Choudhry, M. A., Bland, K. I. & Chaudry, I. H. Gender and susceptibility to sepsis following trauma. Endocr. Metab. Immune Disord. Drug Targets6, 127–135 (2006). ArticleCASPubMed Google Scholar
Gannon, C. J., Pasquale, M., Tracy, J. K., McCarter, R. J. & Napolitano, L. M. Male gender is associated with increased risk for postinjury pneumonia. Shock21, 410–414 (2004). ArticlePubMed Google Scholar
Butterworth, M., McClellan, B. & Aklansmith, M. Influence of sex on immunoglobulin levels. Nature214, 1224–1225 (1967). ArticleCASPubMed Google Scholar
Purtilo, D. T. & Sullivan, J. L. Immunological bases for superior survival of females. Am. J. Dis. Child.133, 1251–1253 (1979). CASPubMed Google Scholar
Burch, P. R. J. & Rowell, N. R. Genetic origin of some sex differences among human beings. Pediatrics36, 658–659 (1965). Google Scholar
Migeon, B. R. Females are mosaics: X inactivation and sex differences in disease (Oxford University Press, New York, 2007). Google Scholar
Glezen, W. P. et al. Epidemiologic patterns of acute lower respiratory disease of children in a pediatric group practice. J. Pediatr.78, 397–406 (1971). ArticleCASPubMed Google Scholar
Hall, C. B., Kopelman, A. E., Douglas, R. G., Geiman, J. M. & Meagher, M. P. Neonatal respiratory syncytial virus-infection. N. Engl. J. Med.300, 393–396 (1979). ArticleCASPubMed Google Scholar
Kunin, C. M. Antibody distribution against non-enteropathic E. coli. Arch. Intern. Med.110, 676–686 (1962). Article Google Scholar
Thompson, D. J., Gezon, H. M., Rogers, K. D., Yee, R. B. & Hatch, T. F. Excess risk of staphylococcal infection and disease in newborn males. Am. J. Epidemiol.84, 314–328 (1966). ArticleCASPubMed Google Scholar
Strachan, N. J. C. et al. Sexual dimorphism in campylobacteriosis. Epidemiol. Infect.136, 1492–1495 (2008). ArticleCASPubMed Google Scholar
Green, M. S. The male predominance in the incidence of infectious diseases in children: a postulated explanation for disparities in the literature. Int. J. Epidemiol.21, 381–386 (1992). ArticleCASPubMed Google Scholar
Restif, O. & William, A. The evolution of sex-specific immune defenses. Proc. R. Soc. Lond. B Biol. Sci. Mar 24 2010 (doi:10.1098/rspb.2010.0188). ArticlePubMedPubMed Central Google Scholar
Migeon, B. R. The role of X inactivation and cellular mosaicism in women's health and sex-specific diseases. JAMA295, 1428–1433 (2006). ArticleCASPubMed Google Scholar
Morris, J. A. & Harrison, L. M. Hypothesis: increased male mortality caused by infection is due to a decrease in heterozygous loci as a result of a single X chromosome. Med. Hypotheses72, 322–324 (2009). ArticleCASPubMed Google Scholar
Spolarics, Z. The X-files of inflammation: cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection. Shock27, 597–604 (2007). ArticleCASPubMed Google Scholar
Arnold, A. P. Sex chromosomes and brain gender. Nature Rev. Neurosci.5, 701–708 (2004). ArticleCAS Google Scholar
Lleo, A., Battezzati, P. M., Selmi, C., Gershwin, M. E. & Podda, M. Is autoimmunity a matter of sex? Autoimmun. Rev.7, 626–630 (2008). ArticleCASPubMed Google Scholar
Ozcelik, T. X chromosome inactivation and female predisposition to autoimmunity. Clin. Rev. Allergy Immunol.34, 348–351 (2008). ArticlePubMed Google Scholar
Selmi, C. The X in sex: how autoimmune diseases revolve around sex chromosomes. Best Pract. Res. Clin. Rheumatol.22, 913–922 (2008). ArticleCASPubMed Google Scholar
Deitch, E. A. et al. Neutrophil activation is modulated by sex hormones after trauma-hemorrhagic shock and burn injuries. Am. J. Physiol. Heart Circ. Physiol.291, 1456–1465 (2006). ArticleCAS Google Scholar
Nalbandian, G. & Kovats, S. Understanding sex biases in immunity — effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol. Res.31, 91–106 (2005). ArticleCASPubMed Google Scholar
Szalay, L. et al. Androstenediol administration after trauma-hemorrhage attenuates inflammatory response, reduces organ damage, and improves survival following sepsis. Am. J. Physiol. Gastrointest. Liver Physiol.291, 260–266 (2006). ArticleCAS Google Scholar
Burgoyne, P. S. et al. The genetic basis of XX–XY differences present before gonadal sex differentiation in the mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci.350, 253–260 (1995). ArticleCASPubMed Google Scholar
Palaszynski, K. M. et al. A Yin-Yang effect between sex chromosome complement and sex hormones on the immune response. Endocrinology146, 3280–3285 (2005). ArticleCASPubMed Google Scholar
Washburn, T. C., Medearis, D. N. & Childs, B. Sex differences in susceptibility to infections. Pediatrics35, 57–64 (1965). CASPubMed Google Scholar
McMillen, M. M. Differential mortality by sex in fetal and neonatal deaths. Science204, 89–91 (1979). ArticleCASPubMed Google Scholar
Forest, M. G., Cathiard, A. M. & Bertrand, J. A. Evidence of testicular activity in early infancy. J. Clin. Endocrinol. Metab.37, 148–151 (1973). ArticleCASPubMed Google Scholar
Mage, D. T. & Donner, M. A genetic basis for the sudden infant death syndrome sex ratio. Med. Hypotheses48, 137–142 (1997). ArticleCASPubMed Google Scholar
Morris, J. A. & Harrison, L. M. Sudden unexpected death in infancy: evidence of infection. Lancet371, 1815–1816 (2008). ArticlePubMed Google Scholar
Weber, M. A. et al. Infection and sudden unexpected death in infancy: a systematic retrospective case review. Lancet371, 1848–1853 (2008). ArticleCASPubMed Google Scholar
Notarangelo, L. et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee meeting in Budapest, 2005. J. Allergy Clin. Immunol.117, 883–896 (2006). ArticlePubMed Google Scholar
Pessach, I. M. & Notarangelo, L. D. X-linked primary immunodeficiencies as a bridge to better understanding X-chromosome related autoimmunity. J. Autoimmun.33, 17–24 (2009). ArticleCASPubMed Google Scholar
Teahan, C., Rowe, P., Parker, P., Totty, N. & Segal, A. W. The X-linked chronic granulomatous-disease gene codes for the β-chain of cytochrome-_b_-245. Nature327, 720–721 (1987). ArticleCASPubMed Google Scholar
Bennett, C. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet.27, 20–21 (2001). ArticleCASPubMed Google Scholar
Noguchi, M. et al. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell73, 147–157 (1993). ArticleCASPubMed Google Scholar
Leonard, W. J. Cytokines and immunodeficiency diseases. Nature Rev. Immunol.1, 200–208 (2001). ArticleCAS Google Scholar
Mordmuller, B., Turrini, F., Long, H., Kremsner, P. G. & Arese, P. Neutrophils and monocytes from subjects with the Mediterranean G6PD variant: effect of Plasmodium falciparum hemozoin on G6PD activity, oxidative burst and cytokine production. Eur. Cytokine Netw.9, 239–245 (1998). CASPubMed Google Scholar
Wilmanski, J., Siddiqi, M., Deitch, E. A. & Spolarics, Z. Augmented IL-10 production and redox-dependent signaling pathways in glucose-6-phosphate dehydrogenase-deficient mouse peritoneal macrophages. J. Leukoc. Biol.78, 85–94 (2005). ArticleCASPubMed Google Scholar
Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature405, 466–472 (2000). ArticleCASPubMed Google Scholar
Uzel, G. The range of defects associated with nuclear factor κB essential modulator. Curr. Opin. Allergy Clin. Immunol.5, 513–518 (2005). ArticleCASPubMed Google Scholar
Orange, J. S. et al. The presentation and natural history of immunodeficiency caused by nuclear factor κB essential modulator mutation. J. Allergy Clin. Immunol.113, 725–733 (2004). ArticleCASPubMed Google Scholar
Orange, J. S. et al. Human nuclear factor κB essential modulator mutation can result in immunodeficiency without ectodermal dysplasia. J. Allergy Clin. Immunol.114, 650–656 (2004). ArticleCASPubMed Google Scholar
Orange, J. S., Levy, O. & Geha, R. S. Human disease resulting from gene mutations that interfere with appropriate nuclear factor-κB activation. Immunol. Rev.203, 21–37 (2005). ArticleCASPubMed Google Scholar
Vicoso, B. & Charlesworth, B. Evolution on the X chromosome: unusual patterns and processes. Nature Rev. Gen.7, 645–653 (2006). ArticleCAS Google Scholar
Ohno, S. Sex Chromosomes and Sex-Linked Genes (Springer, Berlin, 1967). Book Google Scholar
Nguyen, D. K. & Disteche, C. M. Dosage compensation of the active X chromosome in mammals. Nature Genet.38, 47–53 (2006). By comparing the global X chromosome transcriptome with that of autosomes, the authors show that mammalian X chromosome gene expression is upregulated in several somatic tissues to match the levels shown by autosomal genes. ArticleCASPubMed Google Scholar
Vallender, E. J. & Lahn, B. T. How mammalian sex chromosomes acquired their peculiar gene content. Bioessays26, 159–169 (2004). ArticleCASPubMed Google Scholar
Wang, P. J., McCarrey, J. R., Yang, F. & Page, D. C. An abundance of X-linked genes expressed in spermatogonia. Nature Genet.27, 422–426 (2001). PubMed Google Scholar
Ross, M. T. et al. The DNA sequence of the human X chromosome. Nature434, 325–337 (2005). This article provides the complete description of structural features of the human X chromosome, as well as a detailed analysis of its evolution and the processes that led to progressive loss of recombination between sex chromosomes. ArticleCASPubMedPubMed Central Google Scholar
Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature434, 400–404 (2005). This article provides a complete profile of human X chromosome inactivation, showing for the first time that X-linked genes can escape inactivation, and that this is a heterogeneous process. ArticleCASPubMed Google Scholar
Johnston, C. M. et al. Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. Plos Genet.4, e9 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wilson, M. A. & Makova, K. D. Evolution and survival on eutherian sex chromosomes. PLoS Genet.5, e1000568 (2009). In this paper, the authors show for the first time that X and Y homologous genes have evolved at different evolutionary rates after suppression of recombination. They also show that some XY homologous genes have acquired specific mRNA or protein expression patterns and functions. ArticleCASPubMedPubMed Central Google Scholar
Ditton, H. J., Zimmer, J., Rajpert- De Meyts, E. & Vogt, P. H. The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum. Mol. Genet.13, 2333–2341 (2004). ArticleCASPubMed Google Scholar
Decker, T. et al. The TBK-1 substrate DDX3X, a DEAD-box RNA helicase, provides innate immunity to Listeria monocytogenes. Cytokine43, 304 (2008). Article Google Scholar
Soulat, D. et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J.27, 2135–2146 (2008). ArticleCASPubMedPubMed Central Google Scholar
Brown, C. J., Carrel, L. & Willard, H. F. Expression of genes from the human active and inactive X chromosomes. Am. J. Hum. Genet.60, 1333–1343 (1997). ArticleCASPubMedPubMed Central Google Scholar
Vanlaere, I. & Libert, C. Matrix metalloproteinases as drug targets in infections caused by Gram-negative bacteria and in septic shock. Clin. Microbiol. Rev.22, 224–239 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hoffmann, U. et al. Matrix-metalloproteinases and their inhibitors are elevated in severe sepsis: prognostic value of TIMP-1 in severe sepsis. Scand. J. Infect. Dis.38, 867–872 (2006). ArticleCASPubMed Google Scholar
Burkhardt, J. et al. Association of the X-chromosomal genes TIMP1 and IL9R with rheumatoid arthritis. J. Rheumatol.36, 2149–2157 (2009). ArticleCASPubMed Google Scholar
Migeon, B. R. Why females are mosaics, X-chromosome inactivation, and sex differences in disease. Gend. Med.4, 97–105 (2007). This review provides a comprehensive explanation of mosaicism in females and why males are more vulnerable to diseases than females. ArticlePubMed Google Scholar
Migeon, B. R. Non-random X chromosome inactivation in mammalian cells. Cytogenet. Cell Genet.80, 142–148 (1998). ArticleCASPubMed Google Scholar
Orstavik, K. H. X chromosome inactivation in clinical practice. Hum. Genet.126, 363–373 (2009). ArticlePubMed Google Scholar
Migeon, B. R. et al. Selection against lethal alleles in females heterozygous for incontinentia pigmenti. Am. J. Hum. Genet.44, 100–106 (1989). CASPubMedPubMed Central Google Scholar
Fearon, E. R., Kohn, D. B., Winkelstein, J. A., Vogelstein, B. & Blaese, R. M. Carrier detection in the Wiskott Aldrich syndrome. Blood72, 1735–1739 (1988). CASPubMed Google Scholar
Van den Bogaard, R. et al. Molecular characterisation of 10 Dutch properdin type I deficient families: mutation analysis and X-inactivation studies. Eur. J. Hum. Genet.8, 513–518 (2000). ArticleCASPubMed Google Scholar
Gleicher, N. & Barad, D. H. Gender as risk factor for autoimmune diseases. J. Autoimmun.28, 1–6 (2007). ArticleCASPubMed Google Scholar
Jacobson, D. L., Gange, S. J., Rose, N. R. & Graham, N. M. H. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol.84, 223–243 (1997). ArticleCASPubMed Google Scholar
Kast, R. E. Hypothesis – predominance of autoimmune and rheumatic diseases in females. J. Rheumatol.4, 288–292 (1977). CASPubMed Google Scholar
Stewart, J. J. The female X-inactivation mosaic in systemic lupus erythematosus. Immunol. Today19, 352–357 (1998). The original description of the loss of mosaicism hypothesis. In this article, a theoretical background for this hypothesis and the main findings which corroborate it are provided. ArticleCASPubMed Google Scholar
Takeno, M. et al. Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J. Immunol.158, 3529–3538 (1997). CASPubMed Google Scholar
Scofield, R. H. et al. Klinefelter's syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum.58, 2511–2517 (2008). ArticlePubMedPubMed Central Google Scholar
Litsuka, Y. et al. Evidence of skewed X-chromosome inactivation in 47,XXY and 48,XXYY Klinefelter patients. Am. J. Med. Genet.98, 25–31 (2001). Article Google Scholar
Brix, T. H. et al. High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: A possible explanation for the female predisposition to thyroid autoimmunity. J. Clin. Endocrinol. Metab.90, 5949–5953 (2005). ArticleCASPubMed Google Scholar
Ozbalkan, Z. et al. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum.52, 1564–1570 (2005). ArticleCASPubMed Google Scholar
Ozcelik, T. et al. Evidence from autoimmune thyroiditis of skewed X-chromosome inactivation in female predisposition to autoimmunity. Eur. J. Hum. Genet.14, 791–797 (2006). ArticleCASPubMed Google Scholar
Invernizzi, P. The X chromosome in female-predominant autoimmune diseases. Ann. N Y Acad. Sci.1110, 57–64 (2007). ArticleCASPubMed Google Scholar
Chitnis, S. et al. The role of X-chromosome inactivation in female predisposition to autoimmunity. Arthritis Res.2, 399–406 (2000). This study describes a large survey of patterns of X chromosome inactivation skewing in patients with different autoimmune diseases and in age-matched female controls. The authors provide a model showing the consequences of skewed inactivation on tolerance induction in the thymus. ArticleCASPubMedPubMed Central Google Scholar
Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol.179, 6352–6358 (2007). This study shows for the first time thatCD40Loverexpression on CD4+ T cells, owing to inactive X chromosome reactivation, contributes to the pathogenesis of SLE. ArticleCASPubMed Google Scholar
Forsdyke, D. R. X chromosome reactivation perturbs intracellular self/not-self discrimination. Immunol. Cell Biol.87, 525–528 (2009). ArticleCASPubMed Google Scholar
Zhou, Y. et al. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus. Clin. Immunol.132, 362–370 (2009). ArticleCASPubMedPubMed Central Google Scholar
Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA103, 9970–9975 (2006). ArticleCASPubMedPubMed Central Google Scholar
Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med.205, 1099–1108 (2008). This study provides a simple and elegant way to show how wild-type female mice are more susceptible to models of autoimmune diseases than XYSry−mice with a common gonadal background. ArticleCASPubMedPubMed Central Google Scholar
Invernizzi, P. et al. X chromosome monosomy: a common mechanism for autoimmune diseases. J. Immunol.175, 575–578 (2005). ArticleCASPubMed Google Scholar
Elsheikh, M., Wass, J. A. H. & Conway, G. S. Autoimmune thyroid syndrome in women with Turner's syndrome — the association with karyotype. Clin. Endocrinol.55, 223–226 (2001). ArticleCAS Google Scholar
Bondy, C. A. & Cheng, C. Monosomy for the X chromosome. Chromosome Res.17, 649–658 (2009). This review describes the major effects of X chromosome monosomy on Turner's syndrome. A list of X-linked genes located in the pseudoautosomal regions is given, together with the hypothesis that haploinsufficiency for these genes may be responsible for the symptoms. ArticleCASPubMed Google Scholar
Invernizzi, P. et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet363, 533–535 (2004). ArticlePubMed Google Scholar
Disteche, C. M., Filippova, G. N. & Tsuchiya, K. D. Escape from X inactivation. Cytogenet. Genome Res.99, 36–43 (2002). A complete and comprehensive review on the process of X inactivation, which provides a comparison between human and mouse genes that escape silencing. Considerations about the molecular characteristics of the genes that escape inactivation are also given together with possible explanations for the phenomenon. ArticleCASPubMed Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Google Scholar
le Sage, C. et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J.26, 3699–3708 (2007). ArticleCASPubMedPubMed Central Google Scholar
Johnnidis, J. B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature451, 1125–1129 (2008). ArticleCASPubMed Google Scholar
Fontana, L. et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nature Cell Biol.9, 775–787 (2007). ArticleCASPubMed Google Scholar
Rosa, A. et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc. Natl Acad. Sci. USA104, 19849–19854 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cooper, G. S. & Stroehla, B. C. The epidemiology of autoimmune diseases. Autoimmun. Rev.2, 119–125 (2003). ArticlePubMed Google Scholar