SNAREing immunity: the role of SNAREs in the immune system (original) (raw)
Presley, J. F. Imaging the secretory pathway: the past and future impact of live cell optical techniques. Biochim. Biophys. Acta1744, 259–272 (2005). CASPubMed Google Scholar
Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell116, 153–166 (2004). CASPubMed Google Scholar
Sztul, E. & Lupashin, V. Role of tethering factors in secretory membrane traffic. Am. J. Physiol. Cell Physiol.290, C11–C26 (2006). CASPubMed Google Scholar
Jordens, I., Marsman, M., Kuijl, C. & Neefjes, J. Rab proteins, connecting transport and vesicle fusion. Traffic6, 1070–1077 (2005). CASPubMed Google Scholar
Spang, A. Vesicle transport: a close collaboration of Rabs and effectors. Curr. Biol.14, R33–R34 (2004). CASPubMed Google Scholar
Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature362, 318–324 (1993). CASPubMed Google Scholar
Pobbati, A. V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science313, 673–676 (2006). CASPubMed Google Scholar
Giraudo, C. G. et al. SNAREs can promote complete fusion and hemifusion as alternative outcomes. J. Cell Biol.170, 249–260 (2005). CASPubMedPubMed Central Google Scholar
Giraudo, C. G., Eng, W. S., Melia, T. J. & Rothman, J. E. A clamping mechanism involved in SNARE-dependent exocytosis. Science313, 676–680 (2006). CASPubMed Google Scholar
Bennett, M. K., Calakos, N. & Scheller, R. H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science257, 255–259 (1992). CASPubMed Google Scholar
Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nature Rev. Mol. Cell Biol.2, 98–106 (2001). References 12, 20 and 34 provide a comprehensive background on SNARE structure and regulators. CAS Google Scholar
Jahn, R., Lang, T. & Sudhof, T. C. Membrane fusion. Cell112, 519–533 (2003). CASPubMed Google Scholar
Lacy, P. The role of Rho GTPases and SNAREs in mediator release from granulocytes. Pharmacol. Ther.107, 358–376 (2005). CASPubMed Google Scholar
Logan, M. R., Odemuyiwa, S. O. & Moqbel, R. Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. J. Allergy Clin. Immunol.111, 923–932 (2003). CASPubMed Google Scholar
Huse, M., Lillemeier, B. F., Kuhns, M. S., Chen, D. S. & Davis, M. M. T cells use two directionally distinct pathways for cytokine secretion. Nature Immunol.7, 247–255 (2006). This study uses SNAREs and other trafficking-related proteins to show that two distinct pathways — one directed to the immunological synapse and the other to the extracellular milieu — operate for cytokine secretion in T cells. CAS Google Scholar
Murray, R. Z., Kay, J. G., Sangermani, D. G. & Stow, J. L. A role for the phagosome in cytokine secretion. Science310, 1492–1495 (2005). This study shows how macrophages use recycling endosomes to deliver TNF to the plasma membrane for secretion whilst providing excess membrane to internalize pathogens. CASPubMed Google Scholar
Breidenbach, M. A. & Brunger, A. T. New insights into clostridial neurotoxin-SNARE interactions. Trends Mol. Med.11, 377–381 (2005). CASPubMed Google Scholar
Montecucco, C. & Schiavo, G. Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends Biochem. Sci.18, 324–327 (1993). CASPubMed Google Scholar
Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol.7, 631–643 (2006). CAS Google Scholar
Fasshauer, D., Sutton, R. B., Brunger, A. T. & Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl Acad. Sci. USA95, 15781–15786 (1998). This paper reports the crystal structure of a SNARE complex, showing that an arginine residue and three glutamine residues are contributed from each of the four α-helices. CASPubMedPubMed Central Google Scholar
Fasshauer, D. Structural insights into the SNARE mechanism. Biochim. Biophys. Acta1641, 87–97 (2003). CASPubMed Google Scholar
Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature395, 347–353 (1998). CASPubMed Google Scholar
Furst, J., Sutton, R. B., Chen, J., Brunger, A. T. & Grigorieff, N. Electron cryomicroscopy structure of _N_-ethyl maleimide sensitive factor at 11 Å resolution. EMBO J.22, 4365–4374 (2003). CASPubMedPubMed Central Google Scholar
Hohl, T. M. et al. Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. Mol. Cell2, 539–548 (1998). CASPubMedPubMed Central Google Scholar
Pombo, I. et al. IgE receptor type I-dependent regulation of a Rab3D-associated kinase: a possible link in the calcium-dependent assembly of SNARE complexes. J. Biol. Chem.276, 42893–42900 (2001). CASPubMed Google Scholar
Hepp, R. et al. Phosphorylation of SNAP-23 regulates exocytosis from mast cells. J. Biol. Chem.280, 6610–6620 (2005). CASPubMed Google Scholar
Rizo, J. & Sudhof, T. C. Snares and Munc18 in synaptic vesicle fusion. Nature Rev. Neurosci.3, 641–653 (2002). CAS Google Scholar
Lang, T. et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J.20, 2202–2213 (2001). This study shows that SNAREs cluster in cholesterol-dependent domains in the plasma membrane to define sites where secretory vesicles dock and fuse. CASPubMedPubMed Central Google Scholar
Low, S. H. et al. Syntaxins 3 and 4 are concentrated in separate clusters on the plasma membrane before the establishment of cell polarity. Mol. Biol. Cell17, 977–989 (2006). CASPubMedPubMed Central Google Scholar
Pombo, I., Rivera, J. & Blank, U. Munc18-2/syntaxin3 complexes are spatially separated from syntaxin3-containing SNARE complexes. FEBS Lett.550, 144–148 (2003). CASPubMed Google Scholar
Kay, J. G., Murray, R. Z., Pagan, J. K. & Stow, J. L. Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J. Biol. Chem.281, 11949–11954 (2006). CASPubMed Google Scholar
Hong, W. SNAREs and traffic. Biochim. Biophys. Acta1744, 493–517 (2005). PubMed Google Scholar
White, J. G. A search for the platelet secretory pathway using electron dense tracers. Am. J. Pathol.58, 31–49 (1970). CASPubMedPubMed Central Google Scholar
Chen, D., Lemons, P. P., Schraw, T. & Whiteheart, S. W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood96, 1782–1788 (2000). CASPubMed Google Scholar
Feng, D., Crane, K., Rozenvayn, N., Dvorak, A. M. & Flaumenhaft, R. Subcellular distribution of 3 functional platelet SNARE proteins: human cellubrevin, SNAP-23, and syntaxin 2. Blood99, 4006–4014 (2002). CASPubMed Google Scholar
Chen, D., Bernstein, A. M., Lemons, P. P. & Whiteheart, S. W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood95, 921–929 (2000). This study confirms the similarity between fusion-machinery components that regulate the disassembly oftrans-SNARE complexes for the platelet release reaction and regulated secretion in other cells. CASPubMed Google Scholar
Flaumenhaft, R., Croce, K., Chen, E., Furie, B. & Furie, B. C. Proteins of the exocytotic core complex mediate platelet α-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4. J. Biol. Chem.274, 2492–2501 (1999). CASPubMed Google Scholar
Lemons, P. P., Chen, D. & Whiteheart, S. W. Molecular mechanisms of platelet exocytosis: requirements for α-granule release. Biochem. Biophys. Res. Commun.267, 875–880 (2000). CASPubMed Google Scholar
Polgar, J., Chung, S. H. & Reed, G. L. Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood100, 1081–1083 (2002). CASPubMed Google Scholar
Martin-Martin, B., Nabokina, S. M., Lazo, P. A. & Mollinedo, F. Co-expression of several human syntaxin genes in neutrophils and differentiating HL-60 cells: variant isoforms and detection of syntaxin 1. J. Leukoc. Biol.65, 397–406 (1999). CASPubMed Google Scholar
Smolen, J. E., Hessler, R. J., Nauseef, W. M., Goedken, M. & Joe, Y. Identification and cloning of the SNARE proteins VAMP-2 and syntaxin-4 from HL-60 cells and human neutrophils. Inflammation25, 255–265 (2001). CASPubMed Google Scholar
Mollinedo, F., Martin-Martin, B., Calafat, J., Nabokina, S. M. & Lazo, P. A. Role of vesicle-associated membrane protein-2, through Q-soluble _N_-ethylmaleimide-sensitive factor attachment protein receptor/R-soluble _N_-ethylmaleimide-sensitive factor attachment protein receptor interaction, in the exocytosis of specific and tertiary granules of human neutrophils. J. Immunol.170, 1034–1042 (2003). CASPubMed Google Scholar
Mollinedo, F. et al. Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. J. Immunol.177, 2831–2841 (2006). CASPubMed Google Scholar
Brumell, J. H. et al. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments. J. Immunol.155, 5750–5759 (1995). CASPubMed Google Scholar
Martin-Martin, B., Nabokina, S. M., Blasi, J., Lazo, P. A. & Mollinedo, F. Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood96, 2574–2583 (2000). CASPubMed Google Scholar
Logan, M. R. et al. A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy61, 777–784 (2006). CASPubMed Google Scholar
Moqbel, R. & Coughlin, J. J. Differential secretion of cytokines. Sci. STKE338, pe26 (2006). Google Scholar
Hoffmann, H. J. et al. SNARE proteins are critical for regulated exocytosis of ECP from human eosinophils. Biochem. Biophys. Res. Commun.282, 194–199 (2001). CASPubMed Google Scholar
Lacy, P., Logan, M. R., Bablitz, B. & Moqbel, R. Fusion protein vesicle-associated membrane protein 2 is implicated in IFN-γ-induced piecemeal degranulation in human eosinophils from atopic individuals. J. Allergy. Clin. Immunol.107, 671–678 (2001). CASPubMed Google Scholar
Logan, M. R., Lacy, P., Bablitz, B. & Moqbel, R. Expression of eosinophil target SNAREs as potential cognate receptors for vesicle-associated membrane protein-2 in exocytosis. J. Allergy Clin. Immunol.109, 299–306 (2002). CASPubMed Google Scholar
Pickett, J. A. & Edwardson, J. M. Compound exocytosis: mechanisms and functional significance. Traffic7, 109–116 (2006). CASPubMed Google Scholar
Guo, Z., Turner, C. & Castle, D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell94, 537–548 (1998). CASPubMed Google Scholar
Paumet, F. et al. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. J. Immunol.164, 5850–5857 (2000). CASPubMed Google Scholar
Puri, N., Kruhlak, M. J., Whiteheart, S. W. & Roche, P. A. Mast cell degranulation requires _N_-ethylmaleimide-sensitive factor-mediated SNARE disassembly. J. Immunol.171, 5345–5352 (2003). CASPubMed Google Scholar
Hibi, T., Hirashima, N. & Nakanishi, M. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochem. Biophys. Res. Commun.271, 36–41 (2000). CASPubMed Google Scholar
Murray, R. Z., Wylie, F. G., Khromykh, T., Hume, D. A. & Stow, J. L. Syntaxin 6 and Vti1b form a novel SNARE complex, which is up-regulated in activated macrophages to facilitate exocytosis of tumor necrosis factor-α. J. Biol. Chem.280, 10478–10483 (2005). CASPubMed Google Scholar
Pagan, J. K. et al. The t-SNARE syntaxin 4 is regulated during macrophage activation to function in membrane traffic and cytokine secretion. Curr. Biol.13, 156–160 (2003). CASPubMed Google Scholar
Shurety, W., Merino-Trigo, A., Brown, D., Hume, D. A. & Stow, J. L. Localization and post-Golgi trafficking of tumor necrosis factor-α in macrophages. J. Interferon Cytokine Res.20, 427–438 (2000). CASPubMed Google Scholar
Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol.5, 121–132 (2004). CAS Google Scholar
Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol.167, 531–543 (2004). CASPubMedPubMed Central Google Scholar
Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell16, 1744–1755 (2005). CASPubMedPubMed Central Google Scholar
Stuart, L. M. & Ezekowitz, R. A. Phagocytosis: elegant complexity. Immunity22, 539–550 (2005). CASPubMed Google Scholar
Bajno, L. et al. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol.149, 697–706 (2000). This paper was the first to show that VAMP3 functions in the delivery of the recycling-endosome membrane to the phagocytic cup. CASPubMedPubMed Central Google Scholar
Becker, T., Volchuk, A. & Rothman, J. E. Differential use of endoplasmic reticulum membrane for phagocytosis in J774 macrophages. Proc. Natl Acad. Sci. USA102, 4022–4026 (2005). CASPubMedPubMed Central Google Scholar
Braun, V. et al. TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. EMBO J.23, 4166–4176 (2004). This study shows that immediately after the VAMP3-mediated insertion of recycling-endosome membrane, VAMP7 regulates the delivery of late-endosome membrane to complete phagocytosis. CASPubMedPubMed Central Google Scholar
Collins, R. F., Schreiber, A. D., Grinstein, S. & Trimble, W. S. Syntaxins 13 and 7 function at distinct steps during phagocytosis. J. Immunol.169, 3250–3256 (2002). CASPubMed Google Scholar
Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell110, 119–131 (2002). CASPubMed Google Scholar
Allen, L. A., Yang, C. & Pessin, J. E. Rate and extent of phagocytosis in macrophages lacking vAMP3. J. Leukoc. Biol.72, 217–221 (2002). CASPubMed Google Scholar
Hackam, D. J. et al. Characterization and subcellular localization of target membrane soluble NSF attachment protein receptors (t-SNAREs) in macrophages. Syntaxins 2, 3, and 4 are present on phagosomal membranes. J. Immunol.156, 4377–4383 (1996). CASPubMed Google Scholar
Hatsuzawa, K. et al. Involvement of Syntaxin 18, an endoplasmic reticulum (ER)-localized SNARE protein, in ER-mediated phagocytosis. Mol. Biol. Cell17, 3964–3977 (2006). CASPubMedPubMed Central Google Scholar
Touret, N. et al. Quantitative and dynamic assessment of the contribution of the ER to phagosome formation. Cell123, 157–170 (2005). CASPubMed Google Scholar
Pryor, P. R. et al. Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep.5, 590–595 (2004). CASPubMedPubMed Central Google Scholar
Antonin, W. et al. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J.19, 6453–6464 (2000). CASPubMedPubMed Central Google Scholar
Alcover, A. & Alarcon, B. Internalization and intracellular fate of TCR–CD3 complexes. Crit. Rev. Immunol.20, 325–346 (2000). CASPubMed Google Scholar
Das, V. et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity20, 577–588 (2004). This report shows for the first time that SNAREs regulate the polarized delivery of TCRs to the immunological synapse. CASPubMed Google Scholar
Bossi, G. & Griffiths, G. M. CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin. Immunol.17, 87–94 (2005). CASPubMed Google Scholar
Li, W. et al. Murine Hermansky–Pudlak syndrome genes: regulators of lysosome-related organelles. Bioessays26, 616–628 (2004). CASPubMed Google Scholar
Andrews, N. W. & Chakrabarti, S. There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol.15, 626–631 (2005). CASPubMed Google Scholar
Bock, J. B., Matern, H. T., Peden, A. A. & Scheller, R. H. A genomic perspective on membrane compartment organization. Nature409, 839–841 (2001). CASPubMed Google Scholar
Okumura, A. J. et al. Involvement of a novel Q-SNARE, D12, in quality control of the endomembrane system. J. Biol. Chem.281, 4495–4506 (2006). CASPubMed Google Scholar
Burri, L. et al. A SNARE required for retrograde transport to the endoplasmic reticulum. Proc. Natl Acad. Sci. USA100, 9873–9877 (2003). CASPubMedPubMed Central Google Scholar
Feldmann, J. et al. Munc13–4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell115, 461–473 (2003). CASPubMed Google Scholar
zur Stadt, U. et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum. Mol. Genet.14, 827–834 (2005). CASPubMed Google Scholar
Huang, L., Kuo, Y. M. & Gitschier, J. The pallid gene encodes a novel, syntaxin 13-interacting protein involved in platelet storage pool deficiency. Nature Genet.23, 329–332 (1999). CASPubMed Google Scholar
Huizing, M., Anikster, Y. & Gahl, W. A. Hermansky–Pudlak syndrome and related disorders of organelle formation. Traffic1, 823–835 (2000). CASPubMed Google Scholar
Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genet.25, 173–176 (2000). CASPubMed Google Scholar
Shirakawa, R. et al. Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J. Biol. Chem.279, 10730–10737 (2004). CASPubMed Google Scholar
Tchernev, V. T. et al. The Chediak–Higashi protein interacts with SNARE complex and signal transduction proteins. Mol. Med.8, 56–64 (2002). CASPubMedPubMed Central Google Scholar
Shiffman, D. et al. Gene variants of VAMP8 and HNRPUL1 are associated with early-onset myocardial infarction. Arterioscler. Thromb. Vasc. Biol.26, 1613–1618 (2006). CASPubMed Google Scholar
Polgar, J., Lane, W. S., Chung, S. H., Houng, A. K. & Reed, G. L. Phosphorylation of SNAP-23 in activated human platelets. J. Biol. Chem.278, 44369–44376 (2003). CASPubMed Google Scholar
Nabokina, S., Egea, G., Blasi, J. & Mollinedo, F. Intracellular location of SNAP-25 in human neutrophils. Biochem. Biophys. Res. Commun.239, 592–597 (1997). CASPubMed Google Scholar
Chung, S. H., Polgar, J. & Reed, G. L. Protein kinase C phosphorylation of syntaxin 4 in thrombin-activated human platelets. J. Biol. Chem.275, 25286–25291 (2000). CASPubMed Google Scholar
Puri, N. & Roche, P. A. Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis. Traffic7, 1482–1494 (2006). CASPubMed Google Scholar
Vaidyanathan, V. V., Puri, N. & Roche, P. A. The last exon of SNAP-23 regulates granule exocytosis from mast cells. J. Biol. Chem.276, 25101–25106 (2001). CASPubMed Google Scholar
Reales, E. et al. Identification of soluble _N_-ethylmaleimide-sensitive factor attachment protein receptor exocytotic machinery in human plasma cells: SNAP-23 is essential for antibody secretion. J. Immunol.175, 6686–6693 (2005). CASPubMed Google Scholar