Evolving challenges in hepatic fibrosis (original) (raw)
Friedman, S. L. Mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastroenterol. Hepatol.1, 98–105 (2004). PubMed Google Scholar
Mitchell, A. E., Colvin, H. M. & Palmer Beasley, R. Institute of Medicine recommendations for the prevention and control of hepatitis B and C. Hepatology51, 729–733 (2010). PubMed Google Scholar
Davis, G. L., Alter, M. J., El-Serag, H., Poynard, T. & Jennings, L. W. Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology138, 513–521, 521 e1–6 (2010). PubMed Google Scholar
Lim, Y. S. & Kim, W. R. The global impact of hepatic fibrosis and end-stage liver disease. Clin. Liver Dis.12, 733–746 (2008). PubMed Google Scholar
Cheung, O. & Sanyal, A. J. Recent advances in nonalcoholic fatty liver disease. Curr. Opin. Gastroenterol.25, 230–237 (2009). PubMed Google Scholar
Bugianesi, E. Non-alcoholic steatohepatitis and cancer. Clin. Liver Dis.11, 191–207 (2007). CASPubMed Google Scholar
Hashizume, H. et al. Primary liver cancers with nonalcoholic steatohepatitis. Eur. J. Gastroenterol. Hepatol.19, 827–834 (2007). PubMed Google Scholar
Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin.59, 225–249 (2009). PubMed Google Scholar
Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology134, 1655–1669 (2008). CASPubMed Google Scholar
Henderson, N. C. & Iredale, J. P. Liver fibrosis: cellular mechanisms of progression and resolution. Clin. Sci. (Lond.)112, 265–280 (2007). CAS Google Scholar
Baertschiger, R. M. et al. Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver. PLOS ONE4, e6657 (2009). PubMed CentralPubMed Google Scholar
Miyata, E. et al. Hematopoietic origin of hepatic stellate cells in the adult liver. Blood111, 2427–2435 (2008). CASPubMed Google Scholar
Russo, F. P. et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology130, 1807–1821 (2006). PubMed Google Scholar
Forbes, S. J. et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology126, 955–963 (2004). PubMed Google Scholar
Fujimiya, T. et al. Pathological roles of bone-marrow-derived stellate cells in a mouse model of alcohol-induced fatty liver. Am. J. Physiol. Gastrointest. Liver Physiol.297, G974–G980 (2009). PubMed Google Scholar
Grande, M. T. & Lopez-Novoa, J. M. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat. Rev. Nephrol.5, 319–328 (2009). CASPubMed Google Scholar
Kisseleva, T. et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol.45, 429–438 (2006). CASPubMed Google Scholar
Higashiyama, R. et al. Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology137, 1459–1466 (2009). CASPubMed Google Scholar
Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest.112, 1776–1784 (2003). CASPubMed CentralPubMed Google Scholar
Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol.173, 1617–1627 (2008). CASPubMed CentralPubMed Google Scholar
Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol.176, 85–97 (2010). CASPubMed CentralPubMed Google Scholar
Zeisberg, M. et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem.282, 23337–23347 (2007). CASPubMed Google Scholar
Omenetti, A. et al. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J. Clin. Invest.118, 3331–3342 (2008). CASPubMed CentralPubMed Google Scholar
Omenetti, A. et al. Repair-related activation of hedgehog signaling promotes cholangiocyte chemokine production. Hepatology50, 518–527 (2009). CASPubMed Google Scholar
Choi, S. S. & Diehl, A. M. Epithelial-to-mesenchymal transitions in the liver. Hepatology50, 2007–2013 (2009). CASPubMed Google Scholar
Taura, K. et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology51, 1027–1036 (2010). PubMed Google Scholar
Wells, R. G. The epithelial-to-mesenchymal transition in liver fibrosis: here today, gone tomorrow? Hepatology51, 737–740 (2010). CASPubMed Google Scholar
Kordes, C. et al. CD133+ hepatic stellate cells are progenitor cells. Biochem. Biophys. Res. Commun.352, 410–417 (2007). CASPubMed Google Scholar
Sawitza, I., Kordes, C., Reister, S. & Haussinger, D. The niche of stellate cells within rat liver. Hepatology50, 1617–1624 (2009). CASPubMed Google Scholar
Roskams, T. Relationships among stellate cell activation, progenitor cells, and hepatic regeneration. Clin. Liver Dis.12, 853–860 (2008). PubMed Google Scholar
Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology50, 185–197 (2009). CASPubMed Google Scholar
Pinzani, M. & Marra, F. Cytokine receptors and signaling in hepatic stellate cells. Semin. Liver Dis.21, 397–416 (2001). CASPubMed Google Scholar
Wasmuth, H. E. et al. Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology137, 309–319, 319 e1–3 (2009). CASPubMed Google Scholar
Marra, F. & Bertolani, C. Adipokines in liver diseases. Hepatology50, 957–969 (2009). CASPubMed Google Scholar
Ikejima, K., Okumura, K., Kon, K., Takei, Y. & Sato, N. Role of adipocytokines in hepatic fibrogenesis. J. Gastroenterol. Hepatol.22 (Suppl. 1), S87–S92 (2007). CASPubMed Google Scholar
Ding, X. et al. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am. J. Pathol.166, 1655–1669 (2005). CASPubMed CentralPubMed Google Scholar
Ebrahimkhani, M. R., Elsharkawy, A. M. & Mann, D. A. Wound healing and local neuroendocrine regulation in the injured liver. Expert Rev. Mol. Med.10, e11 (2008). PubMed Google Scholar
Teixeira-Clerc, F. et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat. Med.12, 671–676 (2006). CASPubMed Google Scholar
Munoz-Luque, J. et al. Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. J. Pharmacol. Exp. Ther.324, 475–483 (2008). CASPubMed Google Scholar
Deveaux, V. et al. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS ONE4, e5844 (2009). PubMed CentralPubMed Google Scholar
Passino, M. A., Adams, R. A., Sikorski, S. L. & Akassoglou, K. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science315, 1853–1856 (2007). CASPubMed Google Scholar
Kendall, T. J. et al. p75 Neurotrophin receptor signaling regulates hepatic myofibroblast proliferation and apoptosis in recovery from rodent liver fibrosis. Hepatology49, 901–910 (2009). CASPubMed Google Scholar
Fernandez, M. et al. Angiogenesis in liver disease. J. Hepatol.50, 604–620 (2009). CASPubMed Google Scholar
Novo, E. & Parola, M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair1, 5 (2008). PubMed CentralPubMed Google Scholar
Zhan, S. S. et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology43, 435–443 (2006). CASPubMed Google Scholar
Colmenero, J. et al. Effects of losartan on hepatic expression of non-phagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am. J. Physiol. Gastrointest. Liver Physiol.297, G726–G734 (2009). CASPubMed CentralPubMed Google Scholar
Moreno, M. et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology51, 942–952 (2009). Google Scholar
Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med.362, 1–5 (2010). Google Scholar
Sanyal, A. A randomized controlled trial of pioglitazone or vitamin E for nonalcoholic steatohepatitis (PIVENS) [abstract]. Hepatology50, 90A (2009). Google Scholar
Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology47, 1394–1400 (2008). CASPubMed Google Scholar
Georges, P. C. et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol.293, G1147–G1154 (2007). CASPubMed Google Scholar
Park, O. et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology49, 1683–1694 (2009). CASPubMed Google Scholar
Gao, B., Radaeva, S. & Park, O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol.86, 513–528 (2009). CASPubMed CentralPubMed Google Scholar
Notas, G., Kisseleva, T. & Brenner, D. NK and NKT cells in liver injury and fibrosis. Clin. Immunol.130, 16–26 (2009). CASPubMed Google Scholar
Connolly, M. K. et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J. Clin. Invest.119, 3213–3225 (2009). CASPubMed CentralPubMed Google Scholar
Seki, E. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med.13, 1324–1332 (2007). CASPubMed Google Scholar
Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology48, 322–335 (2008). CASPubMed Google Scholar
Guo, J. et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology49, 960–968 (2009). CASPubMed Google Scholar
Mencin, A., Kluwe, J. & Schwabe, R. F. Toll-like receptors as targets in chronic liver diseases. Gut58, 704–720 (2009). CASPubMed Google Scholar
Chakraborty, J. B. & Mann, D. A. NF-kappaB signalling: embracing complexity to achieve translation. J. Hepatol.52, 285–291 (2010). CASPubMed Google Scholar
Watanabe, A. et al. Inflammasome-mediated regulation of hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol.296, G1248–G1257 (2009). CASPubMed CentralPubMed Google Scholar
Muhanna, N. et al. Activation of hepatic stellate cells after phagocytosis of lymphocytes: a novel pathway of fibrogenesis. Hepatology48, 963–977 (2008). CASPubMed Google Scholar
Holt, A. P. et al. Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human liver. Gastroenterology136, 705–714 (2009). CASPubMed Google Scholar
Mann, J. & Mann, D. A. Transcriptional regulation of hepatic stellate cells. Adv. Drug Deliv. Rev.61, 497–512 (2009). CASPubMed Google Scholar
Mann, J. et al. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ.14, 275–285 (2007). CASPubMed Google Scholar
Mann, J. et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology138, 705–714, 714 e1–4 (2010). CASPubMed Google Scholar
Fritz, D. & Stefanovic, B. RNA-binding protein RBMS3 is expressed in activated hepatic stellate cells and liver fibrosis and increases expression of transcription factor Prx1. J. Mol. Biol.371, 585–595 (2007). CASPubMed CentralPubMed Google Scholar
Guo, C. J., Pan, Q., Li, D. G., Sun, H. & Liu, B. W. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J. Hepatol.50, 766–778 (2009). CASPubMed Google Scholar
Venugopal, S. K. et al. Liver fibrosis causes down-regulation of miRNA-150 and miRNA-194 in hepatic stellate cells and their over-expression causes decreased stellate cell activation. Am. J. Physiol. Gastrointest. Liver Physiol.298, G101–G106 (2009). PubMed CentralPubMed Google Scholar
Oakley, F. et al. Angiotensin II activates I kappaB kinase phosphorylation of RelA at Ser 536 to promote myofibroblast survival and liver fibrosis. Gastroenterology136, 2334–2344 e1 (2009). CASPubMed Google Scholar
Buck, M. & Chojkier, M. A ribosomal S-6 kinase-mediated signal to C/EBP-beta is critical for the development of liver fibrosis. PLoS ONE2, e1372 (2007). PubMed CentralPubMed Google Scholar
Friedman, S. L. & Bansal, M. B. Reversal of hepatic fibrosis—fact or fantasy? Hepatology43, S82–S88 (2006). CASPubMed Google Scholar
Mallet, V. et al. Brief communication: the relationship of regression of cirrhosis to outcome in chronic hepatitis C. Ann. Intern. Med.149, 399–403 (2008). PubMed Google Scholar
Gonzalez, S. A. et al. Inverse association between hepatic stellate cell apoptosis and fibrosis in chronic hepatitis C virus infection. J. Viral Hepat.16, 141–148 (2009). CASPubMed Google Scholar
Oakley, F. et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology128, 108–120 (2005). CASPubMed Google Scholar
Jiang, J. X., Mikami, K., Venugopal, S., Li, Y. & Torok, N. J. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J. Hepatol.51, 139–148 (2009). CASPubMed CentralPubMed Google Scholar
Regev, A. et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am. J. Gastroenterol.97, 2614–2618 (2002). PubMed Google Scholar
Ratziu, V. et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology128, 1898–1906 (2005). PubMed Google Scholar
Bedossa, P., Dargere, D. & Paradis, V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology38, 1449–1457 (2003). PubMed Google Scholar
Goodman, Z. D. et al. Fibrosis progression in chronic hepatitis C: morphometric image analysis in the HALT-C trial. Hepatology50, 1738–1749 (2009). PubMed Google Scholar
Calvaruso, V. et al. Computer-assisted image analysis of liver collagen: relationship to Ishak scoring and hepatic venous pressure gradient. Hepatology49, 1236–1244 (2009). PubMed Google Scholar
Everhart, J. E. et al. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology51, 585–594 (2010). PubMed Google Scholar
Castera, L. Transient elastography and other noninvasive tests to assess hepatic fibrosis in patients with viral hepatitis. J. Viral Hepat.16, 300–314 (2009). PubMed Google Scholar
Vizzutti, F., Arena, U., Marra, F. & Pinzani, M. Elastography for the non-invasive assessment of liver disease: limitations and future developments. Gut58, 157–160 (2009). PubMed Google Scholar
Pinzani, M., Vizzutti, F., Arena, U. & Marra, F. Technology Insight: noninvasive assessment of liver fibrosis by biochemical scores and elastography. Nat. Clin. Pract. Gastroenterol. Hepatol.5, 95–106 (2008). CASPubMed Google Scholar
Arena, U. et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology47, 380–384 (2008). CASPubMed Google Scholar
Vigano, M. et al. Transient elastography assessment of the liver stiffness dynamics during acute hepatitis B. Eur. J. Gastroenterol. Hepatol.22, 180–184 (2009). Google Scholar
Carrion, J. A. et al. Liver stiffness identifies two different patterns of fibrosis progression in patients with hepatitis C virus recurrence after liver transplantation. Hepatology51, 23–34 (2010). CASPubMed Google Scholar
Talwalkar, J. A. et al. Magnetic resonance imaging of hepatic fibrosis: emerging clinical applications. Hepatology47, 332–342 (2008). PubMed Google Scholar
Bonekamp, S., Kamel, I., Solga, S. & Clark, J. Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J. Hepatol.50, 17–35 (2009). PubMed Google Scholar
Taouli, B. et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am. J. Roentgenol.189, 799–806 (2007). PubMed Google Scholar
Hagiwara, M. et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging--initial experience. Radiology246, 926–934 (2008). PubMed Google Scholar
Barash, H. et al. Functional magnetic resonance imaging monitoring of pathological changes in rodent livers during hyperoxia and hypercapnia. Hepatology48, 1232–1241 (2008). PubMed Google Scholar
Fahey, B. J., Nightingale, K. R., Nelson, R. C., Palmeri, M. L. & Trahey, G. E. Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility. Ultrasound Med. Biol.31, 1185–1198 (2005). PubMed Google Scholar
Friedrich-Rust, M. et al. Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology252, 595–604 (2009). PubMed Google Scholar
Smith, J. O. & Sterling, R. K. Systematic review: Non-invasive methods of fibrosis analysis in chronic hepatitis C. Aliment. Pharmacol. Ther.30, 557–576 (2009). CASPubMed Google Scholar
Smith, M. W. et al. Gene expression patterns that correlate with hepatitis C and early progression to fibrosis in liver transplant recipients. Gastroenterology130, 179–187 (2006). CASPubMed Google Scholar
Leroy, V. et al. Prospective comparison of six non-invasive scores for the diagnosis of liver fibrosis in chronic hepatitis C. J. Hepatol.46, 775–782 (2007). PubMed Google Scholar
Gressner, O. A., Weiskirchen, R. & Gressner, A. M. Biomarkers of hepatic fibrosis, fibrogenesis and genetic pre-disposition pending between fiction and reality. J. Cell. Mol. Med.11, 1031–1051 (2007). CASPubMed CentralPubMed Google Scholar
Nunes, D. et al. Noninvasive markers of liver fibrosis are highly predictive of liver-related death in a cohort of HCV-infected individuals with and without HIV infection. Am. J. Gastroenterol. doi: 10.1038/ajg.2009.746. Google Scholar
Ngo, Y. et al. A prospective analysis of the prognostic value of biomarkers (FibroTest) in patients with chronic hepatitis C. Clin. Chem.52, 1887–1896 (2006). CASPubMed Google Scholar
Mayo, M. J. et al. Prediction of clinical outcomes in primary biliary cirrhosis by serum enhanced liver fibrosis assay. Hepatology48, 1549–1557 (2008). PubMed Google Scholar
Sebastiani, G. et al. SAFE biopsy: a validated method for large-scale staging of liver fibrosis in chronic hepatitis C. Hepatology49, 1821–1827 (2009). PubMed Google Scholar
Castera, L. et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology128, 343–350 (2005). PubMed Google Scholar
Fontana, R. J. et al. Serum fibrosis marker levels decrease after successful antiviral treatment in chronic hepatitis C patients with advanced fibrosis. Clin. Gastroenterol. Hepatol.7, 219–226 (2009). CASPubMed Google Scholar
Nobili, V. et al. Performance of ELF serum markers in predicting fibrosis stage in pediatric non-alcoholic fatty liver disease. Gastroenterology136, 160–167 (2009). CASPubMed Google Scholar
de Ledinghen, V. et al. Diagnosis of hepatic fibrosis and cirrhosis by transient elastography in HIV/hepatitis C virus-coinfected patients. J. Acquir. Immune Defic. Syndr.41, 175–179 (2006). PubMed Google Scholar
Sanchez-Conde, M. et al. Comparison of transient elastography and liver biopsy for the assessment of liver fibrosis in HIV/hepatitis C virus-coinfected patients and correlation with noninvasive serum markers. J. Viral Hepat.17, 280–286 (2009). PubMed Google Scholar
Berenguer, J. et al. Sustained virological response to interferon plus ribavirin reduces liver-related complications and mortality in patients coinfected with human immunodeficiency virus and hepatitis C virus. Hepatology50, 407–413 (2009). CASPubMed Google Scholar
Russo, M. W. et al. Early hepatic stellate cell activation is associated with advanced fibrosis after liver transplantation in recipients with hepatitis C. Liver Transpl.11, 1235–1241 (2005). PubMed Google Scholar
Armuzzi, A. et al. Review article: breath testing for human liver function assessment. Aliment. Pharmacol. Ther.16, 1977–1996 (2002). CASPubMed Google Scholar
Petrolati, A. et al. 13C-methacetin breath test for monitoring hepatic function in cirrhotic patients before and after liver transplantation. Aliment. Pharmacol. Ther.18, 785–790 (2003). CASPubMed Google Scholar
Ripoll, C. et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology133, 481–488 (2007). CASPubMed Google Scholar
Talwalkar, J. A. Antifibrotic therapies—emerging biomarkers as treatment end points. Nat. Rev. Gastroenterol. Hepatol.7, 59–61 (2010). CASPubMed Google Scholar
Hold, G. L., Untiveros, P., Saunders, K. A. & El-Omar, E. M. Role of host genetics in fibrosis. Fibrogenesis Tissue Repair2, 6 (2009). PubMed CentralPubMed Google Scholar
Weber, S., Gressner, O. A., Hall, R., Grunhage, F. & Lammert, F. Genetic determinants in hepatic fibrosis: from experimental models to fibrogenic gene signatures in humans. Clin. Liver Dis.12, 747–757 (2008). PubMed Google Scholar
Wasmuth, H. E. et al. The Marburg I variant (G534E) of the factor VII-activating protease determines liver fibrosis in hepatitis C infection by reduced proteolysis of platelet-derived growth factor BB. Hepatology49, 775–780 (2009). CASPubMed Google Scholar
Asselah, T. et al. Genetics, genomics, and proteomics: implications for the diagnosis and the treatment of chronic hepatitis C. Semin. Liver Dis.27, 13–27 (2007). CASPubMed Google Scholar
Huang, H. et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology46, 297–306 (2007). CASPubMed Google Scholar
Huang, H. et al. Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C. Gastroenterology130, 1679–1687 (2006). CASPubMed Google Scholar
Marcolongo, M. et al. A seven-gene signature (cirrhosis risk score) predicts liver fibrosis progression in patients with initially mild chronic hepatitis C. Hepatology50, 1038–1044 (2009). CASPubMed Google Scholar
Wasmuth, H. E. et al. CC chemokine receptor 5 delta32 polymorphism in two independent cohorts of hepatitis C virus infected patients without hemophilia. J. Mol. Med.82, 64–69 (2004). CASPubMed Google Scholar
Hillebrandt, S. et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat. Genet.37, 835–843 (2005). CASPubMed Google Scholar
Hung, T. M. et al. A novel nonsynonymous variant of matrix metalloproteinase-7 confers risk of liver cirrhosis. Hepatology50, 1184–1193 (2009). CASPubMed Google Scholar
Freedman, N. D. et al. Coffee intake is associated with lower rates of liver disease progression in chronic hepatitis C. Hepatology50, 1360–1369 (2009). CASPubMed Google Scholar
Ruhl, C. E. & Everhart, J. E. Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States. Gastroenterology129, 1928–1936 (2005). PubMed Google Scholar
Modi, A. A. et al. Increased caffeine consumption is associated with reduced hepatic fibrosis. Hepatology51, 201–209 (2010). CASPubMed Google Scholar
Chan, E. S. et al. Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br. J. Pharmacol.148, 1144–1155 (2006). CASPubMed CentralPubMed Google Scholar
Chan, H. L. et al. Hepatitis B virus genotype C is associated with more severe liver fibrosis than genotype B. Clin. Gastroenterol. Hepatol.7, 1361–1366 (2009). PubMed Google Scholar
Bochud, P. Y. et al. Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis C. J. Hepatol.51, 655–666 (2009). CASPubMed Google Scholar
Macias, J. et al. Fast fibrosis progression between repeated liver biopsies in patients coinfected with human immunodeficiency virus/hepatitis C virus. Hepatology50, 1056–1063 (2009). CASPubMed Google Scholar
Pinzani, M. & Vizzutti, F. Fibrosis and cirrhosis reversibility: clinical features and implications. Clin. Liver Dis.12, 901–913 (2008). PubMed Google Scholar
Ramachandran, P. & Iredale, J. P. Reversibility of liver fibrosis. Ann. Hepatol.8, 283–291 (2009). PubMed Google Scholar
Garcia-Tsao, G., Friedman, S., Iredale, J. & Pinzani, M. Now there are many (stages) where before there was one: In search of a pathophysiological classification of cirrhosis. Hepatology51, 1445–1449 (2010). PubMed Google Scholar
Ghany, M. G. et al. Predicting clinical and histologic outcomes based on standard laboratory tests in advanced chronic hepatitis C. Gastroenterology138, 136–146 (2010). CASPubMed Google Scholar
Kazemi, F. et al. Liver stiffness measurement selects patients with cirrhosis at risk of bearing large oesophageal varices. J. Hepatol.45, 230–235 (2006). PubMed Google Scholar
Masuzaki, R. et al. Risk assessment of hepatocellular carcinoma in chronic hepatitis C patients by transient elastography. J. Clin. Gastroenterol.42, 839–843 (2008). PubMed Google Scholar
Nagula, S., Jain, D., Groszmann, R. J. & Garcia-Tsao, G. Histological–hemodynamic correlation in cirrhosis—a histological classification of the severity of cirrhosis. J. Hepatol.44, 111–117 (2006). PubMed Google Scholar
Iredale, J. P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest.117, 539–548 (2007). CASPubMed CentralPubMed Google Scholar
Popov, Y., Patsenker, E., Fickert, P., Trauner, M. & Schuppan, D. Mdr2 (Abcb4)−/− mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J. Hepatol.43, 1045–1054 (2005). CASPubMed Google Scholar
Lichtman, S. N., Wang, J. & Clark, R. L. A microcholangiographic study of liver disease models in rats. Acad. Radiol.2, 515–521 (1995). CASPubMed Google Scholar
Popov, Y. et al. Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies. J. Hepatol.48, 453–464 (2008). CASPubMed Google Scholar
Friedman, S. L. Reversibility of hepatic fibrosis and cirrhosis--is it all hype? Nat. Clin. Pract. Gastroenterol. Hepatol.4, 236–237 (2007). PubMed Google Scholar
Ghiassi-Nejad, Z. & Friedman, S. L. Advances in antifibrotic therapy. Expert Rev. Gastroenterol. Hepatol.2, 803–816 (2008). PubMed CentralPubMed Google Scholar
Rockey, D. C. Current and future anti-fibrotic therapies for chronic liver disease. Clin. Liver Dis.12, 939–962 (2008). PubMed CentralPubMed Google Scholar
Popov, Y. & Schuppan, D. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology50, 1294–1306 (2009). CASPubMed Google Scholar
Schoemaker, M. H. et al. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells. Mol. Pharm.5, 399–406 (2008). CASPubMed Google Scholar
Gonzalo, T. et al. Local inhibition of liver fibrosis by specific delivery of a PDGF kinase inhibitor to hepatic stellate cells. J. Pharmacol. Exp. Ther.321, 856–865 (2007). CASPubMed Google Scholar
Friedman, S. L. Targeting siRNA to arrest fibrosis. Nat. Biotechnol.26, 399–400 (2008). CASPubMed Google Scholar
Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol.26, 431–442 (2008). CASPubMed Google Scholar