominates activation in the regulation of dpp. Development125, 4949–4957 (1998). CASPubMed Google Scholar
Vachon, G. et al. Homeotic genes of the bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell71, 437–450 (1992). CASPubMed Google Scholar
Liu, J. & Fire, A. Overlapping roles of two Hox genes and the exd ortholog ceh-20 in diversification of the C. elegans postembryonic mesoderm. Development127, 5179–5190 (2000). CASPubMed Google Scholar
Garcia-Bellido, A. Homeotic and atavic mutations in insects. Am. Zool.17, 613–629 (1977). Google Scholar
Yokouchi, Y. et al. Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes Dev.9, 2509–2522 (1995). CASPubMed Google Scholar
Stadler, H. S., Higgins, K. M. & Capecchi, M. R. Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs. Development128, 4177–4188 (2001). CASPubMed Google Scholar
Poliakov, A., Cotrina, M. & Wilkinson, D. G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell7, 465–480 (2004). CASPubMed Google Scholar
Chen, J. & Ruley, H. E. An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J. Biol. Chem.273, 24670–24675 (1998). CASPubMed Google Scholar
Bruhl, T. et al. Homeobox A9 transcriptionally regulates the EphB4 receptor to modulate endothelial cell migration and tube formation. Circ. Res.94, 743–751 (2004). CASPubMed Google Scholar
Bromleigh, V. C. & Freedman, L. P. p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells. Genes Dev.14, 2581–2586 (2000). CASPubMedPubMed Central Google Scholar
Magli, M. C., Largman, C. & Lawrence, H. J. Effects of HOX homeobox genes in blood cell differentiation. J. Cell. Physiol.173, 168–177 (1997). CASPubMed Google Scholar
Thorsteinsdottir, U. et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol. Cell. Biol.17, 495–505 (1997). CASPubMedPubMed Central Google Scholar
Lohmann, I., McGinnis, N., Bodmer, M. & McGinnis, W. The Drosophila Hox gene Deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell110, 457–466 (2002). CASPubMed Google Scholar
Bello, B. C., Hirth, F. & Gould, A. P. A pulse of the Drosophila Hox protein Abdominal-Aschedules the end of neural proliferation via neuroblast apoptosis. Neuron37, 209–219 (2003). CASPubMed Google Scholar
Salser, S. J. & Kenyon, C. Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. Nature355, 255–258 (1992). CASPubMed Google Scholar
Clark, S. G., Chisholm, A. D. & Horvitz, H. R. Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell74, 43–55 (1993). CASPubMed Google Scholar
Wang, B. B. et al. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell74, 29–42 (1993). CASPubMed Google Scholar
Sun, B., Hursh, D. A., Jackson, D. & Beachy, P. A. Ultrabithorax protein is necessary but not sufficient for full activation of decapentaplegic expression in the visceral mesoderm. EMBO J.14, 520–535 (1995). CASPubMedPubMed Central Google Scholar
Haerry, T. & Gehring, W. A conserved cluster of homeodomain binding sites in the mouse Hoxa-4 intron functions in Drosophila embryos as an enhancer that is directly regulated by Ultrabithorax. Dev. Biol.186, 1–15 (1997). CASPubMed Google Scholar
Capovilla, M., Kambris, Z. & Botas, J. Direct regulation of the muscle-identity gene apterous by a Hox protein in the somatic mesoderm. Development128, 1221–1230 (2001). CASPubMed Google Scholar
Schier A. F. & Gehring W. J. Direct homeodomain-DNA interaction in the autoregulation of the fushi tarazu gene. Nature356, 804–807 (1992). CASPubMed Google Scholar
Zaffran, S., Kuchler, A., Lee, H. H. & Frasch, M. biniou (FoxF), a central component in a regulatory network controlling visceral mesoderm development and midgut morphogenesis in Drosophila. Genes Dev.15, 2900–2915 (2001). CASPubMedPubMed Central Google Scholar
Zeng, C., Pinsonneault, J., Gellon, G., McGinnis, N. & McGinnis, W. Deformed protein binding sites and cofactor binding sites are required for the function of a small segment-specific regulatory element in Drosophila embryos. EMBO J.13, 2362–2377 (1994). CASPubMedPubMed Central Google Scholar
Lou, L., Bergson, C. & McGinnis, W. Deformed expression in the Drosophila central nervous system is controlled by an autoactivated intronic enhancer. Nucleic Acids Res.23, 3481–3487 (1995). CASPubMedPubMed Central Google Scholar
Galant, R., Walsh, C. M. & Carroll, S. B. Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites. Development129, 3115–3126 (2002). CASPubMed Google Scholar
Appel, B. & Sakonju, S. Cell-type-specific mechanisms of transcriptional repression by the homeotic gene products UBX and ABD-A in Drosophila embryos. EMBO J.12, 1099–1109 (1993). CASPubMedPubMed Central Google Scholar
Grieder, N. C., Marty, T., Ryoo, H. D., Mann, R. S. & Affolter, M. Synergistic activation of a Drosophila enhancer by HOM/EXD and DPP signaling. EMBO J.16, 7402–7410 (1997). CASPubMedPubMed Central Google Scholar
Ebner, A., Cabernard, C., Affolter, M. & Merabet, S. Recognition of distinct target sites by a unique Labial/Extradenticle/Homothorax complex. Development132, 1591–1600 (2005). In this paper, an enhancer regulated by Labial (LAB) and Extradenticle (EXD) through an unusual binding site is serendipitously found near an apparently functionless consensus LAB–EXD binding site that was identifiedin silico. CASPubMed Google Scholar
Fasano, L. et al. The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell64, 63–79 (1991). CASPubMed Google Scholar
de Zulueta, P., Alexandre, E., Jacq, B. & Kerridge, S. Homeotic complex and teashirt genes co-operate to establish trunk segmental identities in Drosophila. Development120, 2287–2296 (1994). CASPubMed Google Scholar
Mahaffey, J. P., Griswold, C. M. & Cao, Q. The Drosophila genes disconnected and disco-related are redundant with respect to larval head development and accumulation of mRNAs from Deformed target genes. Genetics157, 225–236 (2001). CASPubMedPubMed Central Google Scholar
Robertson, L. K., Bowling, D. B., Mahaffey, J. P., Imiolczyk, B. & Mahaffey, J. W. An interactive network of zinc-finger proteins contributes to regionalization of the Drosophila embryo and establishes the domains of HOM-C-protein function. Development131, 2781–2789 (2004). This paper provides strong genetic evidence that supports the involvement of Disco/Disco-related and Teashirt as regionalizing factors that are required by Hox proteins for axial specification. CASPubMed Google Scholar
Chan, S. K., Popperl, H., Krumlauf, R. & Mann, R. S. An extradenticle-induced conformational change in a HOX protein overcomes an inhibitory function of the conserved hexapeptide motif. EMBO J.15, 2476–2487 (1996). CASPubMedPubMed Central Google Scholar
Chan, S. K., Ryoo, H. D., Gould, A., Krumlauf, R. & Mann, R. S. Switching the in vivo specificity of a minimal Hox-responsive element. Development124, 2007–2014 (1996). Google Scholar
Ryoo, H. D. & Mann, R. S. The control of trunk Hox specificity and activity by Extradenticle. Genes Dev.13, 1704–1716 (1999). CASPubMedPubMed Central Google Scholar
Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. in From DNA to Diversity (ed. Carroll, S.) 1–214 (Blackwell Science, London, 2005). Google Scholar
Averof, M. & Patel, N. H. Crustacean appendage evolution associated with changes in Hox gene expression. Nature388, 682–686 (1997). CASPubMed Google Scholar
Stern, D. L. A role of Ultrabithorax in morphological differences between Drosophila species. Nature396, 463–466 (1998). CASPubMedPubMed Central Google Scholar
Hsia, C. C. & McGinnis, W. Evolution of transcription factor function. Curr. Opin. Genet. Dev.13, 199–206 (2003). CASPubMed Google Scholar
Ronshaugen, M., McGinnis, N. & McGinnis, W. Hox protein mutation and macroevolution of the insect body plan. Nature415, 914–917 (2002). PubMed Google Scholar
Galant, R. & Carroll, S. B. Evolution of a transcriptional repression domain in an insect Hox protein. Nature415, 910–913 (2002). CASPubMed Google Scholar
Hughes, C. L. & Kaufman, T. C. Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development129, 1225–1238 (2002). In this article, all ten centipede Hox genes are cloned and the expression patterns are analysed byin situhybridizations on embryos, inviting comparisons with other invertebrate Hox expression patterns. CASPubMed Google Scholar
Telford, M. J. Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5. Curr. Biol.10, 349–352 (2000). CASPubMed Google Scholar
Mouchel-Vielh, E., Blin, M., Rigolot, C. & Deutsch, J. S. Expression of a homologue of the fushi tarazu (ftz) gene in a cirripede crustacean. Evol. Dev.4, 76–85 (2002). CASPubMed Google Scholar
Brown, S. J., Hilgenfeld, R. B. & Denell, R. E. The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc. Natl Acad. Sci. USA91, 12922–12926 (1994). CASPubMedPubMed Central Google Scholar
Dawes, R., Dawson, I., Falciani, F., Tear, G. & Akam, M. Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development120, 1561–1572 (1994). CASPubMed Google Scholar
Lohr, U., Yussa, M. & Pick, L. Drosophila fushi tarazu: a gene on the border of homeotic function. Curr. Biol.11, 1403–1412 (2001). CASPubMed Google Scholar
Lohr, U. & Pick, L. Cofactor-interaction motifs and the cooption of a homeotic Hox protein into the segmentation pathway of Drosophila melanogaster. Curr. Biol.15, 643–649 (2005). This paper shows that the Hox-complex genefushi tarazu (ftz) can be switched between segmentation and homeotic functions by inserting or deleting alternate cofactor-interaction domains that are found in differentftzorthologues. PubMed Google Scholar
Pasquinelli, A. E., Hunter, S. & Bracht, J. MicroRNAs: a developing story. Curr. Opin. Genet. Dev.15, 200–205 (2005). CASPubMed Google Scholar
Bartel, D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). CASPubMed Google Scholar
Brend, T., Gilthorpe, J., Summerbell, D. & Rigby, P. W. Multiple levels of transcriptional and post-transcriptional regulation are required to define the domain of Hoxb4 expression. Development130, 2717–2728 (2003). CASPubMed Google Scholar
Nelson, C. E. et al. Analysis of Hox gene expression in the chick limb bud. Development122, 1449–1466 (1996). CASPubMed Google Scholar
Abzhanov, A. & Kaufman, T. C. Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development126, 1121–1128 (1999). CASPubMed Google Scholar
Lewis, B., Shih, I., Jones-Rhoades, M., Bartel, D. & Burge, C. Prediction of mammalian microRNA targets. Cell115, 787–798 (2003). CASPubMed Google Scholar
Yekta, S., Shih, I. & Bartel, D. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). This article provides evidence for the cleavage of several mammalian Hox genes by a conserved microRNA that is located within the Hox clusters. CASPubMed Google Scholar
Mansfield, J. H. et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nature Genet.36, 1079–1083 (2004). CASPubMed Google Scholar
Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell113, 25–36 (2003). CASPubMed Google Scholar
Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science305, 846 (2004). CASPubMed Google Scholar
Valoczi, A. et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res.32, e175 (2004). PubMedPubMed Central Google Scholar
Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science309, 310–311 (2005). The authors use microarrays and LNA oligonucleotides to examine the expression of 115 conserved microRNAs in zebrafish. They find highly diverse expression patterns, suggesting wide-ranging developmental control. CASPubMed Google Scholar
Duboule, D. Vertebrate Hox gene regulation: clustering and/or colinearity? Curr. Opin. Genet. Dev.8, 514–518 (1998). CASPubMed Google Scholar
Duboule, D. & Deschamps, J. Colinearity loops out. Dev. Cell6, 738–740 (2004). CASPubMed Google Scholar
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet.38, 413–443 (2004). CASPubMed Google Scholar
Allen, E. et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genet.36, 1282–1290 (2004). CASPubMed Google Scholar
Popperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon Exd/Pbx. Cell81, 1031–1042 (1995). CASPubMed Google Scholar
Gebelein, B., Culi, J., Ryoo, H. D., Zhang, W. & Mann, R. S. Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Dev. Cell3, 487–498 (2002). CASPubMed Google Scholar
Gebelein, B., McKay, D. J. & Mann, R. S. Direct integration of Hox and segmentation gene inputs during Drosophila development. Nature431, 653–659 (2004). A careful dissection of a DNA element that is repressed by abdominal Hox proteins reveals a multiprotein repressive complex that integrates Hox and segmentation protein inputs. CASPubMed Google Scholar
Capovilla, M., Brandt, M. & Botas, J. Direct regulation of decapentaplegic by Ultrabithorax and its role in Drosophila midgut morphogenesis. Cell76, 461–475 (1994). CASPubMed Google Scholar
Peifer, M. & Wieschaus, E. Mutations in the Drosophila gene extradenticle affect the way specific homeo domain proteins regulate segmental identity. Genes Dev.4, 1209–1223 (1990). CASPubMed Google Scholar
Rauskolb, C., Smith, K., Peifer, M. & Wieschaus, E. extradenticle determines segmental identities throughout Drosophila development. Development121, 3663–3673 (1995). CASPubMed Google Scholar
Pederson, J. A. et al. Regulation by homeoproteins: a comparison of Deformed-responsive elements. Genetics156, 667–686 (2000). Google Scholar
Andrew, D. J., Horner, M. A., Petitt, M. G., Smolik, S. M. & Scott, M. P. Setting limits on homeotic gene function: restraint of Sex combs reduced activity by teashirt and other homeotic genes. EMBO J.13, 1132–1144 (1994). CASPubMedPubMed Central Google Scholar
Hersh, B. M. & Carroll, S. B. Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development132, 1567–1577 (2005). CASPubMed Google Scholar
Safaei R. A target of the HoxB5 gene from the mouse nervous system. Brain Res. Dev. Brain Res.100, 5–12 (1997). CASPubMed Google Scholar
Maconochie M. K. et al. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev.11, 1885–1895 (1997). CASPubMed Google Scholar
Serpente P. et al. Direct crossregulation between retinoic acid receptor β and Hox genes during hindbrain segmentation. Development132, 503–513 (2005). CASPubMed Google Scholar
Shi, X., Bai, S., Li, L. & Cao X. Hoxa-9 represses transforming growth factor-β-induced osteopontin gene transcription. J. Biol. Chem.276, 850–855 (2001). CASPubMed Google Scholar
Houghton L. & Rosenthal N. Regulation of a muscle-specific transgene by persistent expression of Hox genes in postnatal murine limb muscle. Dev. Dyn.216, 385–397 (1999). CASPubMed Google Scholar
Lampe X., Picard J. J. & Rezsohazy R. The Hoxa2 enhancer 2 contains a critical Hoxa2 responsive regulatory element. Biochem. Biophys. Res. Commun.316, 898–902 (2004). CASPubMed Google Scholar
Graba Y. et al. DWnt-4, a novel Drosophila Wnt gene acts downstream of homeotic complex genes in the visceral mesoderm. Development121, 209–218 (1995). CASPubMed Google Scholar
Kremser T. et al. Expression of the β_3 tubulin_ gene (β_Tub60D_) in the visceral mesoderm of Drosophila is dependent on a complex enhancer that binds Tinman and UBX. Dev. Biol.216, 327–339 (1999). CASPubMed Google Scholar
Zhou B., Bagri A. & Beckendorf S. K. Salivary gland determination in Drosophila: a salivary-specific, fork head enhancer integrates spatial pattern and allows fork head autoregulation. Dev. Biol.237, 54–67 (2001). CASPubMed Google Scholar
Heuer J. G., Li K. & Kaufman T. C. The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development121, 3861–3876 (1995). CASPubMed Google Scholar
Chan S. K. et al. Switching the in vivo specificity of a minimal Hox-responsive element. Development124, 2007–2014 (1997). CASPubMed Google Scholar
Cui, M. & Han, M. Cis regulatory requirements for vulval cell-specific expression of the Caenorhabditis elegans fibroblast growth factor gene egl-17. Dev. Biol.257, 104–116 (2003). CASPubMed Google Scholar
Crooks G. E., Hon G., Chandonia J. M. & Brenner S. E. WebLogo: a sequence logo generator. Genome Res.14, 1188–1190 (2004). CASPubMedPubMed Central Google Scholar
Streit, A. et al. Conserved regulation of the Caenorhabditis elegans labial/Hox1 gene ceh-13. Dev. Biol.242, 96–108 (2002). CASPubMed Google Scholar
Koh, K. et al. Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors — apparent direct targets of the LIN-39 Hox protein. Development129, 5171–5180 (2002). CASPubMed Google Scholar
McCormick A., Core N., Kerridge S., Scott M. P. Homeotic response elements are tightly linked to tissue-specific elements in a transcriptional enhancer of the teashirt gene. Development121, 2799–2812 (1995). CASPubMed Google Scholar
Graba, Y. et al. Homeotic control in Drosophila; the scabrous gene is an in vivo target of Ultrabithorax proteins. EMBO J.11, 3375–3384 (1992). CASPubMedPubMed Central Google Scholar
Strutt, D. I. & White, R. A. Characterization of T48, a target of homeotic gene regulation in Drosophila embryogenesis. Mech. Dev.46, 27–39 (1994). CASPubMed Google Scholar
Chauvet, S. et al. dlarp, a new candidate Hox target in Drosophila whose orthologue in mouse is expressed at sites of epithelium/mesenchymal interactions. Dev. Dyn.218, 401–413 (2000). CASPubMed Google Scholar
Manak J. R., Mathies L. D. & Scott M. P. Regulation of a decapentaplegic midgut enhancer by homeotic proteins. Development120, 3605–3612 (1994). CASPubMed Google Scholar
Gould A. P. & White R. A. Connectin, a target of homeotic gene control in Drosophila. Development116, 1163–1174 (1992). CASPubMed Google Scholar
Mastick G. S., McKay R., Oligino T., Donovan K. . & Lopez A. J. Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast. Genetics139, 349–363 (1995). CASPubMedPubMed Central Google Scholar
Grienenberger A. et al. TGF-β signaling acts on a Hox response element to confer specificity and diversity to Hox protein function. Development130, 5445–5455 (2003). CASPubMed Google Scholar
Hooiveld, M. H. et al. Novel interactions between vertebrate Hox genes. Int. J. Dev. Biol.43, 665–674 (1999). CASPubMed Google Scholar
Morsi El-Kadi A. S., in der Reiden, P., Durston, A. & Morgan, R. The small GTPase Rap1 is an immediate downstream target for Hoxb4 transcriptional regulation. Mech. Dev.113, 131–139 (2002). CASPubMed Google Scholar
Theokli, C., Morsi El-Kadi, A. S. & Morgan, R. TALE class homeodomain gene Irx5 is an immediate downstream target for Hoxb4 transcriptional regulation. Dev. Dyn.227, 48–55 (2003). CASPubMed Google Scholar
Morgan, R., Nalliah, A. & Morsi El-Kadi, A. S. FLASH, a component of the FAS-CAPSASE8 apoptotic pathway, is directly regulated by Hoxb4 in the notochord. Dev. Biol.265, 105–112 (2004). CASPubMed Google Scholar