The role of bacteria and pattern-recognition receptors in Crohn's disease (original) (raw)
Sartor, R. B. Enteric microflora in IBD: pathogens or commensals? Inflamm. Bowel Dis.3, 230–235 (1997). Google Scholar
Yamamoto, T., Allan, R. N. & Keighley, M. R. Effect of fecal diversion alone on perianal Crohn's disease. World J. Surg.24, 1258–1262 (2000). CASPubMed Google Scholar
Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum. Lancet338, 771–774 (1991). CASPubMed Google Scholar
Zelas, P. & Jagelman, D. G. Loop illeostomy in the management of Crohn's colitis in the debilitated patient. Ann. Surg.191, 164–168 (1980). CASPubMedPubMed Central Google Scholar
McIlrath, D. C. Diverting ileostomy or colostomy in the management of Crohn's disease of the colon. Arch. Surg.103, 308–310 (1971). CASPubMed Google Scholar
D'Haens, G. R. et al. Early lesions of recurrent Crohn's disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology114, 262–267 (1998). CASPubMed Google Scholar
Shafran, I. & Burgunder, P. Adjunctive antibiotic therapy with rifaximin may help reduce Crohn's disease activity. Dig. Dis. Sci.55, 1079–1084 (2010). CASPubMed Google Scholar
Prantera, C. et al. Antibiotic treatment of Crohn's disease: results of a multicentre, double blind, randomized, placebo-controlled trial with rifaximin. Aliment. Pharmacol. Ther.23, 1117–1125 (2006). CASPubMed Google Scholar
Arnold, G. L., Beaves, M. R., Pryjdun, V. O. & Mook, W. J. Preliminary study of ciprofloxacin in active Crohn's disease. Inflamm. Bowel Dis.8, 10–15 (2002). PubMed Google Scholar
Steinhart, A. H. et al. Combined budesonide and antibiotic therapy for active Crohn's disease: a randomized controlled trial. Gastroenterology123, 33–40 (2002). CASPubMed Google Scholar
Colombel, J. F. et al. A controlled trial comparing ciprofloxacin with mesalazine for the treatment of active Crohn's disease. Groupe d'Etudes Therapeutiques des Affections Inflammatoires Digestives (GETAID). Am. J. Gastroenterol.94, 674–678 (1999). CASPubMed Google Scholar
Prantera, C. et al. An antibiotic regimen for the treatment of active Crohn's disease: a randomized, controlled clinical trial of metronidazole plus ciprofloxacin. Am. J. Gastroenterol.91, 328–332 (1996). CASPubMed Google Scholar
Greenbloom, S. L., Steinhart, A. H. & Greenberg, G. R. Combination ciprofloxacin and metronidazole for active Crohn's disease. Can. J. Gastroenterol.12, 53–56 (1998). CASPubMed Google Scholar
Sutherland, L. et al. Double blind, placebo controlled trial of metronidazole in Crohn's disease. Gut32, 1071–1075 (1991). CASPubMedPubMed Central Google Scholar
Leiper, K., Morris, A. I. & Rhodes, J. M. Open label trial of oral clarithromycin in active Crohn's disease. Aliment. Pharmacol. Ther.14, 801–806 (2000). CASPubMed Google Scholar
Rahimi, R., Nikfar, S., Rezaie, A. & Abdollahi, M. A meta-analysis of broad-spectrum antibiotic therapy in patients with active Crohn's disease. Clin. Ther.28, 1983–1988 (2006). CASPubMed Google Scholar
Nell, S., Suerbaum, S. & Josenhans, C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat. Rev. Microbiol.8, 564–577 (2010). CASPubMed Google Scholar
Guarner, F. The intestinal flora in inflammatory bowel disease: normal or abnormal? Curr. Opin. Gastroenterol.21, 414–418 (2005). PubMed Google Scholar
Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr.22, 283–307 (2002). CASPubMed Google Scholar
Tamboli, C. P., Neut, C., Desreumaux, P. & Colombel, J. F. Dysbiosis in inflammatory bowel disease. Gut53, 1–4 (2004). CASPubMedPubMed Central Google Scholar
Tannock, G. W. Analysis of the intestinal microflora using molecular methods. Eur. J. Clin. Nutr.56 (Suppl. 4), S44–S49 (2002). CASPubMed Google Scholar
Zoetendal, E. G., Rajilic-Stojanovic, M. & de Vos, W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut57, 1605–1615 (2008). CASPubMed Google Scholar
Packey, C. D. & Sartor, R. B. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr. Opin. Infect. Dis.22, 292–301 (2009). PubMedPubMed Central Google Scholar
Rehman, A. et al. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J. Med. Microbiol.59, 1114–1122 (2010). CASPubMed Google Scholar
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA104, 13780–13785 (2007). CASPubMedPubMed Central Google Scholar
Baumgart, M. et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISME J.1, 403–418 (2007). CASPubMed Google Scholar
Kotlowski, R., Bernstein, C. N., Sepehri, S. & Krause, D. O. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut56, 669–675 (2007). CASPubMed Google Scholar
Gophna, U., Sommerfeld, K., Gophna, S., Doolittle, W. F. & Veldhuyzen van Zanten, S. J. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J. Clin. Microbiol.44, 4136–4141 (2006). CASPubMedPubMed Central Google Scholar
Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D. & Garcia-Gil, L. J. Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm. Bowel Dis.12, 1136–1145 (2006). PubMed Google Scholar
Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol.43, 3380–3389 (2005). PubMedPubMed Central Google Scholar
Ott, S. J. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut53, 685–693 (2004). CASPubMedPubMed Central Google Scholar
Prindiville, T., Cantrell, M. & Wilson, K. H. Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn's disease. Inflamm. Bowel Dis.10, 824–833 (2004). PubMed Google Scholar
Swidsinski, A. et al. Mucosal flora in inflammatory bowel disease. Gastroenterology122, 44–54 (2002). PubMed Google Scholar
Kleessen, B., Kroesen, A. J., Buhr, H. J. & Blaut, M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand. J. Gastroenterol.37, 1034–1041 (2002). CASPubMed Google Scholar
Conte, M. P. et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut55, 1760–1767 (2006). CASPubMedPubMed Central Google Scholar
Bibiloni, R., Mangold, M., Madsen, K. L., Fedorak, R. N. & Tannock, G. W. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn's disease and ulcerative colitis patients. J. Med. Microbiol.55, 1141–1149 (2006). PubMed Google Scholar
Kang, S. et al. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis.16, 2034–2042 (2010). PubMed Google Scholar
Mondot, S. et al. Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm. Bowel Dis.17, 185–192 (2011). CASPubMed Google Scholar
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59–65 (2010). CASPubMedPubMed Central Google Scholar
Dicksved, J. et al. Molecular analysis of the gut microbiota of identical twins with Crohn's disease. ISME J.2, 716–727 (2008). CASPubMed Google Scholar
Takaishi, H. et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol.298, 463–472 (2008). CASPubMed Google Scholar
Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut55, 205–211 (2006). CASPubMedPubMed Central Google Scholar
Sokol, H. et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm. Bowel Dis.12, 106–111 (2006). PubMed Google Scholar
Seksik, P. et al. Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut52, 237–242 (2003). CASPubMedPubMed Central Google Scholar
Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2, 204 (2007). CASPubMed Google Scholar
Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe8, 292–300 (2010). CASPubMedPubMed Central Google Scholar
Kirkwood, C. D. et al. Mycobacterium avium subspecies paratuberculosis in children with early-onset Crohn's disease. Inflamm. Bowel Dis.15, 1643–1655 (2009). PubMed Google Scholar
Di Sabatino, A. et al. Detection of Mycobacterium avium subsp. paratuberculosis (MAP)-specific IS900 DNA and antibodies against MAP peptides and lysate in the blood of Crohn's disease patients. Inflamm. Bowel Dis. doi:10.1002/ibd.21461. PubMed Google Scholar
Mendoza, J. L. et al. High prevalence of viable Mycobacterium avium subspecies paratuberculosis in Crohn's disease. World J. Gastroenterol.16, 4558–4563 (2010). CASPubMedPubMed Central Google Scholar
Shin, A. R. et al. Identification of seroreactive proteins in the culture filtrate antigen of Mycobacterium avium ssp. paratuberculosis human isolates to sera from Crohn's disease patients. FEMS Immunol. Med. Microbiol.58, 128–137 (2010). CASPubMed Google Scholar
Bach, H. et al. Immunogenicity of Mycobacterium avium subsp. paratuberculosis proteins in Crohn's disease patients. Scand. J. Gastroenterol. doi:10.3109/00365521.
Hermon-Taylor, J. Mycobacterium avium subspecies paratuberculosis, Crohn's disease and the Doomsday scenario. Gut Pathog.1, 15 (2009). PubMedPubMed Central Google Scholar
Sibartie, S. et al. Mycobacterium avium subsp. paratuberculosis (MAP) as a modifying factor in Crohn's disease. Inflamm. Bowel Dis.16, 296–304 (2010). PubMed Google Scholar
Feller, M. et al. Mycobacterium avium subspecies paratuberculosis and Crohn's disease: a systematic review and meta-analysis. Lancet Infect. Dis.7, 607–613 (2007). PubMed Google Scholar
Abubakar, I., Myhill, D., Aliyu, S. H. & Hunter, P. R. Detection of Mycobacterium avium subspecies paratuberculosis from patients with Crohn's disease using nucleic acid-based techniques: a systematic review and meta-analysis. Inflamm. Bowel Dis.14, 401–410 (2008). CASPubMed Google Scholar
Boudeau, J., Glasser, A. L., Masseret, E., Joly, B. & Darfeuille-Michaud, A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect. Immun.67, 4499–4509 (1999). CASPubMedPubMed Central Google Scholar
Glasser, A. L. et al. Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death. Infect. Immun.69, 5529–5537 (2001). CASPubMedPubMed Central Google Scholar
Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology127, 412–421 (2004). PubMed Google Scholar
Martin, H. M. et al. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology127, 80–93 (2004). CASPubMed Google Scholar
Martinez-Medina, M. et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm. Bowel Dis.15, 872–882 (2009). PubMed Google Scholar
Meconi, S. et al. Adherent-invasive Escherichia coli isolated from Crohn's disease patients induce granulomas in vitro. Cell. Microbiol.9, 1252–1261 (2007). CASPubMed Google Scholar
Rolhion, N., Carvalho, F. A. & Darfeuille-Michaud, A. OmpC and the sigma(E) regulatory pathway are involved in adhesion and invasion of the Crohn's disease-associated Escherichia coli strain LF82. Mol. Microbiol.63, 1684–1700 (2007). CASPubMed Google Scholar
Bringer, M. A., Rolhion, N., Glasser, A. L. & Darfeuille-Michaud, A. The oxidoreductase DsbA plays a key role in the ability of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing. J. Bacteriol.189, 4860–4871 (2007). CASPubMedPubMed Central Google Scholar
Rolhion, N. et al. Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut59, 1355–1362 (2010). CASPubMed Google Scholar
Barnich, N. et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest.117, 1566–1574 (2007). CASPubMedPubMed Central Google Scholar
Carvalho, F. A. et al. Crohn's disease-associated Escherichia coli LF82 aggravates colitis in injured mouse colon via signaling by flagellin. Inflamm. Bowel Dis.14, 1051–1060 (2008). PubMed Google Scholar
Zhang, L. et al. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease. J. Clin. Microbiol.47, 453–455 (2009). PubMed Google Scholar
Man, S. M. et al. Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn's disease. Inflamm. Bowel Dis.16, 1008–1016 (2010). PubMed Google Scholar
Man, S. M. et al. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J. Infect. Dis.202, 1855–1865 (2010). CASPubMed Google Scholar
Istivan, T. S., Coloe, P. J., Fry, B. N., Ward, P. & Smith, S. C. Characterization of a haemolytic phospholipase A(2) activity in clinical isolates of Campylobacter concisus. J. Med. Microbiol.53, 483–493 (2004). CASPubMed Google Scholar
Istivan, T. S., Smith, S. C., Fry, B. N. & Coloe, P. J. Characterization of Campylobacter concisus hemolysins. FEMS Immunol. Med. Microbiol.54, 224–235 (2008). CASPubMed Google Scholar
Kaakoush, N. O. et al. The secretome of Campylobacter concisus. FEBS J.277, 1606–1617 (2010). CASPubMed Google Scholar
Engberg, J. et al. Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics. Clin. Microbiol. Infect.11, 288–295 (2005). CASPubMed Google Scholar
Aabenhus, R., Stenram, U., Andersen, L. P., Permin, H. & Ljungh, A. First attempt to produce experimental Campylobacter concisus infection in mice. World J. Gastroenterol.14, 6954–6959 (2008). PubMedPubMed Central Google Scholar
Hansen, R., Thomson, J. M., Fox, J. G., El-Omar, E. M. & Hold, G. L. Could Helicobacter organisms cause inflammatory bowel disease? FEMS Immunol. Med. Microbiol. doi:10.1111/j.1574-695X.2010.00744.x. Google Scholar
Solnick, J. V. & Schauer, D. B. Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin. Microbiol. Rev.14, 59–97 (2001). CASPubMedPubMed Central Google Scholar
Bohr, U. R. et al. Identification of enterohepatic Helicobacter species in patients suffering from inflammatory bowel disease. J. Clin. Microbiol.42, 2766–2768 (2004). CASPubMedPubMed Central Google Scholar
Zhang, L., Day, A., McKenzie, G. & Mitchell, H. Nongastric Helicobacter species detected in the intestinal tract of children. J. Clin. Microbiol.44, 2276–2279 (2006). CASPubMedPubMed Central Google Scholar
Man, S. M., Zhang, L., Day, A. S., Leach, S. & Mitchell, H. Detection of enterohepatic and gastric Helicobacter species in fecal specimens of children with Crohn's disease. Helicobacter13, 234–238 (2008). CASPubMed Google Scholar
Kaakoush, N. O. et al. Detection of Helicobacteraceae in intestinal biopsies of children with Crohn's disease. Helicobacter15, 549–557 (2010). PubMed Google Scholar
Laharie, D. et al. Association between entero-hepatic Helicobacter species and Crohn's disease: a prospective cross-sectional study. Aliment. Pharmacol. Ther.30, 283–293 (2009). CASPubMed Google Scholar
Varon, C. et al. Study of Helicobacter pullorum proinflammatory properties on human epithelial cells in vitro. Gut58, 629–635 (2009). CASPubMed Google Scholar
Bell, S. J., Chisholm, S. A., Owen, R. J., Borriello, S. P. & Kamm, M. A. Evaluation of Helicobacter species in inflammatory bowel disease. Aliment. Pharmacol. Ther.18, 481–486 (2003). CASPubMed Google Scholar
Grehan, M., Danon, S., Lee, A., Daskalopoulos, G. & Mitchell, H. Absence of mucosa-associated colonic Helicobacters in an Australian urban population. J. Clin. Microbiol.42, 874–876 (2004). PubMedPubMed Central Google Scholar
Wagner, J. et al. Identification and characterisation of Pseudomonas 16S ribosomal DNA from ileal biopsies of children with Crohn's disease. PLoS ONE3, e3578 (2008). PubMedPubMed Central Google Scholar
Wei, B. et al. Pseudomonas fluorescens encodes the Crohn's disease-associated I2 sequence and T-cell superantigen. Infect. Immun.70, 6567–6575 (2002). CASPubMedPubMed Central Google Scholar
Spivak, J. et al. Antibodies to I2 predict clinical response to fecal diversion in Crohn's disease. Inflamm. Bowel Dis.12, 1122–1130 (2006). PubMed Google Scholar
Ashorn, S. et al. Fecal calprotectin levels and serological responses to microbial antigens among children and adolescents with inflammatory bowel disease. Inflamm. Bowel Dis.15, 199–205 (2009). PubMed Google Scholar
Lamps, L. W. et al. Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn's disease. Am. J. Surg. Pathol.27, 220–227 (2003). PubMed Google Scholar
Safa, G., Loppin, M., Tisseau, L. & Lamoril, J. Cutaneous aseptic neutrophilic abscesses and Yersinia enterocolitica infection in a case subsequently diagnosed as Crohn's disease. Dermatology217, 340–342 (2008). CASPubMed Google Scholar
Zippi, M. et al. Mesenteric adenitis caused by Yersinia pseudotubercolosis in a patient subsequently diagnosed with Crohn's disease of the terminal ileum. World J. Gastroenterol.12, 3933–3935 (2006). PubMedPubMed Central Google Scholar
Saebo, A., Vik, E., Lange, O. J. & Matuszkiewicz, L. Inflammatory bowel disease associated with Yersinia enterocolitica O:3 infection. Eur. J. Intern. Med.16, 176–182 (2005). PubMed Google Scholar
Goodman, M. J., Pearson, K. W., McGhie, D., Dutt, S. & Deodhar, S. G. Campylobacter and Giardia lamblia causing exacerbation of inflammatory bowel disease. Lancet2, 1247 (1980). CASPubMed Google Scholar
Newman, A. & Lambert, J. R. Campylobacter jejuni causing flare-up in inflammatory bowel disease. Lancet2, 919 (1980). CASPubMed Google Scholar
Gradel, K. O. et al. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology137, 495–501 (2009). PubMed Google Scholar
Ternhag, A., Torner, A., Svensson, A., Ekdahl, K. & Giesecke, J. Short- and long-term effects of bacterial gastrointestinal infections. Emerg. Infect. Dis.14, 143–148 (2008). PubMedPubMed Central Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). CASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). CASPubMed Google Scholar
Leulier, F. & Lemaitre, B. Toll-like receptors--taking an evolutionary approach. Nat. Rev. Genet.9, 165–178 (2008). CASPubMed Google Scholar
Silva, M. A. et al. Dendritic cells and toll-like receptors 2 and 4 in the ileum of Crohn's disease patients. Dig. Dis. Sci.53, 1917–1928 (2008). CASPubMed Google Scholar
Szebeni, B. et al. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin. Exp. Immunol.151, 34–41 (2008). CASPubMedPubMed Central Google Scholar
Cario, E. & Podolsky, D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun.68, 7010–7017 (2000). CASPubMedPubMed Central Google Scholar
Frolova, L., Drastich, P., Rossmann, P., Klimesova, K. & Tlaskalova-Hogenova, H. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J. Histochem. Cytochem.56, 267–274 (2008). CASPubMedPubMed Central Google Scholar
Bryant, C. E., Spring, D. R., Gangloff, M. & Gay, N. J. The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol.8, 8–14 (2010). CASPubMed Google Scholar
Franchimont, D. et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut53, 987–992 (2004). CASPubMedPubMed Central Google Scholar
Ouburg, S. et al. The toll-like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localisation of Crohn's disease without a major role for the Saccharomyces cerevisiae mannan–LBP–CD14–TLR4 pathway. Gut54, 439–440 (2005). CASPubMedPubMed Central Google Scholar
Hume, G. E. et al. Novel NOD2 haplotype strengthens the association between TLR4 Asp299gly and Crohn's disease in an Australian population. Inflamm. Bowel Dis.14, 585–590 (2008). PubMed Google Scholar
Gazouli, M. et al. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J. Gastroenterol.11, 681–685 (2005). CASPubMedPubMed Central Google Scholar
Zouiten-Mekki, L. et al. Toll-like receptor 4 (TLR4) polymorphisms in Tunisian patients with Crohn's disease: genotype–phenotype correlation. BMC Gastroenterol.9, 62 (2009). PubMedPubMed Central Google Scholar
Lakatos, P. L. et al. Toll-like receptor 4 and NOD2/CARD15 mutations in Hungarian patients with Crohn's disease: phenotype-genotype correlations. World J. Gastroenterol.11, 1489–1495 (2005). CASPubMedPubMed Central Google Scholar
Hong, J. et al. TLR2, TLR4 and TLR9 polymorphisms and Crohn's disease in a New Zealand Caucasian cohort. J. Gastroenterol. Hepatol.22, 1760–1766 (2007). CASPubMed Google Scholar
Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet.25, 187–191 (2000). CASPubMed Google Scholar
Lorenz, E., Mira, J. P., Frees, K. L. & Schwartz, D. A. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch. Intern. Med.162, 1028–1032 (2002). CASPubMed Google Scholar
Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.347, 185–192 (2002). CASPubMed Google Scholar
Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature408, 740–745 (2000). CASPubMed Google Scholar
Pedersen, G., Andresen, L., Matthiessen, M. W., Rask-Madsen, J. & Brynskov, J. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin. Exp. Immunol.141, 298–306 (2005). CASPubMedPubMed Central Google Scholar
Torok, H. P. et al. Epistasis between Toll-like receptor-9 polymorphisms and variants in NOD2 and IL23R modulates susceptibility to Crohn's disease. Am. J. Gastroenterol.104, 1723–1733 (2009). PubMed Google Scholar
Pierik, M. et al. Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm. Bowel Dis.12, 1–8 (2006). PubMed Google Scholar
Steenholdt, C., Andresen, L., Pedersen, G., Hansen, A. & Brynskov, J. Expression and function of toll-like receptor 8 and Tollip in colonic epithelial cells from patients with inflammatory bowel disease. Scand. J. Gastroenterol.44, 195–204 (2009). CASPubMed Google Scholar
Kanneganti, T. D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity27, 549–559 (2007). CASPubMed Google Scholar
Barnes, P. J. & Karin, M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med.336, 1066–1071 (1997). CASPubMed Google Scholar
Salucci, V. et al. Monocyte-derived dendritic cells from Crohn patients show differential NOD2/CARD15-dependent immune responses to bacteria. Inflamm. Bowel Dis.14, 812–818 (2008). PubMed Google Scholar
Ferwerda, G. et al. Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J. Leukoc. Biol.82, 1011–1018 (2007). CASPubMed Google Scholar
Brosbol-Ravnborg, A. et al. Toll-like receptor-induced granulocyte–macrophage colony-stimulating factor secretion is impaired in Crohn's disease by nucleotide oligomerization domain 2-dependent and -independent pathways. Clin. Exp. Immunol.155, 487–495 (2009). CASPubMedPubMed Central Google Scholar
Hedl, M., Li, J., Cho, J. H. & Abraham, C. Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc. Natl Acad. Sci. USA104, 19440–19445 (2007). CASPubMedPubMed Central Google Scholar
Kramer, M., Netea, M. G., de Jong, D. J., Kullberg, B. J. & Adema, G. J. Impaired dendritic cell function in Crohn's disease patients with NOD2 3020insC mutation. J. Leukoc. Biol.79, 860–866 (2006). CASPubMed Google Scholar
Bonen, D. K. et al. Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology124, 140–146 (2003). CASPubMed Google Scholar
Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J. P. & McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology139, 1630–1641 e2 (2010). CASPubMed Google Scholar
van Beelen, A. J. et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity27, 660–669 (2007). CASPubMed Google Scholar
Perez, L. H. et al. Direct bacterial killing in vitro by recombinant Nod2 is compromised by Crohn's disease-associated mutations. PLoS ONE5, e10915 (2010). PubMedPubMed Central Google Scholar
Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med.16, 90–97 (2010). CASPubMed Google Scholar
Hisamatsu, T. et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology124, 993–1000 (2003). CASPubMed Google Scholar
Lipinski, S. et al. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J. Cell Sci.122, 3522–3530 (2009). CASPubMed Google Scholar
Magalhaes, J. G. et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol.181, 7925–7935 (2008). CASPubMed Google Scholar
Geddes, K. et al. Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect. Immun.78, 5107–5115 (2010). CASPubMedPubMed Central Google Scholar
Barreau, F. et al. Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer's patches. Gut59, 207–217 (2010). CASPubMed Google Scholar
Girardin, S. E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science300, 1584–1587 (2003). CASPubMed Google Scholar
McGovern, D. P. et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum. Mol. Genet.14, 1245–1250 (2005). CASPubMed Google Scholar
Canto, E. et al. Influence of a nucleotide oligomerization domain 1 (NOD1) polymorphism and NOD2 mutant alleles on Crohn's disease phenotype. World J. Gastroenterol.13, 5446–5453 (2007). CASPubMedPubMed Central Google Scholar
Tremelling, M. et al. Complex insertion/deletion polymorphism in NOD1 (CARD4) is not associated with inflammatory bowel disease susceptibility in East Anglia panel. Inflamm. Bowel Dis.12, 967–971 (2006). PubMed Google Scholar
Van Limbergen, J. et al. Contribution of the NOD1/CARD4 insertion/deletion polymorphism +32656 to inflammatory bowel disease in Northern Europe. Inflamm. Bowel Dis.13, 882–889 (2007). CASPubMed Google Scholar
Van Limbergen, J. et al. Investigation of NOD1/CARD4 variation in inflammatory bowel disease using a haplotype-tagging strategy. Hum. Mol. Genet.16, 2175–2186 (2007). CASPubMed Google Scholar
Lu, W. G. et al. Association of NOD1 (CARD4) insertion/deletion polymorphism with susceptibility to IBD: a meta-analysis. World J. Gastroenterol.16, 4348–4356 (2010). CASPubMedPubMed Central Google Scholar
Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet.29, 301–305 (2001). CASPubMedPubMed Central Google Scholar
Villani, A. C. et al. Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat. Genet.41, 71–76 (2009). CASPubMed Google Scholar
Lewis, G. J. et al. Genetic association between NLRP3 variants and Crohn's disease does not replicate in a large UK panel. Inflamm Bowel Dis. doi:10.1002/ibd.21499. PubMed Google Scholar
Schoultz, I. et al. Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn's disease in Swedish men. Am. J. Gastroenterol.104, 1180–1188 (2009). CASPubMed Google Scholar
Schreiber, S. et al. Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease. Lancet353, 459–461 (1999). CASPubMed Google Scholar
Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med.207, 1745–1755 (2010). CASPubMedPubMed Central Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006). CASPubMed Google Scholar
Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity32, 379–391 (2010). CASPubMedPubMed Central Google Scholar
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008). CASPubMedPubMed Central Google Scholar
Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39, 207–211 (2007). CASPubMed Google Scholar
Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39, 596–604 (2007). CASPubMedPubMed Central Google Scholar
Weersma, R. K. et al. ATG16L1 and IL23R are associated with inflammatory bowel diseases but not with celiac disease in the Netherlands. Am. J. Gastroenterol.103, 621–627 (2008). CASPubMed Google Scholar
Glas, J. et al. The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn's disease in the German population. Am. J. Gastroenterol.103, 682–691 (2008). CASPubMed Google Scholar
Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet.39, 830–832 (2007). CASPubMedPubMed Central Google Scholar
McCarroll, S. A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet.40, 1107–1112 (2008). CASPubMedPubMed Central Google Scholar
Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science313, 1438–1441 (2006). CASPubMed Google Scholar
Lapaquette, P., Glasser, A. L., Huett, A., Xavier, R. J. & Darfeuille-Michaud, A. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell. Microbiol.12, 99–113 (2010). CASPubMed Google Scholar
Intemann, C. D. et al. Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog.5, e1000577 (2009). PubMedPubMed Central Google Scholar
Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol.11, 55–62 (2009). PubMed Google Scholar
Perminow, G. et al. Defective paneth cell-mediated host defense in pediatric ileal Crohn's disease. Am. J. Gastroenterol.105, 452–459 (2010). PubMed Google Scholar
Wehkamp, J. et al. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc. Natl Acad. Sci. USA102, 18129–18134 (2005). CASPubMedPubMed Central Google Scholar
Wehkamp, J. et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut53, 1658–1664 (2004). CASPubMedPubMed Central Google Scholar
Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature456, 259–263 (2008). CASPubMedPubMed Central Google Scholar
Sim, W. H. et al. Novel Burkholderiales 23S rRNA genes identified in ileal biopsy samples from children: preliminary evidence that a subtype is associated with perianal Crohn's disease. J. Clin. Microbiol.48, 1939–1942 (2010). CASPubMedPubMed Central Google Scholar
Van Etterijck, R. et al. Isolation of Campylobacter concisus from feces of children with and without diarrhea. J. Clin. Microbiol.34, 2304–2306 (1996). CASPubMedPubMed Central Google Scholar
Kangro, H. O., Chong, S. K., Hardiman, A., Heath, R. B. & Walker-Smith, J. A. A prospective study of viral and Mycoplasma infections in chronic inflammatory bowel disease. Gastroenterology98, 549–553 (1990). CASPubMed Google Scholar
Schuller, J. L., Piket-van Ulsen, J., Veeken, I. V., Michel, M. F. & Stolz, E. Antibodies against Chlamydia of lymphogranuloma-venereum type in Crohn's disease. Lancet1, 19–20 (1979). CASPubMed Google Scholar
Swidsinski, A., Loening-Baucke, V., Vaneechoutte, M. & Doerffel, Y. Active Crohn's disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm. Bowel Dis.14, 147–161 (2008). PubMed Google Scholar
Willing, B. et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis.15, 653–660 (2009). PubMed Google Scholar
Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis.15, 1183–1189 (2009). CASPubMed Google Scholar
Schwiertz, A. et al. Microbiota in pediatric inflammatory bowel disease. J. Pediatr.157, 240–244 e1 (2010). PubMed Google Scholar
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA105, 16731–16736 (2008). CASPubMedPubMed Central Google Scholar
Jia, W. et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol. Lett.310, 138–144.
Luther, J., Dave, M., Higgins, P. D. & Kao, J. Y. Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Inflamm. Bowel Dis.16, 1077–1084 (2010). PubMed Google Scholar
Gutierrez, A. et al. Cytokine association with bacterial DNA in serum of patients with inflammatory bowel disease. Inflamm. Bowel Dis.15, 508–514 (2009). PubMed Google Scholar
Liu, Y. et al. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn's disease. Gastroenterology108, 1396–1404 (1995). CASPubMed Google Scholar
Chen, W., Li, D., Paulus, B., Wilson, I. & Chadwick, V. S. Detection of Listeria monocytogenes by polymerase chain reaction in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. J. Gastroenterol. Hepatol.15, 1145–1150 (2000). CASPubMed Google Scholar
Chiba, M. et al. Listeria monocytogenes in Crohn's disease. Scand. J. Gastroenterol.33, 430–434 (1998). CASPubMed Google Scholar
Qual, D. A., Kaneene, J. B., Varty, T. J., Miller, R. & Thoen, C. O. Lack of association between the occurrence of Crohn's disease and occupational exposure to dairy and beef cattle herds infected with Mycobacterium avium subspecies paratuberculosis. J. Dairy Sci.93, 2371–2376 (2010). CASPubMed Google Scholar
Canto, E. et al. TNF alpha production to TLR2 ligands in active IBD patients. Clin. Immunol.119, 156–165 (2006). CASPubMed Google Scholar
Ng, M. T. et al. Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9 -1237T/C polymorphism is associated with _Helicobacter pylori_-induced gastric disease. Infect. Immun.78, 1345–1352 (2010). CASPubMed Google Scholar
Molnar, T. et al. NOD1 gene E266K polymorphism is associated with disease susceptibility but not with disease phenotype or NOD2/CARD15 in Hungarian patients with Crohn's disease. Dig. Liver Dis.39, 1064–1070 (2007). CASPubMed Google Scholar
Hysi, P. et al. NOD1 variation, immunoglobulin E and asthma. Hum. Mol. Genet.14, 935–941 (2005). CASPubMed Google Scholar
Lala, S. et al. Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology125, 47–57 (2003). CASPubMed Google Scholar
Seidelin, J. B., Broom, O. J., Olsen, J. & Nielsen, O. H. Evidence for impaired CARD15 signalling in Crohn's disease without disease linked variants. PLoS ONE4, e7794 (2009). PubMedPubMed Central Google Scholar
Lacher, M. et al. Autophagy 16-like 1 rs2241880 G. allele is associated with Crohn's disease in German children. Acta Paediatr.98, 1835–1840 (2009). CASPubMed Google Scholar
von Kampen, O. et al. Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling. J. Biol. Chem.285, 19921–19926 (2010). CASPubMedPubMed Central Google Scholar
McGovern, D. P. et al. TUCAN (CARD8) genetic variants and inflammatory bowel disease. Gastroenterology131, 1190–1196 (2006). CASPubMed Google Scholar
Zhernakova, A. et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am. J. Hum. Genet.82, 1202–1210 (2008). CASPubMedPubMed Central Google Scholar
Klein, W. et al. A polymorphism in the CD14 gene is associated with Crohn disease. Scand. J. Gastroenterol.37, 189–191 (2002). CASPubMed Google Scholar
Yuan, F. F. et al. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol. Cell Biol.86, 268–270 (2008). CASPubMed Google Scholar
Gibot, S., Cariou, A., Drouet, L., Rossignol, M. & Ripoll, L. Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit. Care Med.30, 969–973 (2002). CASPubMed Google Scholar
De Jager, P. L. et al. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun.8, 387–397 (2007). CASPubMed Google Scholar