The bowel and beyond: the enteric nervous system in neurological disorders (original) (raw)
Gershon, M. D. The Second Brain (Harper Collins, 1998). Google Scholar
Furness, J. B., Callaghan, B. P., Rivera, L. R. & Cho, H. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol.817, 39–71 (2014). PubMed Google Scholar
Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell154, 274–284 (2013). CASPubMed Google Scholar
Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol.9, 799–809 (2009). CASPubMed Google Scholar
Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol.14, 667–685 (2014). CASPubMed Google Scholar
Langley, J. N. The Autonomic Nervous System, Part 1 [1921] (Cornell Univ. Library, 2010). Google Scholar
Furness, J. B. The Enteric Nervous System (Blackwell Publishing, 2006). Google Scholar
Gershon, M. D. Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosciences33, 446–456 (2010). CAS Google Scholar
Forsythe, P., Bienenstock, J. & Kunze, W. A. Vagal pathways for microbiome–brain–gut axis communication. Adv. Exp. Med. Biol.817, 115–133 (2014). PubMed Google Scholar
Rush, A. J. et al. Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol. Psychiatry47, 276–286 (2000). CASPubMed Google Scholar
George, M. S. et al. Vagus nerve stimulation: a new tool for brain research and therapy. Biol. Psychiatry47, 287–295 (2000). CASPubMed Google Scholar
Sampson, T. R. & Mazmanian, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe17, 565–576 (2015). CASPubMedPubMed Central Google Scholar
Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell161, 264–276 (2015). CASPubMedPubMed Central Google Scholar
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci.34, 15490–15496 (2014). PubMedPubMed Central Google Scholar
Tam, P. K. Hirschsprung's disease: a bridge for science and surgery. J. Pediatr. Surg.51, 18–22 (2016). PubMed Google Scholar
Heuckeroth, R. O. Hirschsprung's disease, Down syndrome, and missing heritability: too much collagen slows migration. J. Clin. Invest.125, 4323–4326 (2015). PubMedPubMed Central Google Scholar
Amiel, J. & Lyonnet, S. Hirschsprung disease, associated syndromes, and genetics: a review. J. Med. Genet.38, 729–739 (2001). CASPubMedPubMed Central Google Scholar
Avetisyan, M., Schill, E. M. & Heuckeroth, R. O. Building a second brain in the bowel. J. Clin. Invest.125, 899–907 (2015). PubMedPubMed Central Google Scholar
Klingelhoefer, L. & Reichmann, H. Pathogenesis of Parkinson disease — the gut–brain axis and environmental factors. Nat. Rev. Neurol.11, 625–636 (2015). CASPubMed Google Scholar
Collins, S. J., Lawson, V. A. & Masters, C. L. Transmissible spongiform encephalopathies. Lancet363, 51–61 (2004). CASPubMed Google Scholar
Aguzzi, A. Unraveling prion strains with cell biology and organic chemistry. Proc. Natl Acad. Sci. USA105, 11–12 (2008). CASPubMed Google Scholar
Cronier, S. et al. Endogenous prion protein conversion is required for prion-induced neuritic alterations and neuronal death. FASEB J.26, 3854–3861 (2012). CASPubMed Google Scholar
Ghosh, S. Mechanism of intestinal entry of infectious prion protein in the pathogenesis of variant Creutzfeldt–Jakob disease. Adv. Drug Deliv. Rev.56, 915–920 (2004). CASPubMed Google Scholar
Kujala, P. et al. Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog.7, e1002449 (2011). CASPubMedPubMed Central Google Scholar
Chiocchetti, R. et al. Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion? Cell Tissue Res.332, 185–194 (2008). PubMed Google Scholar
Albanese, V. et al. Evidence for prion protein expression in enteroglial cells of the myenteric plexus of mouse intestine. Auton. Neurosci.140, 17–23 (2008). CASPubMed Google Scholar
Martin, G. R. et al. Endogenous cellular prion protein regulates contractility of the mouse ileum. Neurogastroenterol. Motil.24, e412–424 (2012). CASPubMed Google Scholar
Posar, A., Resca, F. & Visconti, P. Autism according to diagnostic and statistical manual of mental disorders 5th edition: the need for further improvements. J. Pediatr. Neurosci.10, 146–148 (2015). PubMedPubMed Central Google Scholar
McElhanon, B. O., McCracken, C., Karpen, S. & Sharp, W. G. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics133, 872–883 (2014). PubMed Google Scholar
Halfon, N. & Kuo, A. A. What DSM-5 could mean to children with autism and their families. JAMA Pediatr.167, 608–613 (2013). PubMed Google Scholar
Betancur, C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res.1380, 42–77 (2011). CASPubMed Google Scholar
Neale, B. M. et al. Patterns and rates of exonic De novo mutations in autism spectrum disorders. Nature485, 242–245 (2012). CASPubMedPubMed Central Google Scholar
O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of De novo mutations. Nature485, 246–250 (2012). CASPubMedPubMed Central Google Scholar
O'Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science338, 1619–1622 (2012). CASPubMedPubMed Central Google Scholar
Schulze, T. G. & McMahon, F. J. Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. Hum. Hered.58, 131–138 (2004). PubMed Google Scholar
Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell158, 263–276 (2014). CASPubMedPubMed Central Google Scholar
Sweatt, J. D. Pitt–Hopkins syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp. Mol. Med.45, e21 (2013). PubMedPubMed Central Google Scholar
Grubisic, V., Kennedy, A. J., Sweatt, J. D. & Parpura, V. Pitt–Hopkins mouse model has altered particular gastrointestinal transits in vivo. Autism Res.8, 629–633 (2015). PubMedPubMed Central Google Scholar
Marler, S. et al. Brief report: whole blood serotonin levels and gastrointestinal symptoms in autism spectrum disorder. J. Autism Dev. Disord.46, 1124–1130 (2016). PubMedPubMed Central Google Scholar
Matondo, R. B. et al. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol.296, G963–G968 (2009). CASPubMed Google Scholar
Morrissey, J. J., Walker, M. N. & Lovenberg, W. The absence of tryptophan hydroxylase activity in blood platelets. Proc. Soc. Exp. Biol. Med.154, 496–499 (1977). CASPubMed Google Scholar
Lesch, K. P., Wolozin, B. L., Murphy, D. L. & Riederer, P. Primary structure of the human platelet serotonin (5-HT) uptake site: identity with the brain 5-HT transporter. J. Neurochem.60, 2319–2322 (1993). CASPubMed Google Scholar
Veenstra-VanderWeele, J. et al. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc. Natl Acad. Sci. USA109, 5469–5474 (2012). CASPubMed Google Scholar
Margolis, K. G. et al. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J. Clin. Invest.126, 2221–2235 (2016). PubMedPubMed Central Google Scholar
Bromley, R. L. et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J. Neurol. Neurosurg. Psychiatry84, 637–643 (2013). PubMedPubMed Central Google Scholar
Christensen, J. et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA309, 1696–1703 (2013). CASPubMedPubMed Central Google Scholar
Roullet, F. I., Lai, J. K. & Foster, J. A. In utero exposure to valproic acid and autism — a current review of clinical and animal studies. Neurotoxicol. Teratol.36, 47–56 (2013). CASPubMed Google Scholar
de Theije, C. G. et al. Intestinal inflammation in a murine model of autism spectrum disorders. Brain Behav. Immun.37, 240–247 (2014). CASPubMed Google Scholar
Ghia, J. E. et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology137, 1649–1660 (2009). CASPubMed Google Scholar
Haub, S. et al. Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter. Neurogastroenterol. Motil.22, 826–e229 (2010). CASPubMedPubMed Central Google Scholar
Bischoff, S. C. et al. Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am. J. Physiol. Gastrointest Liver Physiol.296, G685–G695 (2009). CASPubMed Google Scholar
Gershon, M. D. Serotonin is a sword and a shield of the bowel: serotonin plays offense and defense. Trans. Am. Clin. Climatol. Assoc.123, 268–280; discussion 280 (2012). PubMedPubMed Central Google Scholar
Gershon, M. D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes.20, 14–21 (2013). CASPubMedPubMed Central Google Scholar
Liu, Z., Li, N. & Neu, J. Tight junctions, leaky intestines, and pediatric diseases. Acta Paediatr.94, 386–393 (2005). CASPubMed Google Scholar
D'Eufemia, P. et al. Abnormal intestinal permeability in children with autism. Acta Paediatr.85, 1076–1079 (1996). CASPubMed Google Scholar
Robertson, M. A. et al. Intestinal permeability and glucagon-like peptide-2 in children with autism: a controlled pilot study. J. Autism Dev. Disord.38, 1066–1071 (2008). PubMed Google Scholar
de Magistris, L. et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatr. Gastroenterol. Nutr.51, 418–424 (2010). PubMed Google Scholar
Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J. & Patterson, P. H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav. Immun.26, 607–616 (2012). CASPubMedPubMed Central Google Scholar
Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell155, 1451–1463 (2013). CASPubMedPubMed Central Google Scholar
Neunlist, M. et al. The digestive neuronal–glial–epithelial unit: a new actor in gut health and disease. Nat. Rev. Gastroenterol. Hepatol.10, 90–100 (2013). CASPubMed Google Scholar
Jankovic, J. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry79, 368–376 (2008). CASPubMed Google Scholar
Qualman, S. J., Haupt, H. M., Yang, P. & Hamilton, S. R. Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson's disease. Gastroenterology87, 848–856 (1984). CASPubMed Google Scholar
Kupsky, W. J., Grimes, M. M., Sweeting, J., Bertsch, R. & Cote, L. J. Parkinson's disease and megacolon: concentric hyaline inclusions (Lewy bodies) in enteric ganglion cells. Neurology37, 1253–1255 (1987). CASPubMed Google Scholar
Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E. & Ikuta, F. Parkinson's disease: the presence of Lewy bodies in Auerbach's and Meissner's plexuses. Acta Neuropathol. (Berl.)76, 217–221 (1988). CAS Google Scholar
Wakabayashi, K., Takahashi, H., Ohama, E. & Ikuta, F. Tyrosine hydroxylase-immunoreactive intrinsic neurons in the Auerbach's and Meissner's plexuses of humans. Neurosci. Lett.96, 259–263 (1989). CASPubMed Google Scholar
Li, Z. S., Pham, T. D., Tamir, H., Chen, J. J. & Gershon, M. D. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J. Neurosci.24, 1330–1339 (2004). CASPubMedPubMed Central Google Scholar
Li, Z. S., Schmauss, C., Cuenca, A., Ratcliffe, E. & Gershon, M. D. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J. Neurosci.26, 2798–2807 (2006). CASPubMedPubMed Central Google Scholar
Tieu, K. A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb. Perspect. Med.1, a009316 (2011). PubMedPubMed Central Google Scholar
Anderson, G. et al. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson's disease. Exp. Neurol.207, 4–12 (2007). CASPubMedPubMed Central Google Scholar
Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O. M. & Sudhof, T. C. α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell123, 383–396 (2005). CASPubMed Google Scholar
Westphal, C. H. & Chandra, S. S. Monomeric synucleins generate membrane curvature. J. Biol. Chem.288, 1829–1840 (2013). CASPubMed Google Scholar
Vargas, K. J. et al. Synucleins regulate the kinetics of synaptic vesicle endocytosis. J. Neurosci.34, 9364–9376 (2014). PubMedPubMed Central Google Scholar
Braak, H. & Braak, E. Pathoanatomy of Parkinson's disease. J. Neurol.247 (Suppl. 2), II/3–II/10 (2000). Google Scholar
Preterre, C. et al. Optimizing Western Blots for the detection of endogenous α-synuclein in the enteric nervous system. J. Parkinsons Dis.5, 765–772 (2015). CASPubMed Google Scholar
Aldecoa, I. et al. Alpha-synuclein immunoreactivity patterns in the enteric nervous system. Neurosci. Lett.602, 145–149 (2015). CASPubMed Google Scholar
Miraglia, F., Betti, L., Palego, L. & Giannaccini, G. Parkinson's disease and alpha-synucleinopathies: from arising pathways to therapeutic challenge. Cent. Nerv. Syst. Agents Med. Chem.15, 109–116 (2015). CASPubMed Google Scholar
Hallett, P. J., McLean, J. R., Kartunen, A., Langston, J. W. & Isacson, O. Alpha-synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol. Dis.47, 258–267 (2012). CASPubMedPubMed Central Google Scholar
Wang, L., Fleming, S. M., Chesselet, M. F. & Tache, Y. Abnormal colonic motility in mice overexpressing human wild-type α-synuclein. Neuroreport19, 873–876 (2008). CASPubMedPubMed Central Google Scholar
Wang, L. et al. Mice overexpressing wild-type human α-synuclein display alterations in colonic myenteric ganglia and defecation. Neurogastroenterol. Motil.24, e425–e436 (2012). CASPubMedPubMed Central Google Scholar
Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science276, 2045–2047 (1997). CASPubMed Google Scholar
Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet.18, 106–108 (1998). CASPubMed Google Scholar
Kuo, Y. M. et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated α-synuclein gene mutations precede central nervous system changes. Hum. Mol. Genet.19, 1633–1650 (2010). CASPubMedPubMed Central Google Scholar
Lebouvier, T. et al. Routine colonic biopsies as a new tool to study the enteric nervous system in living patients. Neurogastroenterol. Motil.22, e11–e14 (2010). CASPubMed Google Scholar
Gold, A., Turkalp, Z. T. & Munoz, D. G. Enteric alpha-synuclein expression is increased in Parkinson's disease but not Alzheimer's disease. Mov. Disord.28, 237–240 (2013). CASPubMed Google Scholar
US Preventive Services Task Force. Screening for colorectal cancer: U.S. Preventive Services Task Force recommendation statement. JAMA315, 2564-2575 (2016).
Hilton, D. et al. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson's disease. Acta Neuropathol.127, 235–241 (2014). CASPubMed Google Scholar
Shannon, K. M. et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. Mov. Disord.27, 709–715 (2012). PubMed Google Scholar
Visanji, N. P. et al. Colonic mucosal α-synuclein lacks specificity as a biomarker for Parkinson disease. Neurology84, 609–616 (2015). CASPubMedPubMed Central Google Scholar
Stokholm, M. G., Danielsen, E. H., Hamilton-Dutoit, S. J. & Borghammer, P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann. Neurol.79, 940–949 (2016). CASPubMed Google Scholar
Singaram, C. et al. Dopaminergic defect of enteric nervous system in Parkinson's disease patients with chronic constipation. Lancet346, 861–864 (1995). CASPubMed Google Scholar
Annerino, D. M. et al. Parkinson's disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol.124, 665–680 (2012). PubMedPubMed Central Google Scholar
Pickel, V. M., Beckley, S. C., Joh, T. H. & Reis, D. J. Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res.225, 373–385 (1981). CASPubMed Google Scholar
Weiner, N. Regulation of norepinephrine biosynthesis. Annu. Rev. Pharmacol.10, 273–290 (1970). CASPubMed Google Scholar
Braak, E. et al. alpha-synuclein immunopositive Parkinson's disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathol.101, 195–201 (2001). CASPubMed Google Scholar
Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R. & Braak, H. Where does parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol.61, 413–426 (2002). PubMed Google Scholar
Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm.110, 517–536 (2003). CASPubMed Google Scholar
Del Tredici, K. & Duda, J. E. Peripheral Lewy body pathology in Parkinson's disease and incidental Lewy body disease: four cases. J. Neurol. Sci.310, 100–106 (2011). PubMed Google Scholar
Phillips, R. J., Walter, G. C., Wilder, S. L., Baronowsky, E. A. & Powley, T. L. Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson's disease? Neuroscience153, 733–750 (2008). CASPubMedPubMed Central Google Scholar
Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L. & Richardson, R. J. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology50, 1346–1350 (1998). CASPubMed Google Scholar
Pan-Montojo, F. et al. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE5, e8762 (2010). PubMedPubMed Central Google Scholar
Pan-Montojo, F. et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci. Rep.2, 898 (2012). PubMedPubMed Central Google Scholar
Ulusoy, A. et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med.5, 1051–1059 (2013). CASPubMed Central Google Scholar
Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol.128, 805–820 (2014). PubMed Google Scholar
Svensson, E. et al. Vagotomy and subsequent risk of Parkinson's disease. Ann. Neurol.78, 522–529 (2015). PubMed Google Scholar
Tysnes, O. B. et al. Does vagotomy reduce the risk of Parkinson's disease? Ann. Neurol.78, 1011–1012 (2015). PubMed Google Scholar
Jellinger, K. A. A critical evaluation of current staging of α-synuclein pathology in Lewy body disorders. Biochim. Biophys. Acta1792, 730–740 (2009). CASPubMed Google Scholar
Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease: a critical analysis of α-synuclein staging. Neuropathol. Appl. Neurobiol.34, 284–295 (2008). CASPubMed Google Scholar
Kingsbury, A. E. et al. Brain stem pathology in Parkinson's disease: an evaluation of the Braak staging model. Mov. Disord.25, 2508–2515 (2010). PubMed Google Scholar
Ubhi, K. & Masliah, E. Alzheimer's disease: recent advances and future perspectives. J. Alzheimers Dis.33, S185–S194 (2013). PubMed Google Scholar
Schliebs, R. Basal forebrain cholinergic dysfunction in Alzheimer's disease — interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem. Res.30, 895–908 (2005). CASPubMed Google Scholar
Arai, H. et al. Expression patterns of beta-amyloid precursor protein (β-APP) in neural and nonneural human tissues from Alzheimer's disease and control subjects. Ann. Neurol.30, 686–693 (1991). CASPubMed Google Scholar
Puig, K. L., Swigost, A. J., Zhou, X., Sens, M. A. & Combs, C. K. Amyloid precursor protein expression modulates intestine immune phenotype. J. Neuroimmune Pharmacol.7, 215–230 (2012). PubMed Google Scholar
Semar, S. et al. Changes of the enteric nervous system in amyloid-β protein precursor transgenic mice correlate with disease progression. J. Alzheimers Dis.36, 7–20 (2013). CASPubMed Google Scholar
Puig, K. L. et al. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. J. Alzheimers Dis.44, 1263–1278 (2015). CASPubMedPubMed Central Google Scholar
Joachim, C. L., Mori, H. & Selkoe, D. J. Amyloid β-protein deposition in tissues other than brain in Alzheimer's disease. Nature341, 226–230 (1989). CASPubMed Google Scholar
Deguchi, E., Iwai, N., Goto, Y., Yanagihara, J. & Fushiki, S. An immunohistochemical study of neurofilament and microtubule-associated Tau protein in the enteric innervation in Hirschsprung's disease. J. Pediatr. Surg.28, 886–890 (1993). CASPubMed Google Scholar
Tam, P. K. & Owen, G. An immunohistochemical study of neuronal microtubule-associated proteins in Hirschsprung's disease. Hum. Pathol.24, 424–431 (1993). CASPubMed Google Scholar
Phillips, R. J., Walter, G. C., Ringer, B. E., Higgs, K. M. & Powley, T. L. Alpha-synuclein immunopositive aggregates in the myenteric plexus of the aging Fischer 344 rat. Exp. Neurol.220, 109–119 (2009). CASPubMedPubMed Central Google Scholar
Shankle, W. R. et al. Studies of the enteric nervous system in Alzheimer disease and other dementias of the elderly: enteric neurons in Alzheimer disease. Mod. Pathol.6, 10–14 (1993). CASPubMed Google Scholar
Jovicic, A., Paul, J. W. 3rd & Gitler, A. D. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia. J. Neurochem.http://dx.doi.org/10.1111/jnc.13642 (2016).
Geser, F., Martinez-Lage, M., Kwong, L. K., Lee, V. M. & Trojanowski, J. Q. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J. Neurol.256, 1205–1214 (2009). PubMedPubMed Central Google Scholar
Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet.40, 572–574 (2008). CASPubMed Google Scholar
Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science319, 1668–1672 (2008). CASPubMed Google Scholar
Chio, A. et al. Extensive genetics of ALS: a population-based study in Italy. Neurology79, 1983–1989 (2012). PubMedPubMed Central Google Scholar
Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science314, 130–133 (2006). CASPubMed Google Scholar
Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M. & Baloh, R. H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA106, 18809–18814 (2009). CASPubMed Google Scholar
Guo, Y. et al. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res.1460, 88–95 (2012). CASPubMed Google Scholar
Esmaeili, M. A., Panahi, M., Yadav, S., Hennings, L. & Kiaei, M. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int. J. Exp. Pathol.94, 56–64 (2013). CASPubMedPubMed Central Google Scholar
Herdewyn, S. et al. Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T) mice. Mol. Neurodegener.9, 24 (2014). PubMedPubMed Central Google Scholar
Hatzipetros, T. et al. C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Res.1584, 59–72 (2014). CASPubMed Google Scholar
Kaur, S. J., McKeown, S. R. & Rashid, S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene577, 109–118 (2016). CASPubMed Google Scholar
Wu, S., Yi, J., Zhang, Y. G., Zhou, J. & Sun, J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol. Rep.3, e12356 (2015). PubMedPubMed Central Google Scholar
Gross, E. R., Gershon, M. D., Margolis, K. G., Gertsberg, Z. V. & Cowles, R. A. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology143, 408–417.e2 (2012). CASPubMedPubMed Central Google Scholar
Natale, G., Pasquali, L., Paparelli, A. & Fornai, F. Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterol. Motil.23, 1056–1065 (2011). CASPubMed Google Scholar
Pinkas, A. & Aschner, M. Advanced glycation end-products and their receptors: related pathologies, recent therapeutic strategies, and a potential model for future neurodegeneration studies. Chem. Res. Toxicol.29, 707–714 (2016). CASPubMed Google Scholar
Deng, H., Gao, K. & Jankovic, J. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol.10, 337–348 (2014). CASPubMed Google Scholar
Sharma, A. et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat. Commun.7, 10465 (2016). CASPubMedPubMed Central Google Scholar
Gershon, A. A., Chen, J. & Gershon, M. D. Use of saliva to identify varicella zoster virus infection of the gut. Clin. Infect. Dis.61, 536–544 (2015). CASPubMedPubMed Central Google Scholar
Gershon, A. A. et al. Latency of varicella zoster virus in dorsal root, cranial, and enteric ganglia in vaccinated children. Trans. Am. Clin. Climatol. Assoc.123, 17–33; discussion 33–35 (2012). PubMedPubMed Central Google Scholar
Holland-Cunz, S. et al. Acquired intestinal aganglionosis after a lytic infection with varicella-zoster virus. J. Pediatr. Surg.41, e29–e31 (2006). PubMed Google Scholar
Levin, M. J. Varicella-zoster virus and virus DNA in the blood and oropharynx of people with latent or active varicella-zoster virus infections. J. Clin. Virol.61, 487–495 (2014). CASPubMed Google Scholar
Edelman, D. A. et al. Ogilvie syndrome and herpes zoster: case report and review of the literature. J. Emerg. Med.39, 696–700 (2009). PubMed Google Scholar
Mehta, S. K. et al. Varicella-zoster virus in the saliva of patients with herpes zoster. J. Infect. Dis.197, 654–657 (2008). PubMedPubMed Central Google Scholar
Duncan, C. J. & Hambleton, S. Varicella zoster virus immunity: a primer. J. Infect.71, S47–S53 (2015). PubMed Google Scholar
Johnson, B. H. et al. Annual incidence rates of herpes zoster among an immunocompetent population in the United States. BMC Infect. Dis.15, 502 (2015). PubMedPubMed Central Google Scholar