Dooner, H. K. & Weil, C. F. Give-and-take: interactions between DNA transposons and their host plant genomes. Curr. Opin. Genet. Dev.17, 486–492 (2007). ArticleCASPubMed Google Scholar
Feschotte, C. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet.9, 397–405 (2008). ArticleCASPubMed Google Scholar
Tollis, M. & Boissinot, S. The evolutionary dynamics of transposable elements in eukaryote genomes. Genome Dyn.7, 68–91 (2012). ArticleCASPubMed Google Scholar
Candela, H. & Hake, S. The art and design of genetic screens: maize. Nature Rev. Genet.9, 192–203 (2008). ArticleCASPubMed Google Scholar
Hsing, Y. et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol. Biol.63, 351–364 (2007). ArticleCASPubMed Google Scholar
Settles, A. M. et al. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics8, 116 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Singer, T., Yordan, C. & Martienssen, R. A. Robertson's mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1). Genes Dev.15, 591–602 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tsukahara, S. et al. Bursts of retrotransposition reproduced in Arabidopsis. Nature461, 423–426 (2009). ArticleCASPubMed Google Scholar
Wang, H. Y. et al. Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs). Hereditas147, 264–277 (2010). ArticlePubMed Google Scholar
McClintock, B. The significance of responses of the genome to challenge. Science226, 792–801 (1984). ArticleCASPubMed Google Scholar
Lin, C. et al. Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice. Plant Cell Rep.31, 2057–2063 (2012). ArticleCASPubMed Google Scholar
Naito, K. et al. Dramatic amplification of a rice transposable element during recent domestication. Proc. Natl Acad. Sci. USA103, 17620–17625 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ungerer, M. C., Strakosh, S. C. & Zhen, Y. Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr. Biol.16, R872–873 (2006). ArticleCASPubMed Google Scholar
Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. & Schulman, A. H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl Acad. Sci. USA97, 6603–6607 (2000). ArticleCASPubMedPubMed Central Google Scholar
Maumus, F. et al. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics10, 624 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Kawase, M., Fukunaga, K. & Kato, K. Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Mol. Genet. Genom.274, 131–140 (2005). This comprehensive analysis of hundreds of accessions of foxtail millet demonstrates that all known 'sticky' accessions in this species are the result of TE-induced mutations of thewaxylocus. ArticleCAS Google Scholar
Bhattacharyya, M. K., Smith, A. M., Ellis, T. H., Hedley, C. & Martin, C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell60, 115–122 (1990). ArticleCASPubMed Google Scholar
Kobayashi, S., Goto-Yamamoto, N. & Hirochika, H. Retrotransposon-induced mutations in grape skin color. Science304, 982 (2004). ArticlePubMed Google Scholar
Cadle-Davidson, M. M. & Owens, C. L. Genomic amplification of the Gret1 retroelement in white-fruited accessions of wild vitis and interspecific hybrids. Theor. Appl. Genet.116, 1079–1094 (2008). ArticleCASPubMed Google Scholar
Shimazaki, M., Fujita, K., Kobayashi, H. & Suzuki, S. Pink-colored grape berry is the result of short insertion in intron of color regulatory gene. PLoS ONE6, e21308 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yao, J., Dong, Y. & Morris, B. A. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc. Natl Acad. Sci. USA98, 1306–1311 (2001). ArticleCASPubMedPubMed Central Google Scholar
Clegg, M. T. & Durbin, M. L. Tracing floral adaptations from ecology to molecules. Nature Rev. Genet.4, 206–215 (2003). ArticleCASPubMed Google Scholar
Clegg, M. T. & Durbin, M. L. Flower color variation: a model for the experimental study of evolution. Proc. Natl Acad. Sci. USA97, 7016–7023 (2000). ArticleCASPubMedPubMed Central Google Scholar
Park, K. I. et al. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J.49, 641–654 (2007). ArticleCASPubMed Google Scholar
Glover, D., Durbin, M., Huttley, G. & Clegg, M. T. Genetic diversity in the common morning glory. Plant Species Biol.11, 41–50 (1996). Article Google Scholar
Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell127, 1309–1321 (2006). ArticleCASPubMed Google Scholar
Pelsy, F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity104, 331–340 (2010). ArticleCASPubMed Google Scholar
Izawa, T., Konishi, S., Shomura, A. & Yano, M. DNA changes tell us about rice domestication. Curr. Opin. Plant Biol.12, 185–192 (2009). ArticleCASPubMed Google Scholar
Freeling, M. et al. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr. Opin. Plant Biol.15, 131–139 (2012). ArticleCASPubMed Google Scholar
Weigel, D. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol.158, 2–22 (2012). ArticleCASPubMed Google Scholar
Hamilton, J. P. & Buell, C. R. Advances in plant genome sequencing. Plant J.70, 177–190 (2012). ArticleCASPubMed Google Scholar
Doi, K., Yasui, H. & Yoshimura, A. Genetic variation in rice. Curr. Opin. Plant Biol.11, 144–148 (2008). ArticleCASPubMed Google Scholar
Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature490, 497–501 (2012). This is an example of the scale of analysis that is now possible using modern sequencing technology. Sequencing data from hundreds of accessions of wild and domesticated rice has made high-resolution genome-wide association studies (GWASs) for many agronomic traits in cultivated and wild rice possible. ArticleCASPubMedPubMed Central Google Scholar
Xu, X. et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotech.30, 105–111 (2012). ArticleCAS Google Scholar
Kloeckener-Gruissem, B. & Freeling, M. Transposon-induced promoter scrambling: a mechanism for the evolution of new alleles. Proc. Natl Acad. Sci. USA92, 1836–1840 (1995). ArticleCASPubMedPubMed Central Google Scholar
Greene, B., Walko, R. & Hake, S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics138, 1275–1285 (1994). CASPubMedPubMed Central Google Scholar
Bharathan, G. et al. Homologies in leaf form inferred from KNOXI gene expression during development. Science296, 1858–1860 (2002). ArticleCASPubMed Google Scholar
Salvi, S. et al. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol. Biol.48, 601–613 (2002). ArticleCASPubMed Google Scholar
Salvi, S. et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl Acad. Sci. USA104, 11376–11381 (2007). This is the first demonstration that insertion of a TE into a conserved non-coding sequence can affect an agronomically important trait. This analysis also demonstrates that even TE insertions that are distant from plant genes can have important effects on gene expression. ArticleCASPubMedPubMed Central Google Scholar
Chia, J. M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genet.44, 803–807 (2012). This paper provides a comprehensive view of extant genetic variation in maize and relates it to variation in agronomically important traits in a species that has an order of magnitude more genetic diversity than humans. Because of the density of the data now available, this analysis makes it possible for high-resolution GWASs to be carried out in maize for the first time. ArticleCASPubMed Google Scholar
Freeling, M. & Subramaniam, S. Conserved noncoding sequences (CNSs) in higher plants. Curr. Opin. Plant Biol.12, 126–132 (2009). ArticleCASPubMed Google Scholar
Liu, S. et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet.5, e1000733 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Naito, K. et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature461, 1130–1134 (2009). This study demonstrates that rapid and recent amplification of a family of TEs can have substantial effects on expression of nearby genes by introducing stress-responsiveness. It also provides evidence that MITEs may have adapted to minimize the negative effects of transposition by avoiding insertion into exons. ArticleCASPubMed Google Scholar
Dooner, H. K., Robbins, T. P. & Jorgensen, R. A. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet.25, 173–199 (1991). ArticleCASPubMed Google Scholar
Selinger, D. A. & Chandler, V. L. Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proc. Natl Acad. Sci. USA96, 15007–15012 (1999). ArticleCASPubMedPubMed Central Google Scholar
Selinger, D. A. & Chandler, V. L. B-Bolivia, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream. Plant Physiol.125, 1363–1379 (2001). ArticleCASPubMedPubMed Central Google Scholar
Walker, E. L., Robbins, T. P., Bureau, T. E., Kermicle, J. & Dellaporta, S. L. Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex. EMBO J.14, 2350–2363 (1995). ArticleCASPubMedPubMed Central Google Scholar
Butelli, E. et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell24, 1242–1255 (2012). This paper provides an example of the programmatic changes that can be introduced by TE insertion. In this case, insertion of a retroelement provided both cold inducibility and tissue specificity. ArticleCASPubMedPubMed Central Google Scholar
Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genet.43, 1160–1163 (2011). This paper demonstrates that a key mutation permitting domestication of maize involved a retroelement insertion many kilobases upstream of a gene that enhanced that gene's expression. ArticleCASPubMed Google Scholar
Mhiri, C. et al. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol.33, 257–266 (1997). ArticleCASPubMed Google Scholar
Ivashuta, S. et al. Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J.31, 615–627 (2002). ArticleCASPubMed Google Scholar
Ito, H. et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature472, 115–119 (2011). ArticleCASPubMed Google Scholar
Grandbastien, M. et al. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet. Genome Res.110, 229–241 (2005). ArticleCASPubMed Google Scholar
Buchmann, R. C., Asad, S., Wolf, J. N., Mohannath, G. & Bisaro, D. M. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J. Virol.83, 5005–5013 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, Q. & Dooner, H. K. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses. Plant J.72, 212–221 (2012). ArticleCASPubMed Google Scholar
Yu, C., Zhang, J. & Peterson, T. Genome rearrangements in maize induced by alternative transposition of reversed ac/ds termini. Genetics188, 59–67 (2011). ArticleCASPubMedPubMed Central Google Scholar
Navarro, A. & Barton, N. H. Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science300, 321–324 (2003). ArticleCASPubMed Google Scholar
Guillen, Y. & Ruiz, A. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics13, 53 (2012). ArticlePubMedPubMed Central Google Scholar
Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature477, 203–206 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lowry, D. B. & Willis, J. H. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol.8, e1000500 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Ammiraju, J. S. et al. Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell20, 3191–3209 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hurwitz, B. L. et al. Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza. Plant J.63, 990–1003 (2010). ArticleCASPubMed Google Scholar
Piegu, B. et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res.16, 1262–1269 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vielle-Calzada, J. P. et al. The Palomero genome suggests metal effects on domestication. Science326, 1078 (2009). ArticleCASPubMed Google Scholar
Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genet.43, 476–481 (2011). ArticlePubMedCAS Google Scholar
Woodhouse, M. R., Pedersen, B. & Freeling, M. Transposed genes in Arabidopsis are often associated with flanking repeats. PLoS Genet.6, e1000949 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Yang, S. et al. Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet.4, e3 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Bhutkar, A., Russo, S. M., Smith, T. F. & Gelbart, W. M. Genome-scale analysis of positionally relocated genes. Genome Res.17, 1880–1887 (2007). ArticleCASPubMedPubMed Central Google Scholar
Abrouk, M. et al. Grass microRNA gene paleohistory unveils new insights into gene dosage balance in subgenome partitioning after whole-genome duplication. Plant Cell24, 1776–1792 (2012). ArticleCASPubMedPubMed Central Google Scholar
van der Knaap, E., Sanyal, A., Jackson, S. A. & Tanksley, S. D. High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics168, 2127–2140 (2004). ArticleCASPubMedPubMed Central Google Scholar
Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J. & van der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science319, 1527–1530 (2008). This study provides the first evidence in plants that retrotransposon-mediated retrotransposition can result in functional reprogramming patterns of gene expression. ArticleCASPubMed Google Scholar
Freeling, M. et al. Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res.18, 1924–1937 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. H. & Warren, J. T. Jr. Mutations in retrotransposon AtCOPIA4 compromises resistance to Hyaloperonospora parasitica in Arabidopsis thaliana. Genet. Mol. Biol.33, 135–140 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yi, H. & Richards, E. J. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation & RNA silencing. Plant Cell19, 2929–2939 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jiang, N., Bao, Z., Zhang, X., Eddy, S. R. & essler, S. R. Pack-MULE transposable elements mediate gene evolution in plants. Nature431, 569–573 (2004). In this paper, it is shown that TEs can capture, duplicate and combine thousands of gene fragments in rice, raising the possibility that TEs may be an important source of new genes in plants. ArticleCASPubMed Google Scholar
Juretic, N., Hoen, D. R., Huynh, M. L., Harrison, P. M. & Bureau, T. E. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res.15, 1292–1297 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hanada, K. et al. The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell21, 25–38 (2009). ArticleCASPubMedPubMed Central Google Scholar
Du, C., Fefelova, N., Caronna, J., He, L. & Dooner, H. K. The polychromatic Helitron landscape of the maize genome. Proc. Natl Acad. Sci. USA106, 19916–19921 (2009). ArticleCASPubMedPubMed Central Google Scholar
Muehlbauer, G. J. et al. A hAT superfamily transposase recruited by the cereal grass genome. Mol. Genet. Genom.275, 553–563 (2006). ArticleCAS Google Scholar
Hudson, M. E., Lisch, D. R. & Quail, P. H. The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J.34, 453–471 (2003). ArticleCASPubMed Google Scholar
Li, G. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell Biol.13, 616–622 (2011). ArticleCASPubMed Google Scholar
Lin, R. et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science318, 1302–1305 (2007). This is the first demonstration that a plant transposase can take on a new functional role as a transcription factor. This study also showed that a family of exapted transposases has a key role in light signalling in plants. ArticleCASPubMedPubMed Central Google Scholar
Ouyang, X. et al. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell23, 2514–2535 (2011). ArticleCASPubMedPubMed Central Google Scholar
Joly-Lopez, Z., Forczek, E., Hoen, D. R., Juretic, N. & Bureau, T. E. A. Gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana. PLoS Genet.8, e1002931 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cowan, R. K., Hoen, D. R., Schoen, D. J. & Bureau, T. E. MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol. Biol. Evol.22, 2084–2089 (2005). ArticleCASPubMed Google Scholar
Bundock, P. & Hooykaas, P. An Arabidopsis hAT-like transposase is essential for plant development. Nature436, 282–284 (2005). ArticleCASPubMed Google Scholar
Donoghue, M. T., Keshavaiah, C., Swamidatta, S. H. & Spillane, C. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol. Biol.11, 47 (2011). ArticleCASPubMedPubMed Central Google Scholar
Charlesworth, B., Borthwick, H., Bartolome, C. & Pignatelli, P. Estimates of the genomic mutation rate for detrimental alleles in Drosophila melanogaster. Genetics167, 815–826 (2004). ArticleCASPubMedPubMed Central Google Scholar
Brookfield, J. F. The ecology of the genome — mobile DNA elements and their hosts. Nature Rev. Genet.6, 128–136 (2005). ArticleCASPubMed Google Scholar
Lisch, D. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant Biol.60, 43–66 (2009). ArticleCASPubMed Google Scholar
Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nature Rev. Genet.8, 272–285 (2007). ArticleCASPubMed Google Scholar
Kinoshita, Y. et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J.49, 38–45 (2007). ArticleCASPubMed Google Scholar
Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet.22, 94–97 (1999). ArticleCASPubMed Google Scholar
Saze, H. & Kakutani, T. Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J.26, 3641–3652 (2007). ArticleCASPubMedPubMed Central Google Scholar
Liu, J. He, Y., Amasino, R. & Chen, X. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev.18, 2873–2878 (2004). ArticleCASPubMedPubMed Central Google Scholar
Strange, A. et al. Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS ONE6, e19949 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gehring, M., Bubb, K. L. & Henikoff, S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science324, 1447–1451 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kashkush, K., Feldman, M. & Levy, A. A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genet.33, 102–106 (2003). This paper shows that read-out transcription from retroelements in plants can have substantial effects on gene expression. It also demonstrates that naturally occurring variation in methylation of retroelements can result in differences in expression and tissue specificity of genes. ArticleCASPubMed Google Scholar
Jiang, N., Jordan, I. K. & Wessler, S. R. Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol.130, 1697–1705 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ammiraju, J. S. et al. Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J.52, 342–351 (2007). ArticleCASPubMed Google Scholar
Kashkush, K. & Khasdan, V. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics177, 1975–1985 (2007). ArticleCASPubMedPubMed Central Google Scholar
He, G. et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell22, 17–33 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res.19, 1419–1428 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hollister, J. D. et al. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl Acad. Sci. USA108, 2322–2327 (2011). Evidence is provided in this paper that silencing of TEs near genes can result in an overall reduction in gene expression. This suggests that although there is a benefit to silencing TEs, there is also a substantial potential cost, and it raises the possibility that TEs can have global effects on host gene function. ArticleCASPubMedPubMed Central Google Scholar
Lu, C. et al. Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol. Biol. Evol.29, 1005–1017 (2012). ArticleCASPubMed Google Scholar
Furbank, R. T. & Tester, M. Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci.16, 635–644 (2011). ArticleCASPubMed Google Scholar
Brachi, B., Morris, G. P. & Borevitz, J. O. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol.12, 232 (2011). ArticlePubMedPubMed Central Google Scholar
Van de Peer, Y., Fawcett, J. A., Proost, S., Sterck, L. & Vandepoele, K. The flowering world: a tale of duplications. Trends Plant Sci.14, 680–688 (2009). ArticleCASPubMed Google Scholar
Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Rev. Genet.13, 36–46 (2012). ArticleCAS Google Scholar
Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics25, 4.10.1–4.10.14 (2009). Google Scholar