Chromatin modification and epigenetic reprogramming in mammalian development (original) (raw)
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev.16, 6–21 (2002). CASPubMed Google Scholar
Jenuwein, T. & Allis, C. D. Translating the histone code. Science293, 1074–1080 (2001). CASPubMed Google Scholar
Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev.15, 2343–2360 (2001). CASPubMed Google Scholar
Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell108, 475–487 (2002). CASPubMed Google Scholar
Bestor, T. H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J.11, 2611–2617 (1992). CASPubMedPubMed Central Google Scholar
Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992). CASPubMed Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999).This paper provided the first genetic evidence that the Dnmt3 family of methyltransferases is responsible forde novomethylation in mouse ES cells and during development. CASPubMed Google Scholar
Lyko, F. et al. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nature Genet.23, 363–366 (1999). CASPubMed Google Scholar
Hsieh, C. L. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol. Cell. Biol.19, 8211–8218 (1999). CASPubMedPubMed Central Google Scholar
Burgers, W. A., Fuks, F. & Kouzarides, T. DNA methyltransferases get connected to chromatin. Trends Genet.18, 275–277 (2002). CASPubMed Google Scholar
Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell1, 749–758 (2001).This paper shows that the demethylation of a promoter element induces tissue-specific gene expression during cellular differentiation. CASPubMed Google Scholar
Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). CASPubMed Google Scholar
Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet.19, 187–191 (1998).References12and13provided the first molecular evidence linking DNA methylation to histone deacetylation in transcription repression. CASPubMed Google Scholar
Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.13, 1924–1935 (1999). CASPubMedPubMed Central Google Scholar
Wade, P. A. et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet.23, 62–66 (1999). CASPubMed Google Scholar
Ng, H. H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet.23, 58–61 (1999). CASPubMed Google Scholar
Feng, Q. & Zhang, Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev.15, 827–832 (2001).This study shows how MBD2 might recruit the NuRD remodelling complex to methylated chromatin to remodel the chromatin and to silence transcription. CASPubMedPubMed Central Google Scholar
Murrell, A. et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep.2, 1101–1106 (2001). CASPubMedPubMed Central Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). CASPubMed Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002).References21and22provide molecular and genetic evidence that histone H3-K9 methylation is required for DNA methylation. CASPubMed Google Scholar
Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet.22, 94–97 (1999). CASPubMed Google Scholar
Gendrel, A. V., Lippman, Z., Yordan, C., Colot, V. & Martienssen, R. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science20 (in the press).
Gibbons, R. J. et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nature Genet.24, 368–371 (2000). CASPubMed Google Scholar
Dennis, K., Fan, T., Geiman, T., Yan, Q. & Muegge, K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev.15, 2940–2944 (2001).References23–26show that SWI/SNF-like chromatin-remodelling proteins are intimately involved in regulating DNA methylation and histone methylation. CASPubMedPubMed Central Google Scholar
Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell6, 1287–1295 (2000). CASPubMed Google Scholar
Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev.15, 710–723 (2001). CASPubMedPubMed Central Google Scholar
O'Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol.21, 4330–4336 (2001). CASPubMedPubMed Central Google Scholar
Donohoe, M. E. et al. Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol. Cell. Biol.19, 7237–7244 (1999). CASPubMedPubMed Central Google Scholar
Faust, C., Lawson, K. A., Schork, N. J., Thiel, B. & Magnuson, T. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development125, 4495–4506 (1998). CASPubMed Google Scholar
Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J.21, 2672–2681 (2002).This paper provides genetic evidence that histone deacetylation is essential for embryonic development. CASPubMedPubMed Central Google Scholar
Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse _Mecp2_-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genet.27, 322–326 (2001). CASPubMed Google Scholar
Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genet.27, 327–331 (2001). CASPubMed Google Scholar
Shahbazian, M. D. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron35, 243–254 (2002). CASPubMed Google Scholar
Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). CASPubMed Google Scholar
Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev.16, 1779–1791 (2002).References36and37show that two histone H3-K9 methyltransferases have distinct functions in mouse development. Suv39h methylates histones in heterochromatin and is dispensable for early development, whereas G9a methylates histones in euchromatin and is essential for early development. CASPubMedPubMed Central Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). CASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). CASPubMed Google Scholar
Jones, D. O., Cowell, I. G. & Singh, P. B. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays22, 124–137 (2000). CASPubMed Google Scholar
Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature308, 548–550 (1984). CASPubMed Google Scholar
McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell37, 179–183 (1984). CASPubMed Google Scholar
Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet.2, 21–32 (2001). CASPubMed Google Scholar
Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M. & Bartolomei, M. S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nature Genet.9, 407–413 (1995). CASPubMed Google Scholar
Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev.12, 3693–3702 (1998). CASPubMedPubMed Central Google Scholar
Yoon, B. J. et al. Regulation of DNA methylation of Rasgrf1. Nature Genet.30, 92–96 (2002). CASPubMed Google Scholar
Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell73, 61–71 (1993). CASPubMed Google Scholar
Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature389, 745–749 (1997). CASPubMed Google Scholar
Shemer, R., Birger, Y., Riggs, A. D. & Razin, A. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc. Natl Acad. Sci. USA94, 10267–10272 (1997). CASPubMedPubMed Central Google Scholar
Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development129, 1807–1817 (2002). CASPubMed Google Scholar
Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. (in the press).References50and51defined the embryonic stage when imprinting marks are erased in the germ cells.
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science294, 2536–2539 (2001). CASPubMed Google Scholar
Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development129, 1983–1993 (2002). CASPubMed Google Scholar
Howell, C. Y. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell104, 829–838 (2001).References52–54provide genetic evidence that Dnmt3a, Dnmt3b and Dnmt3l but not Dnmt1 are responsible for establishing the imprinting marks throughde novomethylation in oocytes. CASPubMed Google Scholar
Hazzouri, M. et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur. J. Cell Biol.79, 950–960 (2000). CASPubMed Google Scholar
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature403, 501–502 (2000). CASPubMed Google Scholar
Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol.10, 475–478 (2000). CASPubMed Google Scholar
Howlett, S. K. & Reik, W. Methylation levels of maternal and paternal genomes during preimplantation development. Development113, 119–127 (1991). CASPubMed Google Scholar
Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev.6, 705–714 (1992). CASPubMed Google Scholar
Rougier, N. et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev.12, 2108–2113 (1998). CASPubMedPubMed Central Google Scholar
Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241, 172–182 (2002). CASPubMed Google Scholar
Chapman, V., Forrester, L., Sanford, J., Hastie, N. & Rossant, J. Cell lineage-specific undermethylation of mouse repetitive DNA. Nature307, 284–286 (1984). CASPubMed Google Scholar
Rossant, J., Sanford, J. P., Chapman, V. M. & Andrews, G. K. Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev. Biol.117, 567–573 (1986). CASPubMed Google Scholar
Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development122, 3195–3205 (1996). CASPubMed Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 (1993). CASPubMed Google Scholar
Beard, C., Li, E. & Jaenisch, R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev.9, 2325–2334 (1995). CASPubMed Google Scholar
Caspary, T., Cleary, M. A., Baker, C. C., Guan, X. J. & Tilghman, S. M. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol. Cell. Biol.18, 3466–3474 (1998). CASPubMedPubMed Central Google Scholar
Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet.20, 116–117 (1998). CASPubMed Google Scholar
Liang, G. et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol.22, 480–491 (2002). CASPubMedPubMed Central Google Scholar
Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature416, 552–556 (2002). CASPubMed Google Scholar
McDowell, T. L. et al. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl Acad. Sci. USA96, 13983–13988 (1999). CASPubMedPubMed Central Google Scholar
Gregory, R. I. et al. DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2af1-rs1. Mol. Cell. Biol.21, 5426–5436 (2001). CASPubMedPubMed Central Google Scholar
Grandjean, V., O'Neill, L., Sado, T., Turner, B. & Ferguson-Smith, A. Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2-H19 domain. FEBS Lett.488, 165–169 (2001). CASPubMed Google Scholar
Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813 (2002).This study shows that a non-coding RNA is involved in regulating genomic imprinting. CASPubMed Google Scholar
Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet.2, 59–67 (2001). CASPubMed Google Scholar
Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature379, 131–137 (1996). CASPubMed Google Scholar
Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. _Xist_-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev.11, 156–166 (1997). CASPubMed Google Scholar
Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell5, 695–705 (2000). CASPubMed Google Scholar
Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genet.21, 400–404 (1999). CASPubMed Google Scholar
Luikenhuis, S., Wutz, A. & Jaenisch, R. Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol. Cell. Biol.21, 8512–8520 (2001). CASPubMedPubMed Central Google Scholar
Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development128, 1275–1286 (2001). CASPubMed Google Scholar
Stavropoulos, N., Lu, N. & Lee, J. T. A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc. Natl Acad. Sci. USA98, 10232–10237 (2001). CASPubMedPubMed Central Google Scholar
Lee, J. T. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell103, 17–27 (2000). CASPubMed Google Scholar
Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet.30, 167–174 (2002). CASPubMed Google Scholar
Beletskii, A., Hong, Y. K., Pehrson, J., Egholm, M. & Strauss, W. M. PNA interference mapping demonstrates functional domains in the noncoding RNA Xist. Proc. Natl Acad. Sci. USA98, 9215–9220 (2001). CASPubMedPubMed Central Google Scholar
Boggs, B. A. et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genet.30, 73–76 (2002). CASPubMed Google Scholar
Heard, E. et al. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell107, 727–738 (2001).References86and87show that H3-K9 methylation correlates with the inactive X, whereas H3-K4 methylation correlates with the active X. H3-K9 methylation is also an early event in the initiation of X inactivation. CASPubMed Google Scholar
Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol.225, 294–303 (2000). CASPubMed Google Scholar
Brown, C. J. & Willard, H. F. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature368, 154–156 (1994). CASPubMed Google Scholar
Csankovszki, G., Panning, B., Bates, B., Pehrson, J. R. & Jaenisch, R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nature Genet.22, 323–324 (1999). CASPubMed Google Scholar
Hansen, R. S. et al. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Hum. Mol. Genet.9, 2575–2587 (2000). CASPubMed Google Scholar
Jeppesen, P. & Turner, B. M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell74, 281–289 (1993). CASPubMed Google Scholar
Csankovszki, G., Nagy, A. & Jaenisch, R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol.153, 773–784 (2001). CASPubMedPubMed Central Google Scholar
Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genet.28, 371–375 (2001).This work shows that a Polycomb group gene is required for maintaining imprinted X inactivation. CASPubMed Google Scholar
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature385, 810–813 (1997). CASPubMed Google Scholar
Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature394, 369–374 (1998). CASPubMed Google Scholar
Tanaka, S. et al. Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol. Reprod.65, 1813–1821 (2001). CASPubMed Google Scholar
Tamashiro, K. L. et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nature Med.8, 262–267 (2002). CASPubMed Google Scholar
Ogonuki, N. et al. Early death of mice cloned from somatic cells. Nature Genet.30, 253–254 (2002). CASPubMed Google Scholar
Tian, X. C., Xu, J. & Yang, X. Normal telomere lengths found in cloned cattle. Nature Genet.26, 272–273 (2000). CASPubMed Google Scholar
Kang, Y. K. et al. Aberrant methylation of donor genome in cloned bovine embryos. Nature Genet.28, 173–177 (2001). CASPubMed Google Scholar
Dean, W. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA98, 13734–13738 (2001). CASPubMedPubMed Central Google Scholar
Bourc'his, D. et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol.11, 1542–1546 (2001). CASPubMed Google Scholar
Kang, Y. K. et al. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J.21, 1092–1100 (2002). CASPubMedPubMed Central Google Scholar
Boiani, M., Eckardt, S., Scholer, H. R. & McLaughlin, K. J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev.16, 1209–1219 (2002). CASPubMedPubMed Central Google Scholar
Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet.24, 372–376 (2000). CASPubMed Google Scholar
Inoue, K. et al. Faithful expression of imprinted genes in cloned mice. Science295, 297 (2002). CASPubMed Google Scholar
Rideout, W. M. III, Eggan, K. & Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science293, 1093–1098 (2001). CASPubMed Google Scholar
Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature415, 1035–1038 (2002). CASPubMed Google Scholar
Rideout, W. M. III, Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell109, 17–27 (2002).This work shows the feasibility of therapeutic cloning in a mouse model. CASPubMed Google Scholar
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol.11, 1553–1558 (2001). CASPubMed Google Scholar
Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature416, 545–548 (2002). CASPubMed Google Scholar
Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418, 41–49 (2002). CASPubMed Google Scholar
Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet.3, 415–428 (2002). CASPubMed Google Scholar
Okano, M., Xie, S. & Li, E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res.26, 2536–2540 (1998). CASPubMedPubMed Central Google Scholar
Hendrich, B., Hardeland, U., Ng, H. H., Jiricny, J. & Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature401, 301–304 (1999). CASPubMed Google Scholar
Riccio, A. et al. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nature Genet.23, 266–268 (1999). CASPubMed Google Scholar
Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev.15, 1613–1618 (2001). CASPubMedPubMed Central Google Scholar
Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell8, 1207–1217 (2001). CASPubMed Google Scholar
Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev.16, 479–489 (2002). CASPubMedPubMed Central Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). CASPubMed Google Scholar
Yang, L. et al. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene21, 148–152 (2002). CASPubMed Google Scholar
Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. III . SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev.16, 919–932 (2002). CASPubMedPubMed Central Google Scholar
Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science296, 1132–1136 (2002). CASPubMed Google Scholar
Peterson, C. L. Chromatin remodeling: nucleosomes bulging at the seams. Curr. Biol.12, R245–R247 (2002). CASPubMed Google Scholar
Reyes, J. C. et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J.17, 6979–6991 (1998). CASPubMedPubMed Central Google Scholar
Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D. & Orkin, S. H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA97, 13796–13800 (2000). CASPubMedPubMed Central Google Scholar
Kim, J. K. et al. Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol. Cell. Biol.21, 7787–7795 (2001). CASPubMedPubMed Central Google Scholar