The evolution of genetic networks by non-adaptive processes (original) (raw)
Gerhart, J. & Kirschner, M. Cells, Embryos and Evolution (Blackwell Science, Malden, 1997). Google Scholar
Barab'asi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet.5, 101–113 (2004). ArticleCAS Google Scholar
Babu, M. M., Teichmann, S. A. & Aravind, L. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. Mol. Biol.358, 614–633 (2006). Article Google Scholar
Balaji, S., Iyer, L. M., Aravind, L. & Babu, M. M. Uncovering a hidden distributed architecture behind scale-free transcriptional regulatory networks. J. Mol. Biol.360, 204–212 (2006). ArticleCASPubMed Google Scholar
Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic, New York, 2006). Google Scholar
Adami, C. Digital genetics: unravelling the genetic basis of evolution. Nature Rev. Genet.7, 109–118 (2006). ArticleCASPubMed Google Scholar
Wagner, A. Does selection mold molecular networks? Science STKE202, pe41 (2003). One of the first papers to raise questions about the adaptive paradigm for the architecture of genetic networks. Google Scholar
Sole, R. V. & Valverde, S. Are network motifs the spandrels of cellular complexity? Trends Ecol. Evol.21, 419–422 (2006). ArticlePubMed Google Scholar
Lynch, M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl Acad. Sci. USA104, S8597–S8604 (2007). This paper raises questions about the rationale and objectivity of numerous arguments that nearly all aspects of molecular, cellular and developmental complexity have arisen by adaptive mechanisms. Article Google Scholar
Wilkins, A. S. The Evolution of Developmental Pathways (Sinauer, Sunderland, 2002). An excellent overview of our knowledge (or lack thereof) of the evolutionary forces that mould developmental pathways. Google Scholar
Lynch, M. The Origins of Genome Architecture (Sinauer, Sunderland, 2007). Google Scholar
Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science311, 796–800 (2006). ArticleCASPubMed Google Scholar
Thieffry, D., Huerta, A. M., Perez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays20, 433–440 (1998). ArticleCASPubMed Google Scholar
Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science298, 799–804 (2002). ArticleCASPubMed Google Scholar
Johnson, N. A. & Porter, A. H. Rapid speciation via parallel, directional selection on regulatory genetic pathways. J. Theor. Biol.205, 527–542 (2000). ArticleCASPubMed Google Scholar
Haag, E. S. & Molla, M. N. Compensatory evolution of interacting gene products through multifunctional intermediates. Evolution59, 1620–1632 (2005). ArticleCASPubMed Google Scholar
Wagner, A. Robustness and Evolvability in Living Systems (Princeton Univ. Press, Princeton, 2005). A broad and relatively balanced view of the evolutionary mechanisms that can lead to the robustness of living systems to external and internal perturbations. Google Scholar
Conant, G. C. & Wagner, A. Convergent evolution of gene circuits. Nature Genet.34, 264–266 (2003). ArticleCASPubMed Google Scholar
Artzy-Randrup, Y., Fleishman, S. J., Ben-Tal, N. & Stone, L. Comment on 'Network motifs: simple building blocks of complex networks' and 'Superfamilies of evolved and designed networks'. Science305, 1107 (2004). ArticleCASPubMed Google Scholar
van Noort, V., Snel, B. & Huynen, M. A. The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep.5, 280–284 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wilkins, A. S. Recasting developmental evolution in terms of genetic pathway and network evolution and the implications for comparative biology. Brain Res. Bull.66, 495–509 (2005). ArticlePubMed Google Scholar
Sommer, R. J. Evolution and development — the nematode vulva as a case study. Bioessays19, 225–231 (1997). ArticleCASPubMed Google Scholar
Ludwig, M. Z., Bergman, C., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature403, 564–567 (2000). ArticleCASPubMed Google Scholar
Ruvinsky, I. & Ruvkun, G. Functional tests of enhancer conservation between distantly related species. Development130, 5133–5142 (2003). ArticleCASPubMed Google Scholar
Goltsev, Y., Hsiong, W., Lanzaro, G. & Levine, M. Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev. Biol.275, 435–446 (2004). ArticleCASPubMed Google Scholar
Coulson, R. M., Touboul, N. & Ouzounis, C. A. Lineage-specific partitions in archaeal transcription. Archaea2, 117–125 (2006). ArticlePubMed Central Google Scholar
Hill, R. C. et al. Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. Dev. Cell10, 531–538 (2006). ArticleCASPubMed Google Scholar
Mazurie, A., Bottani, S. & Vergassola, M. An evolutionary and functional assessment of regulatory network motifs. Genome Biol.6, R35 (2005). ArticlePubMedPubMed Central Google Scholar
Moses, A. M. et al. Large-scale turnover of functional transcription factor binding sites in Drosophila. PLoS Comput.Biol.2, 1219–1231 (2006). ArticleCAS Google Scholar
Tsong, A. E., Tuch, B. B., Li, H. & Johnson, A. D. Evolution of alternative transcriptional circuits with identical logic. Nature443, 415–420 (2006). An elegant demonstration of how dramatic changes in regulatory mechanisms can be brought about by intermediate, neutral steps involving functional redundancy. ArticleCASPubMed Google Scholar
Marino-Ramirez, L., Jordan, I. K. & Landsman, D. Multiple independent evolutionary solutions to core histone gene regulation. Genome Biol.7, R122 (2006). ArticlePubMedPubMed Central Google Scholar
Tanay, A., Regev, A. & Shamir, R. Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc. Natl Acad. Sci. USA102, 7203–7208 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lozada-Chavez, I., Janga, S. C. & Collado-Vides, J. Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res.34, 3434–3445 (2006). ArticleCASPubMedPubMed Central Google Scholar
Perez-Rueda, E., Collado-Vides, J. & Segovia, L. Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput. Biol. Chem.28, 341–350 (2004). ArticleCASPubMed Google Scholar
Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science290, 2105–2110 (2000). ArticleCASPubMed Google Scholar
Messina, D. N., Glasscock, J., Gish, W. & Lovett, M. An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression. Genome Res.14, 2041–2047 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stone, J. R. & Wray, G. A. Rapid evolution of _cis_-regulatory sequences via local point mutations. Mol. Biol. Evol.18, 1764–1770 (2001). ArticleCASPubMed Google Scholar
Hahn, M. W., Stajich, J. E. & Wray, G. A. The effects of selection against spurious transcription factor binding sites. Mol. Biol. Evol.20, 901–906 (2003). This work shows that even non-functional DNA can be under selection for the avoidance of spurious regulatory sites ArticleCASPubMed Google Scholar
Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet.31, 64–68 (2002). ArticleCASPubMed Google Scholar
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature407, 651–654 (2000). ArticleCASPubMed Google Scholar
Rodriguez-Caso, C., Medina, M. A. & Sole, R. V. Topology, tinkering and evolution of the human transcription factor network. FEBS J.272, 6423–6434 (2005). ArticleCASPubMed Google Scholar
Chung, F., Lu, L., Dewey, T. G. & Galas, D. J. Duplication models for biological networks. J. Comput. Biol.10, 677–687 (2003). ArticleCASPubMed Google Scholar
Yuh, C. H., Bolouri, H. & Davidson, E. H. Genomic _cis_-regulatory logic: experimental and computational analysis of a sea urchin gene. Science279, 1896–1902 (1998). ArticleCASPubMed Google Scholar
Balhoff, J. P. & Wray, G. A. Evolutionary analysis of the well characterized endo16 promoter reveals substantial variation within functional sites. Proc. Natl Acad. Sci. USA102, 8591–8596 (2005). ArticleCASPubMedPubMed Central Google Scholar
Romano, L. A. & Wray, G. A. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and _trans_-acting components of transcriptional regulation. Development130, 4187–4199. References51and52provide dramatic evidence that typological descriptions of the regulatory structure of genes on the basis of narrow model systems ignore important aspects of variation that are found within and among natural populations.
True, J. R. & Haag, E. S. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev.3, 109–119 (2001). A thoughtful account of how major modifications of developmental processes can come about by neutral processes. ArticleCASPubMed Google Scholar
Lynch, M., O'Hely, M., Walsh, B. & Force, A. The probability of fixation of a newly arisen gene duplicate. Genetics159, 1789–1804 (2001). CASPubMedPubMed Central Google Scholar
Proulx, S. R. & Phillips, P. C. The opportunity for canalization and the evolution of genetic networks. Am. Nat.165, 147–162 (2005). References56–58formally demonstrate the difficulties of evolving genetic redundancy by natural selection. ArticlePubMed Google Scholar
Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science290, 1151–1154 (2000). ArticleCASPubMed Google Scholar
Wagner, A. The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics154, 1389–1401 (2000). CASPubMedPubMed Central Google Scholar
Wagner, A. Robustness against mutations in genetic networks of yeast. Nature Genet.24, 355–361 (2000). ArticleCASPubMed Google Scholar
Bhan, A., Galas, D. J. & Dewey, T. G. A duplication growth model of gene expression networks. Bioinformatics18, 1486–1493 (2002). ArticleCASPubMed Google Scholar
Cordero, O. X. & Hogeweg, P. Feed-forward loop circuits as a side effect of genome evolution. Mol. Biol. Evol.23, 1931–1936 (2006). ArticleCASPubMed Google Scholar
Foster, D. V., Kauffman, S. A., & Socolar, J. E. Network growth models and genetic regulatory networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73, 031912 (2006). ArticleCASPubMed Google Scholar
Ciliberti, S., Martin, O. C. & Wagner, A. Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput. Biol.3, e15 (2007). ArticlePubMedPubMed Central Google Scholar
Pagel, M., Meade, A. & Scott, D. Assembly rules for protein networks derived from phylogenetic-statistical analysis of whole genomes. BMC Evol. Biol.7, S16 (2007). ArticlePubMedPubMed Central Google Scholar
Milo, R. et al. Network motifs: simple building blocks of complex networks. Science298, 824–827 (2002). ArticleCASPubMed Google Scholar
Yeger-Lotem, E. et al. Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc. Natl Acad. Sci. USA101, 5934–5939 (2004). ArticleCASPubMedPubMed Central Google Scholar
Carroll, S. B. Evolution at two levels: on genes and form. PLoS Biol.3, e245 (2005). The author argues that most interesting aspects of evolution are associated with changes at the level of gene regulation, rather than with changes in coding DNA. ArticlePubMedPubMed Central Google Scholar
Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo–devo and the genetics of adaptation. Evolution61, 995–1016 (2007). This paper presents a counterview to reference69. ArticlePubMed Google Scholar
Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory (Harper & Row, New York, 1970). Google Scholar