Epigenetic events in mammalian germ-cell development: reprogramming and beyond (original) (raw)
Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell128, 635–638 (2007). ArticleCASPubMed Google Scholar
Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell128, 747–762 (2007). ArticleCASPubMed Google Scholar
Morgan, H. D., Santos, F., Green, K., Dean, W. & Reik, W. Epigenetic reprogramming in mammals. Hum. Mol. Genet.14, R47–R58 (2005). ArticleCASPubMed Google Scholar
Allegrucci, C., Thurston, A., Lucas, E. & Young, L. Epigenetics and the germline. Reproduction129, 137–149 (2005). ArticleCASPubMed Google Scholar
Kimmins, S. & Sassone-Corsi, P. Chromatin remodelling and epigenetic features of germ cells. Nature434, 583–589 (2005). ArticleCASPubMed Google Scholar
Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447, 425–432 (2007). ArticleCASPubMed Google Scholar
Ginsburg, M., Snow, M. H. & McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development110, 521–528 (1990). ArticleCASPubMed Google Scholar
Sato, M. et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech. Dev.113, 91–94 (2002). ArticleCASPubMed Google Scholar
Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature418, 293–300 (2002). ArticleCASPubMed Google Scholar
Lawson, K. A. & Hage, W. J. Clonal analysis of the origin of primordial germ cells in the mouse. CIBA Found. Symp.182, 68–84 (1994). CASPubMed Google Scholar
Tam, P. P. & Zhou, S. X. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev. Biol.178, 124–132 (1996). ArticleCASPubMed Google Scholar
Yoshimizu, T., Obinata, M. & Matsui M. Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. Development128, 481–490 (2001). ArticleCASPubMed Google Scholar
Ying, Y., Liu, X. M., Marble, A., Lawson, K. A. & Zhao, G. Q. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol. Endocrinol.14, 1053–1063 (2000). ArticleCASPubMed Google Scholar
Ying, Y., Qi, X. & Zhao, G. Induction of primordial germ cell from murine epiblasts by synergistic action of BMP4 and BMP8b signaling pathway. Proc. Natl Acad. Sci. USA98, 7858–7862 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature436, 207–213 (2005). This paper describes the first identification of a gene that directly regulates germ-cell specification in early mouse embryos. ArticleCASPubMed Google Scholar
Mello, C. C. et al. The PIE-1 protein and germline specification in C. elegans embryos. Nature382, 710–712 (1996). ArticleCASPubMed Google Scholar
Seydoux, G. et al. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature382, 713–716 (1996). ArticleCASPubMed Google Scholar
Seydoux, G. & Dunn, M. A. Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development124, 2191–2201 (1997). ArticleCASPubMed Google Scholar
Schaner, C. E., Deshpande, G., Schedl, P. D. & Kelly, W. G. A conserved choromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev. Cell5, 747–757 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jongens, T. A., Hay, B., Jan, L. Y. & Jan Y. N. The germ cell-less gene product: a posteriorly localized component necessary for germ cell development in Drosophila. Cell70, 569–584 (1992). ArticleCASPubMed Google Scholar
Leatherman J. L., Levin, L., Boero, J. & Jongene, T. A. Germ cell-less act to repress transcription during the establishment of the Drosophila germ cell lineage. Curr. Biol.12, 1681–1685 (2002). ArticleCASPubMed Google Scholar
Nakamura, A. et al. Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science274, 2075–2079 (1996). ArticleCASPubMed Google Scholar
Martinho, R. G., Kunwar P. S., Casanova, J. C. & Lehmann, R. A noncoding RNA is required for the repression of RNApolII-dependent transcription in primordial germ cells. Curr. Biol.14, 159–165 (2004). ArticleCASPubMed Google Scholar
Deshpande, G., Calhoun, G., Yanowitz, J. L. & Schedl, P. D. Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell99, 271–281 (1999). ArticleCASPubMed Google Scholar
Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone agrinine methylation in mouse germ cells. Nature Cell Biol.8, 623–630 (2006). ArticleCASPubMed Google Scholar
Seki, Y. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol.278, 440–58 (2006). ArticleCAS Google Scholar
Seki, Y. et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating germ cell in mice. Development134, 2627–2638 (2007). The first study to describe the genome-wide epigenetic changes in differentiating PGCs in detail. ArticleCASPubMed Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). ArticleCASPubMed Google Scholar
Spivakov, M. & Fisher, A. G. Epigenetic signatures of stem-cell identity. Nature Rev. Genet.8, 263–271 (2007). ArticleCASPubMed Google Scholar
Maatouk, D. M. et al. DNA methylation is a primary mechanisms for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development133, 3411–3418 (2006). ArticleCASPubMed Google Scholar
Hajkova, P. et al. Epigenetc reprogramming in mouse primordial germ cells. Mech. Dev.117, 15–23 (2002). ArticleCASPubMed Google Scholar
Graham, P. L. & Kimble, J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics133, 919–931 (1993). ArticleCASPubMed Google Scholar
Strahl, B. D. et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol.11, 996–1000 (2001). ArticleCASPubMed Google Scholar
Wang, H. et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science293, 853–857 (2001). ArticleCASPubMed Google Scholar
Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempest, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol.24, 9630–9645 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development129, 1807–1817 (2002). The work is a beautiful example of the use of nuclear-transfer technology to study the epigenetic profile of single PGCs. ArticleCASPubMed Google Scholar
Monk, M. & McLaren, A. X-chromosome activity in foetal germ cells of the mouse. J. Embryol. Exp. Morphol.63, 75–84 (1981). CASPubMed Google Scholar
Tam P. P., Zhou, S. X. & Tan, S. S. X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development120, 2925–2932 (1994). ArticleCASPubMed Google Scholar
de Napoles, M., Nesterova, T. & Brockdorff, N. Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells. PLoS ONE2, e860 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Sugimoto, M. & Abe, K. X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet.3, 1309–1317 (2007). ArticleCAS Google Scholar
Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis35, 88–93 (2003). ArticleCASPubMed Google Scholar
Chong, S & Whitelaw, E. Epigenetic germline inheritance. Curr. Opin. Genet. Dev.14, 692–696 (2004). ArticleCASPubMed Google Scholar
Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet.7, 395–401 (2006). ArticleCASPubMed Google Scholar
Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature Rev. Genet.8, 253–262 (2007). ArticleCASPubMed Google Scholar
Bowles, J. et al. Retinoid signaling determines germ cell fate in mice. Science312, 596–600 (2006). ArticleCASPubMed Google Scholar
Davis, T. L., Yang, G. J., McCarrey, J. R. & Bartolomei, M. S. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet.9, 2885–2894 (2000). ArticleCASPubMed Google Scholar
Ueda, T. et al. The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells.5, 649–659 (2000). ArticleCASPubMed Google Scholar
Li, J.-Y., Lees-Murdock, D. J., Xu, G.-L. & Walsh, C. P. Timing of establishment of paternal methylation imprints in the mouse. Genomics84, 952–960 (2004). ArticleCASPubMed Google Scholar
Kato, Y. et al. Role of Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet.16, 2272–2280 (2007). ArticleCASPubMed Google Scholar
Davis, T. L., Trasler, J. M., Moss, S. B., Yang, G. J. & Bartolomei, M. S. Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics58, 18–28 (1999). ArticleCASPubMed Google Scholar
Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature429, 900–903 (2004). Using a germline-specific gene-knockout strategy, the authors showed that DNMT3A, but not DNMT3B, is essential forde novoDNA methylation of the imprinted loci in both male and female germ cells. ArticleCASPubMed Google Scholar
Bourc'his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature431, 96–99 (2004). This work was the first to reveal that disruption of a regulator ofde novoDNA methylation causes reactivation of retrotransposons and male infertility. ArticleCASPubMed Google Scholar
Webster, K. et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc. Natl Acad. Sci. USA102, 4068–4073 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell119, 1001–1012 (2004). ArticleCASPubMed Google Scholar
Lucifero, D., Mann, M. R. W., Bartolomei, M. S. & Trasler, J. M. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet.13, 839–849 (2004). ArticleCASPubMed Google Scholar
Hiura, H., Obata, Y., Komiyama, J., Shirai, M. & Kono, T. Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells, 11, 353–361 (2006). ArticleCASPubMed Google Scholar
Bourc'his, D., Xu, G.-L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science294, 2536–2539 (2001). ArticleCASPubMed Google Scholar
Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development129, 1983–1993 (2002). ArticleCASPubMed Google Scholar
Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A. & Cheng, X. Structure of Dnmt3a bound Dnmt3L suggests a model for de novo DNA methylation. Nature449, 248–251 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fedoriw, A. M., Stein, P., Svoboda, P., Schultz, R. M. & Bartolomei, M. S. Transgenic RNAi reveals essential function for CTCT in H19 gene imprinting. Science303, 238–240 (2004). ArticleCASPubMed Google Scholar
Tada, T. et al. imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development127, 3101–3103 (2000). ArticleCASPubMed Google Scholar
Kaneda, M. et al. Role of de novo DNA methyltransferases in initiation of genomic imprinting and X-chromosome inactivation. Cold Spring Harbor Symp. Quant. Biol.69, 125–129 (2004). ArticleCASPubMed Google Scholar
Kono, T. et al. Birth of parthenogenetic mice that can develop to adulthood. Nature428, 860–864 (2004). The surprising outcome of this work clearly showed that genomic imprinting is the main and perhaps only barrier to parthenogenesis in mammals. ArticleCASPubMed Google Scholar
Kuwahara, M. et al. High-frequency generation of viable mice from engineered bi-maternal embryos. Nature Biotechnol.25, 1045–1050 (2007). ArticleCAS Google Scholar
Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nature Rev. Genet.8, 272–285 (2007). ArticleCASPubMed Google Scholar
Hata, K., Kusumi, M., Yokomine, T., Li, E. & Sasaki, H. Meiotic and epigenetic aberrations in _Dnmt3L_-deficient male germ cells. Mol. Reprod. Dev.73, 116–122 (2006). ArticleCASPubMed Google Scholar
Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science316, 744–747 (2007). This work provided evidence that a component of the piRNA regulatory pathway influences DNA methylation in male germ cells. ArticleCASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. Two mouse _piwi_-related genes: miwi and mili. Mech. Dev.108, 121–133 (2001). ArticleCASPubMed Google Scholar
Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature442, 203–207 (2006). ArticleCASPubMed Google Scholar
Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science313, 363–367 (2006). ArticleCASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development131, 839–849 (2004). ArticleCASPubMed Google Scholar
Klenov, M. S. et al. Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucl. Acids Res.35, 5430–5438 (2007). ArticleCASPubMedPubMed Central Google Scholar
De La Fuente, R. et al. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells. Nature Cell Biol.8, 1448–1454 (2006). ArticleCASPubMed Google Scholar
Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline:retrotransposon-derived siRNAs in oocytes and germline small RNAs in testis. Genes Dev.20, 1732–1743 (2006). ArticleCASPubMedPubMed Central Google Scholar
Payne, C. & Braun, R. E. Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev. Biol.293, 461–472 (2006). ArticleCASPubMed Google Scholar
Peters, A. H. F. M. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). This paper first reported that histone H3K9 methyltransferases have a key role in early meiotic progression. ArticleCASPubMed Google Scholar
Tachibana, M., Nozaki, M., Takeda, N. & Shinkai, Y. Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J.26, 3346–3359 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hayashi, K., Yoshida, K. & Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature438, 374–378 (2005). The authors first indicated that a histone H3K4 methyltransferase (PRDM9) controls meiotic prophase progression by transcriptional regulation. ArticleCASPubMed Google Scholar
Turner, J. M. A. Meiotic sex chromosome inactivation. Development134, 1823–1831 (2007). CASPubMed Google Scholar
Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell4, 497–508 (2003). ArticleCASPubMed Google Scholar
Turner, J. M. A. et al. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol.14, 2135–2142 (2004). This study revealed the mechanisms of histone H2AX phosphorylation that are crucial for meiotic sex-chromosome inactivation. ArticleCASPubMed Google Scholar
Khalil, A. M., Boyar, F. Z. & Driscoll, D. J. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc. Natl Acad. Sci. USA101, 16583–16587 (2004). ArticleCASPubMedPubMed Central Google Scholar
Takada, Y. et al. Mammalian Polycomb Scmh1 mediates exclusion of Polycomb complexes from the XY body in the pachytene spermatocytes. Development134, 579–590 (2007). ArticleCASPubMed Google Scholar
Huynh, K. D. & Lee, J. T. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature426, 857–862 (2003). ArticleCASPubMed Google Scholar
Namekawa, S. H. et al. Postmeiotic sex chromatin in the male germ line of mice. Curr. Biol.16, 660–607 (2006). ArticleCASPubMed Google Scholar
Turner, J. M. A., Mahadevaiah, S. K., Ellis, P. J. I., Mitchell, M. J. & Burgoyne, P. S. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev. Cell10, 521–529 (2006). ArticleCASPubMed Google Scholar
Okamoto, I. et al. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature438, 369–373 (2005). ArticleCASPubMed Google Scholar
Kim, J.-M., Liu, H., Tazaki, M., Nagata, M. & Aoki, F. Changes in histone acetylation during mouse oocytes meiosis. J. Cell Biol.162, 37–46 (2003). ArticleCASPubMedPubMed Central Google Scholar
Akiyama, T., Nagata, M & Aoki, F. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice. Proc. Natl Acad. Sci. USA103, 7339–7344 (2006). This paper reported the importance of histone deacetylation for proper segregation of chromosomes during oocyte meiosis, which has implications for aneuploidy in pregnancies in older women. ArticleCASPubMedPubMed Central Google Scholar
Martianov, I. et al. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc. Natl Acad. Sci. USA102, 2808–2813 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rousseaux, S. et al. Establishment of male-specific epigenetic information. Gene345, 139–153 (2005). ArticleCASPubMed Google Scholar
Okada, Y., Scott, G., Ray, M. K., Mishina, Y. & Zhang, Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature450, 119–123 (2007). This paper first reported that a histone demethylase is involved in activation of a set of haploid-specific genes and is essential for packaging of sperm chromatin. ArticleCASPubMed Google Scholar
Wykes, S. M. & Krawetz, S. A. The structural organization of sperm chromatin. J. Biol. Chem.278, 29471–29477 (2003). ArticleCASPubMed Google Scholar
Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B. & Trasler, J. M. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev. Biol.307, 368–379 (2007). ArticleCASPubMed Google Scholar
Ariel, M., Cedar, H. & McCarrey, J. Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nature Genet.7, 59–63 (1994). ArticleCASPubMed Google Scholar
Marques, C. J., Carvalho, F., Sousa, M. & Barros, A. Genomic imprinting in disruptive spermatogenesis. Lancet363, 1700–1702 (2004). ArticleCASPubMed Google Scholar
Kobayashi, H. et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum. Mol. Genet.16, 2542–2551 (2007). ArticleCASPubMed Google Scholar
Egli, D., Rosains, J., Birkhoff, G. & Eggan, K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature447, 679–685 (2007). ArticleCASPubMed Google Scholar
Kanatsu-Shinohara, M. et al. Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc. Natl Acad. Sci. USA103, 8018–8023 (2006). ArticleCASPubMedPubMed Central Google Scholar
O'Neill, L. P., VerMilyea, M. D. & Turner, B. M. Epigenetic characterization of the early embryos with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genet.38, 835–841 (2006). ArticleCASPubMed Google Scholar
Barker, D. L. et al. Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res.14, 901–907 (2004). ArticleCASPubMedPubMed Central Google Scholar
Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature448, 313–317 (2007). ArticleCASPubMed Google Scholar
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007). ArticleCASPubMed Google Scholar
Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science300, 1251–1256 (2003). ArticlePubMedCAS Google Scholar
Toyooka, Y., Tsunekawa, N., Akutsu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA.100, 11457–11462 (2003). ArticleCASPubMedPubMed Central Google Scholar
Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature427, 148–154 (2004). ArticleCASPubMed Google Scholar
Nayernia, K. et al. _In vitro_-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell11, 125–132 (2006). ArticleCASPubMed Google Scholar
Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science308, 1466–1469 (2005). ArticleCASPubMed Google Scholar
Cropley, J. E., Suter, C. M., Beckman, K. B. & Martin D. I. K. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc. Natl Acad. Sci. USA.103, 17308–17312 (2006). ArticleCASPubMedPubMed Central Google Scholar
Limey, L. H. Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatric Perinatal Epidemiol.6, 240–253 (1992). Article Google Scholar
Kaati, G., Bygren, L. O. & Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet.10, 682–688 (2002). ArticleCASPubMed Google Scholar
Kono, T., Obata, Y., Yoshimzu, T., Nakahara, T. & Carroll, J. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nature Genet.13, 91–94 (1996). ArticleCASPubMed Google Scholar