The stem-cell niche theory: lessons from flies (original) (raw)
Weissman, I. L., Anderson, D. J. & Gage, F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell. Dev. Biol.17, 387–403 (2001). ArticleCASPubMed Google Scholar
Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature414, 98–104 (2001). ArticleCASPubMed Google Scholar
Brown, E. H. & King, R. C. Oogonial and spermatogonial differentiation within a mosaic gonad of Drosophila melanogaster. Growth26, 53–70 (1962). CASPubMed Google Scholar
Wieschaus, E. & Szabad, J. The development and function of the female germline in Drosophila melanogaster, a cell lineage study. Dev. Biol.68, 29–46 (1979). ArticleCASPubMed Google Scholar
Lin, H. & Spradling, A. Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev. Biol.159, 140–152 (1993). ArticleCASPubMed Google Scholar
Drummond-Barbosa, D. & Spradling, A. C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol.231, 265–278 (2001). ArticleCASPubMed Google Scholar
King, F. J. & Lin, H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development126, 1833–1844 (1999). CASPubMed Google Scholar
King, F. J., Szakmary, A., Cox, D. N. & Lin, H. Yb modulates the divisions of both germline and somatic stem cells through _piwi_- and _hh_-mediated mechanisms in the Drosophila ovary. Mol. Cell7, 497–508 (2001). References 8 and 9 report the first evidence that terminal filament and cap cells are essential for the maintenance of germline stem cells. Reference 9 is the first study to reveal how a common niche regulates the division of both germline and somatic stem cells. ArticleCASPubMed Google Scholar
Forbes, A. J., Lin, H., Ingham, P. W. & Spradling, A. C. hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development122, 1125–1135 (1996). This study indicates, for the first time, the possible existence of a signalling pathway that regulates stem cells inDrosophila. CASPubMed Google Scholar
Forbes, A. J., Spradling, A. C., Ingham, P. W. & Lin, H. The role of segment polarity genes during early oogenesis in Drosophila. Development122, 3283–3294 (1996). CASPubMed Google Scholar
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev.12, 3715–3727 (1998). The discovery of the first and only known family of genes with stem-cell function that is highly conserved during evolution in both animal and plant kingdoms. ArticleCASPubMedPubMed Central Google Scholar
Cox, D. N., Chao, A. & Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development127, 503–514 (2000). CASPubMed Google Scholar
Song, X., Zhu, C. H., Doan, C. & Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science296, 1855–1857 (2002). The first genetic study showing the requirement for adherens junctions in stem-cell maintenance. ArticleCASPubMed Google Scholar
Xie, T. & Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell94, 251–260 (1998). An elegant study showing the essential role of thedppsignalling pathway in germline stem-cell maintenance. ArticleCASPubMed Google Scholar
Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science290, 328–330 (2000). This article provides a stringent criterion for defining a stem-cell niche. ArticleCASPubMed Google Scholar
Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development124, 2463–2476 (1997). CASPubMed Google Scholar
Deng, W. & Lin, H. Spectrosomes and fusomes are essential for anchoring mitotic spindles during asymmetric germ cell divisions and for the microtubule-based RNA transport during oocyte specification in Drosophila. Dev. Biol.189, 79–94 (1997). ArticleCASPubMed Google Scholar
Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J.17, 1799–1809 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell99, 123–132 (1999). ArticleCASPubMed Google Scholar
Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci.25, 481–482 (2000). ArticleCASPubMed Google Scholar
Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell2, 819–830 (2002). ArticleCASPubMed Google Scholar
Tazuke, S. I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development129, 2529–2539 (2002). CASPubMed Google Scholar
Hardy, R. W., Tokuyasu, K. T., Lindsley, D. L. & Garavito, M. The germinal proliferation center in the testis of Drosophila melanogaster. J. Ultrastruct. Res.69, 180–190 (1979). ArticleCASPubMed Google Scholar
Gonczy, P. & DiNardo, S. The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development122, 2437–2447 (1996). CASPubMed Google Scholar
Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science294, 2542–2545 (2001). ArticleCASPubMed Google Scholar
Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science294, 2546–2549 (2001). References 28 and 29 reveal the first signalling pathway from the testicular niche that is required for germline and somatic stem-cell division inDrosophila. ArticleCASPubMed Google Scholar
Hombría, J. C.-G. & Brown, S. The fertile field of Drosophila JAK/STAT signalling. Curr. Biol.12, R569–R575 (2002). ArticlePubMed Google Scholar
McGregor, J. R., Xi, R. & Harrison, D. A. JAK signaling is somatically required for follicle cell differentiation in Drosophila. Development129, 705–717 (2002). CASPubMed Google Scholar
Matunis, E., Tran, J., Gonczy, P., Caldwell, K. & DiNardo, S. punt and schnurri regulate a somatically derived signal that restricts proliferation of committed progenitors in the germline. Development124, 4383–4391 (1997). CASPubMed Google Scholar
Tran, J., Brenner, T. J. & DiNardo, S. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature407, 754–757 (2000). ArticleCASPubMed Google Scholar
Kiger, A. A., White-Cooper, H. & Fuller, M. T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature407, 750–754 (2000). References 33 and 34 define the role of Raf- and Egfr-mediated signalling pathways in restricting the proliferation of early germ cells in the testis. ArticleCASPubMed Google Scholar
Margolis, J. & Spradling, A. C. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development121, 3797–3807 (1995). CASPubMed Google Scholar
Zhang, Y. & Kalderon, D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature410, 599–604 (2001). An elegant study that characterizes the role of the Hh signalling pathway in regulating somatic stem-cell division. ArticleCASPubMed Google Scholar
Song, X. & Xie, T. DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc. Natl Acad. Sci. USA (in the press).
Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61, 1329–1337 (1990). ArticleCASPubMed Google Scholar
Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell102, 451–461 (2000). ArticleCASPubMed Google Scholar
Fuchs, E., Merrill, B. J., Jamora, C. & DasGupta, R. At the roots of a never-ending cycle. Dev. Cell1, 13–25 (2001). ArticleCASPubMed Google Scholar
Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science276, 817–821 (1997). ArticleCASPubMed Google Scholar
Besmer, P. The kit ligand encoded at the murine Steel locus: a pleiotropic growth and differentiation factor. Curr. Opin. Cell Biol.3, 939–946 (1991). ArticleCASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Goldring, K., Partridge, T. & Watt, D. Muscle stem cells. J. Pathol.197, 457–467 (2002). ArticlePubMed Google Scholar
Forbes, S., Vig, P., Poulsom, R., Thomas, H. & Alison, M. Hepatic stem cells. J. Pathol.197, 510–518 (2002). ArticlePubMed Google Scholar
Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development129, 2447–2457 (2002). CASPubMed Google Scholar
Watt, F. M. & Hogan, B. L. Out of Eden: stem cells and their niches. Science287, 1427–1430 (2000). ArticleCASPubMed Google Scholar
Zhao, G. Q., Deng, K., Labosky, P. A., Liaw, L. & Hogan, B. L. The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev.10, 1657–1669 (1996). ArticleCASPubMed Google Scholar
Matsuda, T. et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J.18, 4261–4269 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ohta, H., Yomogida, K., Dohmae, K. & Nishimune, Y. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development127, 2125–2131 (2000). CASPubMed Google Scholar
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002). ArticleCASPubMed Google Scholar
Vanova, N. B. et al. A stem cell molecular signature. Science298, 601–604 (2002). Article Google Scholar
Yang, L. et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl Acad. Sci. USA99, 8078–8083 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature401, 390–394 (1999). CASPubMed Google Scholar
Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science297, 2256–2259 (2002). ArticleCASPubMed Google Scholar
de Rooij, D. G. Proliferation and differentiation of spermatogonial stem cells. Reproduction121, 347–354 (2001). ArticleCASPubMed Google Scholar
Trenton, J. J. in Regulation of Hematopoietic Stem Cells (ed. Gordon, A. S.) 161–185 (Appleton–Century–Crofts, New York, 1970). Google Scholar
Potten, C. S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development110, 1001–1020 (1990). CASPubMed Google Scholar
Hall, P. A. & Watt, F. M. Stem cells: the generation and maintenance of cellular diversity. Development106, 619–633 (1989). CASPubMed Google Scholar
Morrison, S. J., Shah, N. M. & Anderson, D. J. Regulatory mechanisms in stem cell biology. Cell88, 287–298 (1997). ArticleCASPubMed Google Scholar
Lin, H., Yue, L. & Spradling, A. S. The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development120, 947–956 (1994). CASPubMed Google Scholar