The multifaceted roles of TRAFs in the regulation of B-cell function (original) (raw)
Lotz, M., Setareh, M., von Kempis, J. & Schwartz, H. The NGF/TNF receptor family. J. Leukoc. Biol.60, 1–7 (1996). ArticleCASPubMed Google Scholar
Locksley, R. M., Kileen, N. & Lenardo, M. J. The TNF and TNFR superfamilies: integrating mammalian biology. Cell104, 487–501 (2001). ArticleCASPubMed Google Scholar
Noelle, R. J., Ledbetter, J. A. & Aruffo, A. CD40 and its ligand, an essential ligand–receptor pair for thymus-dependent B-cell activation. Immunol. Today13, 431–433 (1992). ArticleCASPubMed Google Scholar
Banchereau, J. et al. The CD40 antigen and its ligand. Annu. Rev. Immunol.12, 881–922 (1994). ArticleCASPubMed Google Scholar
Bishop, G. A. & Hostager, B. S. The CD40–CD154 interaction in B cell–T cell liaisons. Cytokine Growth Factor Rev.14, 297–309 (2003). ArticleCASPubMed Google Scholar
Foy, T. M. et al. gp39–CD40 interactions are essential for germinal center formation and the development of B cell memory. J. Exp. Med.180, 157–163 (1994). ArticleCASPubMed Google Scholar
Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired Ig class switching and germinal center formation. Immunity1, 167–178 (1994). ArticleCASPubMed Google Scholar
Rieckmann, P., D'Allessandro, F., Nordan, R. P., Fauci, A. S. & Kehrl, J. H. IL-6 and TNF-α. Autocrine and paracrine cytokines involved in B cell function. J. Immunol.146, 3462–3468 (1991). CASPubMed Google Scholar
Gauchat, J. -F., Aversa, G., Gascan, H. & de Vries, J. E. Modulation of IL-4 induced germline ε RNA synthesis in human B cells by TNFα, anti-CD40 mAb or TGF-β correlates with levels of IgE production. Int. Immunol.4, 397–406 (1992). ArticleCASPubMed Google Scholar
Macchia, D. et al. Membrane TNF-α is involved in the polyclonal B-cell activation induced by HIV-infected human T cells. Nature363, 464–466 (1993). ArticleCASPubMed Google Scholar
Ranheim, E. A. & Kipps, T. J. TNF-α facilitates induction of CD80 (B7-1) and CD54 on human B cells by activated T cells: complex regulation by IL-4, IL-10, and CD40L. Cell. Immunol.161, 226–235 (1995). ArticleCASPubMed Google Scholar
Worm, M. & Geha, R. S. Activation of TNF-α and lymphotoxin-β via anti-CD40 in human B cells. Int. Arch. Allergy Immunol.107, 368–369 (1995). ArticleCASPubMed Google Scholar
Worm, M., Ebermayer, K. & Henz, B. Lymphotoxin-α is an important autocrine factor for CD40 + IL-4-mediated B cell activation in normal and atopic donors. Immunology94, 395–402 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hostager, B. S. & Bishop, G. A. Role of TRAF2 in the activation of IgM secretion by CD40 and CD120b. J. Immunol.168, 3318–3322 (2002). This study exemplifies how a TRAF can have an indirect role in signalling to B cells by a TNFR-family member. TRAF2 is required for optimal CD40-mediated IgM production, but it does not need to directly interact with CD40. Instead, in B cells, CD40-induced TNF binds to CD120b, which requires the direct binding of TRAF2 for signalling. ArticleCASPubMed Google Scholar
Klein, U., Rajewsky, K. & Küppers, R. Human IgM+IgD+ peripheral blood B cells expressing the CD27 surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med.188, 1679–1689 (1998). ArticleCASPubMedPubMed Central Google Scholar
Agematsu, K., Hokibara, S., Nagumo, H. & Komiyama, A. CD27: a memory B cell marker. Immunol. Today21, 204–206 (2000). ArticleCASPubMed Google Scholar
Morimoto, S. et al. CD134L engagement enhances human B cell Ig production: CD154/CD40, CD70/CD27, and CD134/CD134L interactions coordinately regulate T cell-dependent B cell responses. J. Immunol.164, 4097–4104 (2000). ArticleCASPubMed Google Scholar
Nagumo, H. et al. CD27/CD70 interaction augments IgE secretion by promoting the differentiation of memory B cells into plasma cells. J. Immunol.161, 6496–6502 (1998). CASPubMed Google Scholar
Jacquot, S., Kobata, T., Iwata, S., Morimoto, C. & Schlossman, S. F. CD154/CD40 and CD70/CD27 interactions have different and sequential functions in T cell-dependent B cell responses. J. Immunol.159, 2652–2657 (1997). CASPubMed Google Scholar
Jumper, M. D., Fujita, K., Lipsky, P. E. & Meek, K. A CD30 responsive element in the germline ε promoter that is distinct from and inhibitory to the CD40 response element. Mol. Immunol.33, 965–972 (1996). ArticleCASPubMed Google Scholar
Cerutti, A. et al. CD30 is a CD40-inducible molecule that negatively regulates CD40-mediated Ig class switching in non-antigen-selected human B cells. Immunity9, 247–256 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cerutti, A. et al. Engagement of CD153 by CD30+ T cells inhibits class switch DNA recombination and antibody production in human IgD+IgM+ B cells. J. Immunol.165, 786–794 (2000). ArticleCASPubMed Google Scholar
Baker, S. J. & Reddy, E. P. Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene12, 1–9 (1996). CASPubMed Google Scholar
Do, R. K. G. & Chen-Kiang, S. Mechanisms of BLyS action in B cell immunity. Cytokine Growth Factor Rev.13, 19–25 (2002). ArticleCASPubMed Google Scholar
Arch, R. H., Gedrich, R. W. & Thompson, C. B. TRAFs — a family of adapter proteins that regulates life and death. Genes Dev.12, 2821–2830 (1998). ArticleCASPubMed Google Scholar
Chan, F. K., Siegel, R. M. & Lenardo, M. J. Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity13, 419–422 (2000). ArticleCASPubMed Google Scholar
Bishop, G. A., Hostager, B. S. & Brown, K. D. Mechanisms of tumor necrosis factor receptor associated factor (TRAF) regulation in B lymphocytes. J. Leukoc. Biol.72, 19–23 (2002). CASPubMed Google Scholar
McWhirter, S. M. et al. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc. Natl Acad. Sci. USA96, 8408–8413 (1999). This is the first report of a crystal structure of the TRAF-binding portion of CD40 and the CD40-binding portion of TRAF2. ArticleCASPubMedPubMed Central Google Scholar
Ni, C. et al. Molecular basis for CD40 signaling mediated by TRAF3. Proc. Natl Acad. Sci. USA97, 10395–10399 (2000). This paper shows a crystal structure that has the advantage of using the entire CD40 cytoplasmic domain. It reveals that, although there is overlap between the CD40-binding sites of TRAF2 and TRAF3, TRAF3 associates with CD40 in a different manner than TRAF2. ArticleCASPubMedPubMed Central Google Scholar
Chan, F. K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science288, 2351–2354 (2000). ArticleCASPubMed Google Scholar
Hostager, B. S., Catlett, I. M. & Bishop, G. A. Recruitment of CD40, TRAF2 and TRAF3 to membrane microdomains during CD40 signaling. J. Biol. Chem.275, 15392–15398 (2000). This report provides the first evidence that engagement of a TNFR-family member endogenously expressed by B cells can recruit associated TRAFs to lipid rafts. ArticleCASPubMed Google Scholar
Kuhné, M. R. et al. Assembly and regulation of the CD40 receptor complex in human B cells. J. Exp. Med.186, 337–342 (1997). This is the first report to show that, in B cells, endogenous TRAFs show little association with CD40 until CD40 is engaged by its ligand. After this occurs, TRAF2 and TRAF3 are rapidly recruited to the receptor complex at the cell-surface. ArticlePubMedPubMed Central Google Scholar
Bishop, G. A. & Hostager, B. S. B lymphocyte activation by contact-mediated interactions with T lymphocytes. Curr. Opin. Immunol.13, 278–285 (2001). ArticleCASPubMed Google Scholar
Huang, D. C. S. et al. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL . Proc. Natl Acad. Sci. USA96, 14871–14876 (1999). ArticleCASPubMedPubMed Central Google Scholar
Baccam, M. & Bishop, G. A. Membrane-bound CD154, but not anti-CD40 mAbs, induces NF-κB independent B cell IL-6 production. Eur. J. Immunol.29, 3855–3866 (1999). ArticleCASPubMed Google Scholar
Baccam, M., Woo, S., Vinson, C. & Bishop, G. A. CD40-mediated transcriptional regulation of the IL-6 gene in B lymphocytes: involvement of NF-κB, AP-1, and C/EBP. J. Immunol.170, 3099–3108 (2003). ArticleCASPubMed Google Scholar
Rush, J. S. & Hodgkin, P. D. B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur. J. Immunol.31, 1150–1159 (2001). ArticleCASPubMed Google Scholar
Lee, B. O., Haynes, L., Eaton, S. M., Swain, S. L. & Randall, T. D. The biological outcome of CD40 signaling is dependent on the duration of CD40L expression: reciprocal regulation by IL-4 and IL-12. J. Exp. Med.196, 693–704 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jalukar, S. V., Hostager, B. S. & Bishop, G. A. Characterization of the roles of TRAF6 in CD40-mediated B lymphocyte effector functions. J. Immunol.164, 623–630 (2000). ArticleCASPubMed Google Scholar
Polyak, M. J., Tailor, S. H. & Deans, J. P. Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent insoluble membrane compartment. J. Immunol.161, 3242–3248 (1998). CASPubMed Google Scholar
Cheng, P. C., Dykstra, M. L., Mitchell, R. N. & Pierce, S. K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med.190, 1549–1560 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bouillon, M. et al. Lipid raft-dependent and independent signaling through HLA-DR molecules. J. Biol. Chem.278, 7099–7107 (2003). ArticleCASPubMed Google Scholar
Ardila-Osorio, H. et al. Evidence of LMP1–TRAF3 interactions in glycosphingolipid-rich complexes of lymphoblastoid and nasopharyngeal carcinoma cells. Int. J. Cancer81, 645–649 (1999). ArticleCASPubMed Google Scholar
Cottin, V., Doan, J. E. S. & Riches, D. W. H. Restricted localization of the TNF-R CD120a to lipid rafts: a novel role for the death domain. J. Immunol.168, 4095–4102 (2002). ArticleCASPubMed Google Scholar
Arron, J. R., Pewzner-Jung, Y., Walsh, M. C., Kobayashi, T. & Choi, Y. Regulation of the subcellular localization of TRAF2 by TRAF1 reveals mechanisms of TRAF2 signaling. J. Exp. Med.196, 923–934 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hueber, A. -O., Bernard, A. -M., Hérincs, Z., Couzinet, A. & He, H. -T. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep.3, 1–7 (2002). Article Google Scholar
Ha, H. et al. Membrane rafts play a crucial role in RANK signaling and osteoclast function. J. Biol. Chem.278, 18573–18580 (2003). ArticleCASPubMed Google Scholar
Ye, H., Park, Y. C., Kreishman, M., Kieff, E. & Wu, H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol. Cell4, 321–330 (1999). ArticleCASPubMed Google Scholar
Rothe, M., Sarma, V., Dixit, V. M. & Goeddel, D. V. TRAF2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science269, 1424–1427 (1995). ArticleCASPubMed Google Scholar
Pullen, S. S. et al. CD40–TRAF interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry37, 11836–11845 (1998). ArticleCASPubMed Google Scholar
Haxhinasto, S. A. & Bishop, G. A. A novel interaction between PKD and TRAFs regulates BCR–CD40 synergy. J. Immunol.171, 4655–4662 (2003). ArticleCASPubMed Google Scholar
Haxhinasto, S. A. & Bishop, G. A. Synergistic B cell activation by CD40 and the BCR: role of BCR-mediated kinase activation and TRAF regulation. J. Biol. Chem.279, 2575–2582 (2004). ArticleCASPubMed Google Scholar
Horejsí, V. et al. GPI-microdomains: a role in signalling via immunoreceptors. Immunol. Today20, 356–361 (1999). ArticlePubMed Google Scholar
Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol.3, 745–756 (2003). ArticleCAS Google Scholar
Duckett, C. S. & Thompson, C. B. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev.11, 2810–2821 (1997). ArticleCASPubMedPubMed Central Google Scholar
Brown, K. D., Hostager, B. S. & Bishop, G. A. Differential signaling and TRAF degradation by CD40 and the EBV oncoprotein LMP1. J. Exp. Med.193, 943–954 (2001). This paper shows that CD40-mediated signalling induces rapid proteasome-dependent degradation of TRAF2 and TRAF3. By contrast, the sustained and amplified signalling to B cells that is provided by the CD40 mimic LMP1 correlates with a failure of LMP1 to promote degradation of associated TRAF2 and TRAF3. ArticleCASPubMedPubMed Central Google Scholar
Takayanagi, H. et al. T-cell mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature408, 600–605 (2000). ArticleCASPubMed Google Scholar
Brown, K. D., Hostager, B. S. & Bishop, G. A. Regulation of TRAF2 signaling by self-induced degradation. J. Biol. Chem.277, 19433–19438 (2002). ArticleCASPubMed Google Scholar
Hostager, B. S., Haxhinasto, S. A., Rowland, S. R. & Bishop, G. A. TRAF2-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J. Biol. Chem.278, 45382–45390 (2003). This study uses a new method of gene targeting by homologous recombination to produce B-cell lines from several genetic backgrounds that lack TRAF2. Experiments using these cells show that, in B cells, TRAF2 has overlapping roles with TRAF6 in NF-κB activation, as well as unique roles in TRAF3 degradation, JNK activation and CD40–BCR synergy. ArticleCASPubMed Google Scholar
Moore, C. & Bishop, G. A. Receptor-induced TRAF degradation in B lymphocytes. FASEB J.18, A428 (2004). ArticleCAS Google Scholar
Ishida, T. et al. Identification of TRAF6, a novel TRAF protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J. Biol. Chem.271, 28745–28748 (1996). ArticleCASPubMed Google Scholar
Yeh, W. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity7, 715–725 (1997). ArticleCASPubMed Google Scholar
Hsing, Y., Hostager, B. S. & Bishop, G. A. Characterization of CD40 signaling determinants regulating NF-κB activation in lymphocytes. J. Immunol.159, 4898–4906 (1997). CASPubMed Google Scholar
Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective IL-1, CD40, and LPS signaling. Genes Dev.13, 1015–1021 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yasui, T. et al. Dissection of B cell differentiation during primary immune responses in mice with altered CD40 signals. Int. Immunol.14, 319–329 (2002). ArticleCASPubMed Google Scholar
Ahonen, C. L. et al. The CD40–TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells. Nature Immunol.3, 451–456 (2002). ArticleCAS Google Scholar
Jabara, H. H. et al. The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated Ig class switching. Immunity17, 265–276 (2002). ArticleCASPubMed Google Scholar
Haxhinasto, S. A., Hostager, B. S. & Bishop, G. A. Molecular mechanisms of synergy between CD40 and the BCR: role for TRAF2 in receptor interaction. J. Immunol.169, 1145–1149 (2002). ArticleCASPubMed Google Scholar
Inui, S. et al. Identification of the intracytoplasmic region essential for signal transduction through a B cell activation molecule, CD40. Eur. J. Immunol.20, 1747–1753 (1990). ArticleCASPubMed Google Scholar
Goldstein, M. D. & Watts, T. H. Identification of distinct domains in CD40 involved in B7-1 induction or growth inhibition. J. Immunol.157, 2837–2843 (1996). CASPubMed Google Scholar
Hostager, B. S., Hsing, Y., Harms, D. E. & Bishop, G. A. Different CD40-mediated signaling events require distinct CD40 structural features. J. Immunol.157, 1047–1053 (1996). CASPubMed Google Scholar
Sutherland, C. L., Krebs, D. L. & Gold, M. R. An 11-amino acid sequence in the cytoplasmic domain of CD40 is sufficient for activation of JNK, activation of MAPKAP kinase-2, phosphorylation of IκBα, and protection of WEHI-231 cells from anti-IgM-induced growth arrest. J. Immunol.162, 4720–4730 (1999). CASPubMed Google Scholar
Lu, L., Cook, W. J., Lin, L. & Noelle, R. J. CD40 signaling through a newly identified TRAF2 binding site. J. Biol. Chem.278, 45414–45418 (2003). ArticleCASPubMed Google Scholar
Xie, P., Hostager, B. S. & Bishop, G. A. Requirement for TRAF3 in signaling by LMP1, but not CD40, in B lymphocytes. J. Exp. Med.199, 661–671 (2004). Using newly produced TRAF3-deficient B-cell lines, this paper presents the unexpected finding that TRAF3 has divergent roles in B-cell signalling mediated by different molecules: it inhibits CD40-mediated signalling, but it is an essential component of the B-cell activation mediated by LMP1. ArticleCASPubMedPubMed Central Google Scholar
Hsing, Y. & Bishop, G. A. Requirement for NF-κB activation by a distinct subset of CD40-mediated effector functions in B lymphocytes. J. Immunol.162, 2804–2811 (1999). CASPubMed Google Scholar
Baud, V. et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev.13, 1297–1308 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hostager, B. S. & Bishop, G. A. Contrasting roles of TRAF2 and TRAF3 in CD40-mediated B lymphocyte activation. J. Immunol.162, 6307–6311 (1999). CASPubMed Google Scholar
Bishop, G. A. et al. Molecular mechanisms of B lymphocyte activation by the immune response modifier R-848. J. Immunol.165, 5552–5557 (2000). ArticleCASPubMed Google Scholar
Bishop, G. A. et al. The immune response modifier, resiquimod, mimics CD40-induced B cell activation. Cell. Immunol.208, 9–17 (2001). ArticleCASPubMed Google Scholar
Rothe, M., Wong, S. C., Henzel, W. J. & Goeddel, D. V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell78, 681–692 (1994). In this report, the first two TRAFs are described and both are shown to associate with CD120b. ArticleCASPubMed Google Scholar
Devernge, O. et al. Association of TRAF1, TRAF2, and TRAF3 with an EBV LMP1 domain important for B-lymphocyte transformation: role in NF-κB activation. Mol. Cell. Biol.16, 7098–7108 (1996). Article Google Scholar
Pullen, S. S., Dang, T. T. A., Crute, J. J. & Kehry, M. R. CD40 signaling through TRAFs. Binding site specificity and activation of downstream pathways by distinct TRAFs. J. Biol. Chem.274, 14246–14254 (1999). This paper presents a completein vitrostudy of CD40-derived peptides binding to TRAFs produced by insect cells. Some CD40 mutants are subsequently studied in overexpression systems in HEK293 cells. The paper contains useful information; however, in B cells, not all CD40 mutants bind TRAFs in the way that is described here (for example, see reference 71), indicating cell-type specificity in some aspects of TRAF–receptor binding. ArticleCASPubMed Google Scholar
Carpentier, I. & Beyaert, R. TRAF1 is a TNF inducible regulator of NF-κB activation. FEBS Lett.460, 246–250 (1999). ArticleCASPubMed Google Scholar
Leo, E. et al. TRAF1 is a substrate of caspases activated during TNF-α-induced apoptosis. J. Biol. Chem.276, 8087–8093 (2001). ArticleCASPubMed Google Scholar
Fotin-Mleczek, M. et al. TRAF1 regulates CD40-induced TRAF2-mediated NF-κB activation. J. Biol. Chem.279, 677–685 (2004). ArticleCASPubMed Google Scholar
Song, H. Y., Rothe, M. & Goeddel, D. V. The TNF-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc. Natl Acad. Sci. USA93, 6721–6725 (1996). ArticleCASPubMedPubMed Central Google Scholar
Rothe, M., Pan, M., Henzel, W. J., Ayres, T. M. & Goeddel, D. V. The TNFR2–TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell83, 1243–1252 (1995). ArticleCASPubMed Google Scholar
Duckett, C. S., Gedrich, R. W., Gilfillan, M. C. & Thompson, C. B. Induction of NF-κB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol. Cell. Biol.17, 1535–1542 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cha, G. -H. et al. Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by JNK and NF-κB-dependent signaling pathways. Mol. Cell. Biol.23, 7982–7991 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tsitsikov, E. et al. TRAF1 is a negative regulator of TNF signaling: enhanced TNF signaling in TRAF1-deficient mice. Immunity15, 647–657 (2001). ArticleCASPubMed Google Scholar
Kilger, E., Kieser, A., Baumann, M. & Hammerschmidt, W. EBV-mediated B cell proliferation is dependent upon LMP1, which simulates an activated CD40 receptor. EMBO J.17, 1700–1709 (1998). ArticleCASPubMedPubMed Central Google Scholar
Busch, L. K. & Bishop, G. A. The EBV transforming protein, LMP1, mimics and cooperates with CD40 signaling in B lymphocytes. J. Immunol.162, 2555–2561 (1999). CASPubMed Google Scholar
Izumi, K. M., Kaye, K. M. & Kieff, E. D. The EBV LMP1 amino acid sequence that engages TRAFs is critical for primary B lymphocyte growth transformation. Proc. Natl Acad. Sci. USA94, 1447–1452 (1997). ArticleCASPubMedPubMed Central Google Scholar
Busch, L. K. & Bishop, G. A. Multiple carboxyl-terminal regions of the EBV oncoprotein, LMP1, cooperatively regulate signaling to B lymphocytes via TRAF-dependent and TRAF-independent mechanisms. J. Immunol.167, 5805–5813 (2001). ArticleCASPubMed Google Scholar
Kaye, K. M. et al. TRAF2 is a mediator of NF-κB activation by LMP1, the EBV transforming protein. Proc. Natl Acad. Sci. USA93, 11085–11090 (1996). ArticleCASPubMedPubMed Central Google Scholar
Munroe, M. E. & Bishop, G. A. Differences in signaling mechanisms to B lymphocytes by CD40 and TNFR2 (CD120b). FASEB J.18, A50 (2004). Google Scholar
Berberich, I., Shu, G. L. & Clark, E. A. Cross-linking CD40 on B cells rapidly activates nuclear factor-κB. J. Immunol.153, 4357–4366 (1994). CASPubMed Google Scholar
Zarnegar, B. et al. Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-κB activation pathways. Proc. Natl Acad. Sci. USA101, 8108–8113 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ren, C. L., Morio, T., Fu, S. M. & Geha, R. S. Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase Cγ2. J. Exp. Med.179, 673–680 (1994). ArticleCASPubMed Google Scholar
Zhu, N. et al. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-κB pathway. J. Immunol.168, 744–754 (2002). ArticleCASPubMed Google Scholar
Chin, A. I. et al. TANK potentiates TRAF-mediated JNK/SAPK activation through the GCK pathway. Mol. Cell. Biol.19, 6665–6672 (1999). This is one of the rare studies that verifies interactions between TRAFs and downstream kinases that are expressed at normal levels in B cells. It shows that GC kinase is a probable intermediate between TRAF2 and the TRAF2-dependent activation of JNK. ArticleCASPubMedPubMed Central Google Scholar
Shi, C., Leonardi, A., Kyriakis, J., Siebenlist, U. & Kehrl, J. H. TNF-mediated activation of the SAPK pathway: TRAF2 recruits and activates germinal center kinase related. J. Immunol.163, 3279–3285 (1999). CASPubMed Google Scholar
Yan, M. et al. Activation of SAPK by MEKK1 phosphorylation of its activator SEK1. Nature372, 798–800 (1994). ArticleCASPubMed Google Scholar
Sanchez, I. et al. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature372, 794–798 (1994). ArticleCASPubMed Google Scholar
Ichijo, H. et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science275, 90–94 (1997). ArticleCASPubMed Google Scholar
Malinin, N. L., Boldin, M. P., Kovalenko, A. V. & Wallach, D. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature385, 540–544 (1997). ArticleCASPubMed Google Scholar
Song, H. Y., Ré;gnier, C. H., Kirschning, C. J., Goeddel, D. V. & Rothe, M. TNF-mediated kinase cascades: bifurcation of NF-κB and JNK/SAPK pathways at TRAF2. Proc. Natl Acad. Sci. USA94, 9792–9796 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ling, L., Cao, Z. & Goeddel, D. V. NF-κB inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl Acad. Sci. USA95, 3792–3797 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shinkura, R. et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding NIK. Nature Genet.22, 74–77 (1999). ArticleCASPubMed Google Scholar
Yamada, T. et al. Abnormal immune function of hemopoietic cells from aly mice, a natural strain with mutant NIK. J. Immunol.165, 804–812 (2000). ArticleCASPubMed Google Scholar
Yin, L. et al. Defective LT-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science291, 2162–2165 (2001). ArticleCASPubMed Google Scholar
Lee, F. S., Hagler, J., Chen, Z. J. & Maniatis, T. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell88, 213–222 (1997). ArticleCASPubMed Google Scholar
Bishop, G. A., Haxhinasto, S. A., Stunz, L. L. & Hostager, B. S. Antigen-specific B lymphocyte activation. CRC Crit. Rev. Immunol.23, 149–197 (2003). ArticleCAS Google Scholar
Mann, J., Oakley, F., Johnson, P. W. & Mann, D. A. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-κB and CBF1. J. Biol. Chem.277, 17125–17138 (2002). ArticleCASPubMed Google Scholar
Huang, C. J., Chen, C. Y., Chen, H. H., Tsai, S. F. & Choo, K. B. TDPOZ, a family of bipartite animal and plant proteins that contain the TRAF (TD) and POZ/BTB domains. Gene324, 117–127 (2004). ArticleCASPubMed Google Scholar
Hu, H. M., O'Rourke, K., Boguski, M. S. & Dixit, V. M. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J. Biol. Chem.269, 30069–30072 (1994). CASPubMed Google Scholar
Cheng, G. et al. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science267, 1494–1498 (1995). ArticleCASPubMed Google Scholar
Régnier, C. H. et al. Presence of a new conserved domain in CART1, a novel member of the TRAF protein family, which is expressed in breast carcinoma. J. Biol. Chem.270, 25715–25721 (1995). ArticlePubMed Google Scholar
Masson, R. et al. TRAF4 expression pattern during mouse development. Mech. Dev.71, 187–191 (1998). ArticleCASPubMed Google Scholar
Shiels, H. et al. TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to lungs. Am. J. Pathol.157, 679–688 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nakano, H. et al. TRAF5, an activator of NF-κB and putative signal transducer for the LT-β receptor. J. Biol. Chem.271, 14661–14664 (1996). ArticleCASPubMed Google Scholar
Ishida, T. et al. TRAF5, a novel TNF-R-associated factor family protein, mediates CD40 signaling. Proc. Natl Acad. Sci. USA93, 9437–9442 (1996). ArticleCASPubMedPubMed Central Google Scholar