Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992). ArticleCASPubMed Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999). ArticleCASPubMed Google Scholar
Chen, T. & Li, E. Structure and function of eukaryotic DNA methyltransferases. Curr. Top. Dev. Biol.60, 55–89 (2004). ArticleCASPubMed Google Scholar
Karpf, A. R. & Matsui, S. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res.65, 8635–8639 (2005). ArticleCASPubMed Google Scholar
Dodge, J. E. et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J. Biol. Chem.280, 17986–17991 (2005). ArticleCASPubMed Google Scholar
Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet.20, 116–117 (1998). ArticleCASPubMed Google Scholar
Bird, A. P. & Wolffe, A. P. Methylation-induced repression — belts, braces, and chromatin. Cell99, 451–454 (1999). ArticleCASPubMed Google Scholar
Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature321, 209–213 (1986). ArticleCASPubMed Google Scholar
Selker, E. U. et al. The methylated component of the Neurospora crassa genome. Nature422, 893–897 (2003). ArticleCASPubMed Google Scholar
Bird, A. P., Taggart, M. H. & Smith, B. A. Methylated and unmethylated DNA compartments in the sea urchin genome. Cell17, 889–901 (1979). ArticleCASPubMed Google Scholar
Tweedie, S., Charlton, J., Clark, V. & Bird, A. Methylation of genomes and genes at the invertebrate–vertebrate boundary. Mol. Cell Biol.17, 1469–1475 (1997). ArticleCASPubMedPubMed Central Google Scholar
Palmer, L. E. et al. Maize genome sequencing by methylation filtration. Science302, 2115–2117 (2003). ArticlePubMed Google Scholar
SanMiguel, P. et al. Nested retrotransposons in the intergenic regions of the maize genome. Science274, 765–768 (1996). ArticleCASPubMed Google Scholar
Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Rev. Genet.6, 351–360 (2005). ArticleCASPubMed Google Scholar
Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science303, 1336 (2004). ArticleCASPubMed Google Scholar
Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J.19, 5194–5201 (2000). ArticleCASPubMedPubMed Central Google Scholar
Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA89, 1827–1831 (1992). ArticleCASPubMedPubMed Central Google Scholar
Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet.38, 1378–1385 (2006). In this paper, large-scale bisulphite sequence analysis of human chromosomal regions reveals greater variation in methylation patterns between tissues in a given individual than between individuals. Methylated regions were highly conserved, raising the possibility that they correspond to regulatory sequences. ArticleCASPubMed Google Scholar
Bird, A. P. Use of restriction enzymes to study eukaryotic DNA methylation. II: the symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol.118, 48–60 (1978). Article Google Scholar
Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet.37, 853–862 (2005). ArticleCASPubMed Google Scholar
Cross, S. H., Charlton, J. A., Nan, X. & Bird, A. P. Purification of CpG islands using a methylated DNA binding column. Nature Genet.6, 236–244 (1994). ArticleCASPubMed Google Scholar
Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell126, 1189–1201 (2006). This reference and reference 35 are two of the first genome-wide analyses of DNA methylation, in which gene body-specific methylation is described. ArticleCASPubMed Google Scholar
Illingworth, R. et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol.6, e22 (2008). This paper presents a large-scale analysis of human CpG islands that are purified using an unmethylated CpG-affinity column. Half of all CGIs are not coincident with annotated promoters and a significant fraction becomes methylated in normal somatic tissues, particularly at genes involved in development. ArticleCASPubMedPubMed Central Google Scholar
Korshunova, Y. et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res.18, 19–29 (2008). ArticleCASPubMedPubMed Central Google Scholar
Taylor, K. H. et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res.67, 8511–8518 (2007). ArticleCASPubMed Google Scholar
Zilberman, D. & Henikoff, S. Genome-wide analysis of DNA methylation patterns. Development134, 3959–3965 (2007). ArticleCASPubMed Google Scholar
Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature452, 215–219 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet.39, 61–69 (2007). ArticleCASPubMed Google Scholar
Henderson, I. R. & Jacobsen, S. E. Epigenetic inheritance in plants. Nature447, 418–424 (2007). ArticleCASPubMed Google Scholar
Simmen, M. W. et al. Non-methylated transposable elements and methylated genes in a chordate genome. Science283, 1164–1167 (1999). ArticleCASPubMed Google Scholar
Suzuki, M. M., Kerr, A. R., De Sousa, D. & Bird, A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res.17, 625–631 (2007). In this paper, analysis of DNA methylation in the invertebrate chordateC. intestinalisestablishes that about half of all genes are methylated and show gene-body methylation. ArticleCASPubMedPubMed Central Google Scholar
Field, L. M., Devonshire, A. L., Ffrench-Constant, R. H. & Forde, B. G. Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett.243, 323–327 (1989). ArticleCAS Google Scholar
Field, L. M. Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochem. J.349, 863–868 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. Functional CpG methylation system in a social insect. Science314, 645–647 (2006). ArticleCASPubMed Google Scholar
Rabinowicz, P. D. et al. Genes and transposons are differentially methylated in plants, but not in mammals. Genome Res.13, 2658–2664 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rakyan, V. K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol.2, e405 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bird, A., Taggart, M., Frommer, M., Miller, O. J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell40, 91–99 (1985). ArticleCASPubMed Google Scholar
Mohandas, T., Sparkes, R. S. & Shapiro, L. J. Reactivation of an inactive human X-chromosome: evidence for X-inactivation by DNA methylation. Science211, 393–396 (1981). ArticleCASPubMed Google Scholar
Venolia, L. et al. Transformation with DNA from 5-azacytidine-reactivated X chromosomes. Proc. Natl. Acad. Sci. USA79, 2352–2354 (1982). ArticleCASPubMedPubMed Central Google Scholar
Hellman, A. & Chess, A. Gene body-specific methylation on the active X chromosome. Science315, 1141–1143 (2007). This study shows that genes on the active X chromosome are in fact more methylated than those on the inactive X chromosome, and that methylation is high within gene bodies. ArticleCASPubMed Google Scholar
Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell123, 581–592 (2005). ArticleCASPubMed Google Scholar
Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol. Cell19, 381–391 (2005). ArticleCASPubMed Google Scholar
Schaefer, C. B., Ooi, S. K., Bestor, T. H. & Bourc'his, D. Epigenetic decisions in mammalian germ cells. Science316, 398–399 (2007). ArticleCASPubMed Google Scholar
Gehring, M. & Henikoff, S. DNA methylation dynamics in plant genomes. Biochim. Biophys. Acta1769, 276–286 (2007). ArticleCASPubMed Google Scholar
Ma, Y. et al. DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. J. Cell Sci.118, 1607–1616 (2005). ArticleCASPubMed Google Scholar
Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nature Rev. Genet.8, 272–285 (2007). ArticleCASPubMed Google Scholar
Wilson, A. S., Power, B. E. & Molloy, P. L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta1775, 138–162 (2007). CASPubMed Google Scholar
Bird, A. P. Gene number, noise reduction and biological complexity. Trends Genet.11, 94–100 (1995). ArticleCASPubMed Google Scholar
Cross, S., Kovarik, P., Schmidtke, J. & Bird, A. P. Non-methylated islands in fish genomes are GC-poor. Nucleic Acids Res.19, 1469–1474 (1991). ArticleCASPubMedPubMed Central Google Scholar
Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99, 3740–3745 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gardiner-Gardner, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol.196, 261–282 (1987). Article Google Scholar
Panning, B. & Jaenisch, R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev.10, 1991–2002 (1996). ArticleCASPubMed Google Scholar
Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813 (2002). ArticleCASPubMed Google Scholar
Antequera, A. & Bird, A. in DNA Methylation: Molecular Biology and Biological Significance (eds J. P. Jost & H. P. Saluz) 169–185 (Birkhäuser, Basel, 1993). Book Google Scholar
Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell73, 61–71 (1993). ArticleCASPubMed Google Scholar
Sutcliffe, J. S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet.8, 52–58 (1994). ArticleCASPubMed Google Scholar
Maatouk, D. M. et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development133, 3411–3418 (2006). ArticleCASPubMed Google Scholar
Song, F. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl Acad. Sci. USA102, 3336–3341 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yamada, Y. et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res.14, 247–266 (2004). ArticleCASPubMedPubMed Central Google Scholar
Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet.39, 457–466 (2007). This paper presents a large-scale analysis of DNA methylation at human promoters using microarrays. Variable methylation was particularly apparent at moderately CpG-rich promoters, suggesting a role in regulation of gene expression. ArticleCASPubMed Google Scholar
Petronis, A. Human morbid genetics revisited: relevance of epigenetics. Trends Genet.17, 142–146 (2001). ArticleCASPubMed Google Scholar
Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA102, 10604–10609 (2005). ArticleCASPubMedPubMed Central Google Scholar
Siegmund, K. D. et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS ONE2, e895 (2007). ArticleCASPubMedPubMed Central Google Scholar
Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nature Rev. Drug Discov.5, 471–484 (2006). ArticleCAS Google Scholar
Hibino, T. et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol.300, 349–365 (2006). ArticleCASPubMed Google Scholar
Rountree, M. R. & Selker, E. U. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev.11, 2383–2395 (1997). ArticleCASPubMedPubMed Central Google Scholar
Takata, M. et al. Rice transposable elements are characterized by various methylation environments in the genome. BMC Genomics8, 469 (2007). ArticlePubMedPubMed Central Google Scholar
Bennetzen, J. L., Schrick, K., Springer, P. S., Brown, W. E. & SanMiguel, P. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome37, 565–576 (1994). ArticleCASPubMed Google Scholar
Rabinowicz, P. D. et al. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genet.23, 305–308 (1999). ArticleCASPubMed Google Scholar
Ashikawa, I. Gene-associated CpG islands in plants as revealed by analyses of genomic sequences. Plant J.26, 617–625 (2001). ArticleCASPubMed Google Scholar
Galagan, J. E. & Selker, E. U. RIP: the evolutionary cost of genome defense. Trends Genet.20, 417–423 (2004). ArticleCASPubMed Google Scholar
Selker, E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet.24, 579–613 (1990). ArticleCASPubMed Google Scholar
Faugeron, G. Diversity of homology-dependent gene silencing strategies in fungi. Curr. Opin. Microbiol.3, 144–148 (2000). ArticleCASPubMed Google Scholar
Salzberg, A., Fisher, O., Siman-Tov, R. & Ankri, S. Identification of methylated sequences in genomic DNA of adult Drosophila melanogaster. Biochem. Biophys. Res. Commun.322, 465–469 (2004). ArticleCASPubMed Google Scholar
Macleod, D., Clark, V. H. & Bird, A. Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nature Genet.23, 139–140 (1999). ArticleCASPubMed Google Scholar
Stancheva, I., El-Maarri, O., Walter, J., Niveleau, A. & Meehan, R. R. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev. Biol.243, 155–165 (2002). ArticleCASPubMed Google Scholar
Estecio, M. R. et al. LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS ONE2, e399 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet.13, 335–340 (1997). ArticleCASPubMed Google Scholar
Hatada, I., Hayashizaki, Y., Hirotsune, S., Komatsubara, H. & Mukai, T. A genomic scanning method for higher organisms using restriction sites as landmarks. Proc. Natl Acad. Sci. USA88, 9523–9527 (1991). ArticleCASPubMedPubMed Central Google Scholar
Irizarry, R. A. et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res. (2008).
Lippman, Z., Gendrel, A. V., Colot, V. & Martienssen, R. Profiling DNA methylation patterns using genomic tiling microarrays. Nature Methods2, 219–224 (2005). ArticleCASPubMed Google Scholar
Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genet.38, 149–153 (2006). ArticleCASPubMed Google Scholar
Jorgensen, H. F., Adie, K., Chaubert, P. & Bird, A. P. Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res.34, e96 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dalma-Weiszhausz, D. D., Warrington, J., Tanimoto, E. Y. & Miyada, C. G. The affymetrix GeneChip platform: an overview. Methods Enzymol.410, 3–28 (2006). ArticleCASPubMed Google Scholar
Nuwaysir, E. F. et al. Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res.12, 1749–1755 (2002). ArticleCASPubMedPubMed Central Google Scholar
Reinders, J. et al. Genome-wide, high-resolution DNA methylation profiling using bisulfite-mediated cytosine conversion. Genome Res.18, 469–476 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yuan, E. et al. A single nucleotide polymorphism chip-based method for combined genetic and epigenetic profiling: validation in decitabine therapy and tumor/normal comparisons. Cancer Res.66, 3443–3451 (2006). ArticleCASPubMed Google Scholar
Rauch, T. A. et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc. Natl Acad. Sci. USA105, 252–257 (2008). ArticleCASPubMed Google Scholar