The importance of the gut microbiota after bariatric surgery (original) (raw)
Penders, J. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics118, 511–521 (2006). ArticlePubMed Google Scholar
Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol.5, e177 (2007). ArticleCASPubMedPubMed Central Google Scholar
Marchesi, J. R. Human distal gut microbiome. Environ. Microbiol.13, 3088–3102 (2011). ArticlePubMed Google Scholar
DiBaise, J. K. et al. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc.83, 460–469 (2008). ArticlePubMed Google Scholar
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature457, 480–484 (2009). ArticleCASPubMed Google Scholar
Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell148, 1258–1270 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tap, J. et al. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol.11, 2574–2584 (2009). ArticlePubMed Google Scholar
Flegal, K. M., Carroll, M. D., Ogden, C. L. & Curtin, L. R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA303, 235–241 (2010). ArticleCASPubMed Google Scholar
Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA101, 15718–15723 (2004). ArticleCASPubMedPubMed Central Google Scholar
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science307, 1915–1920 (2005). ArticleCASPubMed Google Scholar
Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA104, 979–984 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cani, P. D., Delzenne, N. M., Amar, J. & Burcelin, R. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol. Biol. (Paris)56, 305–309 (2008). ArticleCAS Google Scholar
Serino, M. et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut61, 543–553 (2012). ArticleCASPubMed Google Scholar
Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology137, 1716–1724 (2009). ArticleCASPubMed Google Scholar
Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe3, 213–223 (2008). ArticleCASPubMedPubMed Central Google Scholar
Astrup, A., Dyerberg, J., Selleck, M. & Stender, S. Nutrition transition and its relationship to the development of obesity and related chronic diseases. Obes. Rev.9 (Suppl. 1), 48–52 (2008). ArticlePubMed Google Scholar
Santacruz, A. et al. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring)17, 1906–1915 (2009). Article Google Scholar
Prakash, S., Tomaro-Duchesneau, C., Saha, S. & Cantor, A. The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J. Biomed. Biotechnol. 981214 (2011).
Dicksved, J. et al. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J. Med. Microbiol.58 (Pt 4), 509–516 (2009). ArticleCASPubMed Google Scholar
Guarner, F. & Malagelada, J. R. Gut flora in health and disease. Lancet361, 512–519 (2003). ArticlePubMed Google Scholar
Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res.47, 241–259 (2006). ArticleCASPubMed Google Scholar
Kurdi, P., Kawanishi, K., Mizutani, K. & Yokota, A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J. Bacteriol.188, 1979–1986 (2006). ArticleCASPubMedPubMed Central Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). ArticlePubMed Google Scholar
Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science307, 1955–1959 (2005). ArticleCASPubMed Google Scholar
Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev.81, 1031–1064 (2001). ArticleCASPubMed Google Scholar
Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring)18, 190–195 (2010). Article Google Scholar
Clarke, S. et al. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes3 (2012).
Armougom, F., Henry, M., Vialettes, B., Raccah, D. & Raoult, D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE4, e7125 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006). ArticleCASPubMed Google Scholar
Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond.)32, 1720–1724 (2008). ArticleCAS Google Scholar
Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol.73, 1073–1078 (2007). ArticleCASPubMed Google Scholar
Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr.94, 58–65 (2011). ArticleCASPubMedPubMed Central Google Scholar
Harris, K., Kassis, A., Major, G. & Chou, C. J. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 879151 (2012).
Dyson, P. A. The therapeutics of lifestyle management on obesity. Diabetes Obes. Metab.12, 941–946 (2010). ArticleCASPubMed Google Scholar
Wing, R. R. & Phelan, S. Long-term weight loss maintenance. Am. J. Clin. Nutr.82 (1 Suppl.), 222S–225S (2005). ArticleCASPubMed Google Scholar
Sjöström, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med.351, 2683–2693 (2004). ArticlePubMed Google Scholar
Ioannides-Demos, L. L., Piccenna, L. & McNeil, J. J. Pharmacotherapies for obesity: past, current, and future therapies. J. Obes. 179674 (2011).
Sachdev, M., Miller, W. C., Ryan, T. & Jollis, J. G. Effect of fenfluramine-derivative diet pills on cardiac valves: a meta-analysis of observational studies. Am. Heart J.144, 1065–1073 (2002). ArticleCASPubMed Google Scholar
Rich, S., Rubin, L., Walker, A. M., Schneeweiss, S. & Abenhaim, L. Anorexigens and pulmonary hypertension in the United States: results from the surveillance of North American pulmonary hypertension. Chest117, 870–874 (2000). ArticleCASPubMed Google Scholar
Sjostrom, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA307, 56–65 (2012). ArticlePubMed Google Scholar
Buchwald, H. et al. Bariatric surgery: a systematic review and meta-analysis. JAMA292, 1724–1737 (2004). ArticleCASPubMed Google Scholar
Dixon, J. B., Straznicky, N. E., Lambert, E. A., Schlaich, M. P. & Lambert, G. W. Surgical approaches to the treatment of obesity. Nat. Rev. Gastroenterol. Hepatol.8, 429–437 (2011). ArticlePubMed Google Scholar
Buchwald, H. Consensus Conference Panel. Consensus conference statement bariatric surgery for morbid obesity: health implications for patients, health professionals, and third-party payers. Surg. Obes. Relat. Dis.1, 371–381 (2005). ArticlePubMed Google Scholar
Sandoval, D. Bariatric surgeries: beyond restriction and malabsorption. Int. J. Obes. (Lond.)35 (Suppl. 3), S45–S49 (2011). Article Google Scholar
Chopra, T., Zhao, J. J., Alangaden, G., Wood, M. H. & Kaye, K. S. Preventing surgical site infections after bariatric surgery: value of perioperative antibiotic regimens. Expert Rev. Pharmacoecon. Outcomes Res.10, 317–328 (2010). ArticlePubMedPubMed Central Google Scholar
No authors listed] ASHP Therapeutic Guidelines on Antimicrobial Prophylaxis in Surgery. American Society of Health-System Pharmacists. Am. J. Health Syst. Pharm.56, 1839–1888 (1999).
Favretti, F., O'Brien, P. E. & Dixon, J. B. Patient management after LAP-BAND placement. Am. J. Surg.184, 38S–41S (2002). ArticlePubMed Google Scholar
Godlewski, A. E. et al. Effect of dental status on changes in mastication in patients with obesity following bariatric surgery. PLoS ONE6, e22324 (2011). ArticleCASPubMedPubMed Central Google Scholar
Brunault, P. et al. Observations regarding 'quality of life' and 'comfort with food' after bariatric surgery: comparison between laparoscopic adjustable gastric banding and sleeve gastrectomy. Obes. Surg.21, 1225–1231 (2011). ArticlePubMed Google Scholar
Peterli, R. et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes. Surg.22, 740–748 (2012). ArticlePubMedPubMed Central Google Scholar
Basso, N. et al. First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis. Surg. Endosc.25, 3540–3550 (2011). ArticleCASPubMed Google Scholar
El Oufir, L. et al. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans. Gut38, 870–877 (1996). ArticleCASPubMedPubMed Central Google Scholar
Laferrère, B. et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab.93, 2479–2485 (2008). ArticleCASPubMedPubMed Central Google Scholar
Reed, M. A. et al. Roux-en-Y gastric bypass corrects hyperinsulinemia implications for the remission of type 2 diabetes. J. Clin. Endocrinol. Metab.96, 2525–2531 (2011). ArticleCASPubMed Google Scholar
Laferrère, B. et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care30, 1709–1716 (2007). ArticleCASPubMed Google Scholar
Beckman, L. M., Beckman, T. R. & Earthman, C. P. Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J. Am. Diet. Assoc.110, 571–584 (2010). CAS Google Scholar
Ashrafian, H. et al. Diabetes resolution and hyperinsulinaemia after metabolic Roux-en-Y gastric bypass. Obes. Rev.12, e257–272 (2011). ArticleCASPubMed Google Scholar
Ashrafian, H. et al. Metabolic surgery: an evolution through bariatric animal models. Obes. Rev.11, 907–920 (2010). ArticleCASPubMed Google Scholar
Ciangura, C. et al. Dynamics of change in total and regional body composition after gastric bypass in obese patients. Obesity (Silver Spring)18, 760–765 (2010). Article Google Scholar
Dalmas, E. et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am. J. Clin. Nutr.94, 450–458 (2011). ArticleCASPubMed Google Scholar
Aron-Wisnewsky, J. et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J. Clin. Endocrinol. Metab.94, 4619–4623 (2009). ArticleCASPubMed Google Scholar
Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes54, 2277–2286 (2005). ArticleCASPubMed Google Scholar
Poitou, C. et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler. Thromb. Vasc. Biol.31, 2322–2330 (2011). ArticleCASPubMed Google Scholar
Shin, A. C., Zheng, H., Pistell, P. J. & Berthoud, H. R. Roux-en-Y gastric bypass surgery changes food reward in rats. Int. J. Obes. (Lond.)35, 642–651 (2011). ArticleCAS Google Scholar
le Roux, C. W. et al. Gastric bypass reduces fat intake and preference. Am. J. Physiol. Regul. Integr Comp. Physiol.301, R1057–R1066 (2011). ArticleCASPubMedPubMed Central Google Scholar
Furet, J. P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes59, 3049–3057 (2010). ArticleCASPubMedPubMed Central Google Scholar
US National Library of Medicine. Adaptation of Human Gut Microbiota to Energetic Restriction (microbaria). ClinicalTrials.gov[online], (2011).
Li, J. V. et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut60, 1214–1223 (2011). ArticleCASPubMed Google Scholar
Li, J. V. et al. Experimental bariatric surgery in rats generates a cytotoxic chemical environment in the gut contents. Front. Microbiol.2, 183 (2011). PubMedPubMed Central Google Scholar
Smith, C. D. et al. Gastric acid secretion and vitamin B12 absorption after vertical Roux-en-Y gastric bypass for morbid obesity. Ann. Surg.218, 91–96 (1993). ArticleCASPubMedPubMed Central Google Scholar
Ishida, R. K. et al. Microbial flora of the stomach after gastric bypass for morbid obesity. Obes. Surg.17, 752–758 (2007). ArticlePubMed Google Scholar
Prachand, V. N. & Alverdy, J. C. Gastroesophageal reflux disease and severe obesity: Fundoplication or bariatric surgery? World J. Gastroenterol.16, 3757–3761 (2010). ArticlePubMedPubMed Central Google Scholar
Frezza, E. E. et al. Symptomatic improvement in gastroesophageal reflux disease (GERD) following laparoscopic Roux-en-Y gastric bypass. Surg. Endosc.16, 1027–1031 (2002). ArticleCASPubMed Google Scholar
O'May, G. A., Reynolds, N. & Macfarlane, G. T. Effect of pH on an in vitro model of gastric microbiota in enteral nutrition patients. Appl. Environ. Microbiol.71, 4777–4783 (2005). ArticleCASPubMedPubMed Central Google Scholar
Giannella, R. A., Broitman, S. A. & Zamcheck, N. Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut13, 251–256 (1972). ArticleCASPubMedPubMed Central Google Scholar
O'May, G. A., Reynolds, N., Smith, A. R., Kennedy, A. & Macfarlane, G. T. Effect of pH and antibiotics on microbial overgrowth in the stomachs and duodena of patients undergoing percutaneous endoscopic gastrostomy feeding. J. Clin. Microbiol.43, 3059–3065 (2005). ArticlePubMedPubMed Central Google Scholar
Williams, C. Occurrence and significance of gastric colonization during acid-inhibitory therapy. Best Pract. Res. Clin. Gastroenterol.15, 511–521 (2001). ArticleCASPubMed Google Scholar
Theisen, J. et al. Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. J. Gastrointest. Surg.4, 50–54 (2000). ArticleCASPubMed Google Scholar
Walker, A. W. et al. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol.71, 3692–3700 (2005). ArticleCASPubMedPubMed Central Google Scholar
Midtvedt, T., Norman, A. & Nygaard, K. Bile acid transforming micro-organisms in rats with an intestinal blind segment. Acta Pathol. Microbiol. Scand.77, 162–166 (1969). ArticleCASPubMed Google Scholar
Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4523–4530 (2011). ArticlePubMed Google Scholar
Patti, M. E. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring)17, 1671–1677 (2009). ArticleCAS Google Scholar
Islam, K. B. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology141, 1773–1781 (2011). ArticleCASPubMed Google Scholar
Binder, H. J., Filburn, B. & Floch, M. Bile acid inhibition of intestinal anaerobic organisms. Am. J. Clin. Nutr.28, 119–125 (1975). ArticleCASPubMed Google Scholar
Cotter, P. D., Stanton, C., Ross, R. P. & Hill, C. The impact of antibiotics on the gut microbiota as revealed by high throughput DNA sequencing. Discov. Med.13, 193–199 (2012). PubMed Google Scholar
Antonopoulos, D. A. et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun.77, 2367–2375 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest.120, 4332–4341 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol.6, e280 (2008). ArticleCASPubMedPubMed Central Google Scholar
Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4586–4591 (2011). ArticlePubMed Google Scholar
Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4554–4561 (2011). ArticlePubMed Google Scholar
Miras, A. D. & le Roux, C. W. Bariatric surgery and taste: novel mechanisms of weight loss. Curr. Opin. Gastroenterol.26, 140–145 (2010). ArticlePubMed Google Scholar
Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes56, 1761–1772 (2007). ArticleCASPubMed Google Scholar
Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med.1, 6ra14 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ravussin, Y. et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring)20, 738–747 (2012). ArticleCAS Google Scholar
Nadal, I. et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int. J. Obes. (Lond.)33, 758–767 (2009). ArticleCAS Google Scholar
Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J.5, 220–230 (2011). ArticleCASPubMed Google Scholar
Di Marzo, V., Bifulco, M. & De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov.3, 771–784 (2004). ArticleCASPubMed Google Scholar
Thaler, J. P. & Cummings, D. E. Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology150, 2518–2525 (2009). ArticleCASPubMed Google Scholar
Mathurin, P. et al. Prospective study of the long-term effects of bariatric surgery on liver injury in patients without advanced disease. Gastroenterology137, 532–540 (2009). ArticleCASPubMed Google Scholar
Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes60, 2775–2786 (2011). ArticleCASPubMedPubMed Central Google Scholar
Musso, G., Gambino, R. & Cassader, M. Obesity, diabetes and gut microbiota: the hygiene hypothesis expanded. Diabetes Care33, 2277–2284 (2010). ArticlePubMedPubMed Central Google Scholar
le Roux, C. W. et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg.246, 780–785 (2007). ArticlePubMed Google Scholar
le Roux, C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg.243, 108–114 (2006). ArticlePubMed Google Scholar
Asmar, M. New physiological effects of the incretin hormones GLP-1 and GIP. Dan. Med. Bull.58, B4248 (2011). PubMed Google Scholar
Vella, A. & Rizza, R. A. Extrapancreatic effects of GIP and GLP-1. Horm. Metab. Res.36, 830–836 (2004). ArticleCASPubMed Google Scholar
Flint, H. J. Obesity and the gut microbiota. J. Clin. Gastroenterol.45 (Suppl.), S128–S132 (2011). ArticleCASPubMed Google Scholar