Platelets and the immune continuum (original) (raw)
Bizzozero, G. Sur un nouvel èlèment morphologique du sang chez les mammiferes et son importance dans la thrombose et dans la coagulation. Arch. Ital. Biol.1, 1–5 (1882). Google Scholar
Nieswandt, B. et al. Integrins in platelet activation. J. Thromb. Haemost.7 (Suppl. 1), 206–209 (2009). ArticleCASPubMed Google Scholar
Smyth, S. S. et al. Platelet functions beyond hemostasis. J. Thromb. Haemost.7, 1759–1766 (2009). ArticleCASPubMed Google Scholar
Kaushansky, K. Lineage-specific hematopoietic growth factors. N. Engl. J. Med.354, 2034–2045 (2006). ArticleCASPubMed Google Scholar
Italiano, J. E. Jr & Hartwig, J. H. in Platelets 2nd edn (eds Michelson, A. D. & Coller, B. S.) 23–44 (Elsevier, Amsterdam, 2007). Book Google Scholar
Levin, J. in Platelets 2nd edn (eds Michelson, A. D. & Coller, B. S.) 3–22 (Elsevier, Amsterdam, 2007). Book Google Scholar
Hose, J. E., Martin, G. G. & Gerard, A. S. A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. Biol. Bull.178, 33–45 (1990). ArticleCASPubMed Google Scholar
Götz, P. & Boman, H. G. in Comprehensive Insect Physiology, Biochemistry and Pharmacology (eds Kerkut, G. A. & Gilbert, L. I.) 453–485 (Pergamon, Oxford, 1985). Google Scholar
Thon, J. N. & Italiano, J. E. Jr. Platelet formation. Semin.Hematol.47, 220–226 (2010). CAS Google Scholar
Patel, S. R. et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood.106, 4076–4085 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hartwig, J. Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol.118, 1421–1442 (1992). ArticleCASPubMed Google Scholar
Diacovo, T. G., Puri, K. D., Warnock, R. A., Springer, T. A. & von Andrian, U. H. Platelet-mediated lymphocyte delivery to high endothelial venules. Science273, 252–255 (1996). ArticleCASPubMed Google Scholar
Italiano, J. E. Jr et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released. Blood.111, 1227–1233 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sehgal, S. & Storrie, B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J. Thromb. Haemost.5, 2009–2016 (2007). ArticleCASPubMed Google Scholar
White, G. C. & Rompietti, R. Platelet secretion: indiscriminately spewed forth or highly orchestrated? J. Thromb. Haemost.5, 2006–2008 (2007). ArticleCASPubMed Google Scholar
Wicki, A. N. et al. Isolation and characterization of human blood platelet mRNA and construction of a cDNA library in λgt11. Confirmation of the platelet derivation by identification of GPIb coding mRNA and cloning of a GPIb coding cDNA insert. Thromb.Haemost.61, 448–453 (1989). ArticleCAS Google Scholar
Shashkin, P. N., Brown, G. T., Ghosh, A., Marathe, G. K. & McIntyre, T. M. Lipopolysaccharide is a direct agonist for platelet RNA splicing. J.Immunol.181, 3495–3502 (2008). ArticleCAS Google Scholar
Lindemann, S. & Gawaz, M. The active platelet: translation and protein synthesis in an anucleate cell. Semin. Thromb. Hemost.33, 144–150 (2007). ArticleCASPubMed Google Scholar
Denis, M. M. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell122, 379–391 (2005). ArticleCASPubMedPubMed Central Google Scholar
Coppinger, J. A. Moderation of the platelet releasate response by aspirin. Blood109, 4786–4792 (2007). ArticleCASPubMed Google Scholar
Mazzucco, L., Borzini, P. & Gope, R. Platelet-derived factors involved in tissue repair — from signal to function. Transfus. Med. Rev.24, 218–234 (2010). ArticlePubMed Google Scholar
Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M. & Sporn, M. B. Transforming growth factor-β in human platelets: identification of a major storage site, purification, and characterization. J. Biol. Chem.258, 7155–7160 (1983). ArticleCASPubMed Google Scholar
Andersson, P. O., Stockelberg, D., Jacobsson, S. & Wadenvik, H. A transforming growth factor-β1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura. Ann. Hematol.79, 507–513 (2000). ArticleCASPubMed Google Scholar
Andersson, P. O., Olsson, A. & Wadenvik, H. Reduced transforming growth factor-β1 production by mononuclear cells from patients with active chronic idiopathic thrombocytopenic purpura. Br. J. Haematol.116, 862–867 (2002). ArticleCASPubMed Google Scholar
Ling, Y., Cao, X., Yu, Z. & Ruan, C. Circulating dendritic cells subsets and CD4+Foxp3+ regulatory T cells in adult patients with chronic ITP before and after treatment with high-dose dexamethasome. Eur. J. Haematol.79, 310–316 (2007). ArticleCASPubMed Google Scholar
Liu, B. et al. Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura. Eur. J. Haematol.78, 139–143 (2007). CASPubMed Google Scholar
Stasi, R. et al. Analysis of regulatory T cell changes in patients with idiopathic thrombocytopenic purpura receiving B-cell depleting therapy with rituximab. Blood112, 1147–1150 (2008). ArticleCASPubMed Google Scholar
Olsson, B., Ridell, B., Carlsson, L., Jacobsson, S. & Wadenvik, H. Recruitment of T cells into bone marrow of ITP patients possibly due to elevated expression of VLA-4 and CX3CR1. Blood12, 1078–1084 (2008). ArticleCAS Google Scholar
Yu, J. et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood112, 1325–1328 (2008). ArticleCASPubMedPubMed Central Google Scholar
Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol.16, 111–135 (1998). ArticleCASPubMed Google Scholar
Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature391, 591–594 (1998). ArticleCASPubMed Google Scholar
Andre, P., Nannizzi-Alaimo, L., Prasad, S. K. & Phillips, D. R. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation106, 896–899 (2002). ArticlePubMed Google Scholar
Hammwöhner, M. et al. Platelet expression of CD40/CD40 ligand and its relation to inflammatory markers and adhesion molecules in patients with atrial fibrillation. Exp. Biol. Med.232, 581–589 (2007). Google Scholar
Anand, S. X., Viles-Gonzalez, J. F. & Badimon, J. J. Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb. Haemost.90, 377–384 (2003). ArticleCASPubMed Google Scholar
Henn, V., Steinbach, S., Büchner, K., Presek, P. & Kroczek, R. A. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood98, 1047–1054 (2001). ArticleCASPubMed Google Scholar
von Hundelshausen, P. & Weber, C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ. Res.100, 27–40 (2007). ArticleCASPubMed Google Scholar
Elzey, B. D. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity19, 9–19 (2003). ArticleCASPubMed Google Scholar
Sprague, D. L. et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood111, 5028–5036 (2008). ArticleCASPubMedPubMed Central Google Scholar
Elzey, B. D. et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood111, 3684–3691 (2008). ArticleCASPubMedPubMed Central Google Scholar
Iannacone, M. et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nature Med.11, 1167–1169 (2005). ArticleCASPubMed Google Scholar
Kissel, K. et al. Human platelets target dendritic cell differentiation and production of proinflammatory cytokines. Transfusion46, 818–827 (2006). ArticleCASPubMed Google Scholar
Janeway, C. A. Jr. The immune system evolved to discriminate infectious non-self from non-infectious self. Immunol. Today13, 11–15 (1992). ArticleCASPubMed Google Scholar
Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). ArticleCASPubMed Google Scholar
Scott, T. & Owens, M. D. Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4, and MAP kinase and NF-κB pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Mol. Immunol.45, 1001–1008 (2008). ArticleCASPubMed Google Scholar
Kuckleburg, C. J., Tiwari, R. & Czuprynski, C. J. Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and -9 and generation of reactive oxygen species. Thromb. Haemost.99, 363–372 (2008). ArticleCASPubMed Google Scholar
Kuckleburg, C. J., McClenahan, D. J. & Czuprynski, C. J. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization. Shock29, 189–196 (2008). ArticleCASPubMedPubMed Central Google Scholar
Aslam, R., Freedman, J. & Semple, J. W. Murine platelets express Toll-like receptor 2: a potential regulator of innate and adaptive immunity. Platelets15, 267–269 (2004). Google Scholar
Shiraki, R. et al. Expression of Toll-like receptors on human platelets. Thromb. Res.113, 379–385 (2004). ArticleCASPubMed Google Scholar
Andonegui, G. et al. Platelets express functional Toll-like receptor-4. Blood106, 2417–2423 (2005). ArticleCASPubMed Google Scholar
Cognasse, F. et al. Evidence of Toll-like receptor molecules on human platelets. Immunol. Cell Biol.88, 196–198 (2005). ArticleCAS Google Scholar
Aslam, R. et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood107, 637–641 (2006). ArticleCASPubMed Google Scholar
Semple, J. W., Aslam, R., Kim, M., Speck, E. R. & Freedman, J. Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG opsonized platelets. Blood109, 4803–4805 (2007). ArticleCASPubMed Google Scholar
Patrignani, P. et al. Reduced thromboxane biosynthesis in carriers of Toll-like receptor 4 polymorphisms in vivo. Blood107, 3572–3574 (2006). ArticleCASPubMed Google Scholar
Ståhl, A. L. et al. Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets via TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood108, 167–176 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, G. et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J. Immunol.182, 7997–8004 (2009). ArticleCASPubMed Google Scholar
Welbourn, C. R. & Young, Y. Endotoxin, septic shock and acute lung injury: neutrophils, macrophages and inflammatory mediators. Br. J. Surg.79, 998–1003 (1992). ArticleCASPubMed Google Scholar
McClenahan, D. J., Evanson, O. A., Walcheck, B. K. & Weiss, D. J. Association among filamentous actin content, CD11b expression, and membrane deformability in stimulated and unstimulated bovine neutrophils. Amer. J. Vet. Res.61, 380–386 (2000). ArticleCASPubMed Google Scholar
Ma, A. C. & Kubes, P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J. Thromb. Haemost.6, 415–420 (2008). ArticleCASPubMed Google Scholar
Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med.13, 463–469 (2007). This elegant study provided evidence that platelets act as sensors of bacterial infection by demonstrating that activation of platelet TLR4 stimulates the binding of activated platelets to neutrophils, leading to the release of NETs to catch and kill bacteria. ArticleCASPubMed Google Scholar
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science303, 1532–1535 (2004). ArticleCASPubMed Google Scholar
Klesney-Tait, J., Turnbull, I. R. & Colonna, M. The TREM receptor family and signal integration. Nature Immunol.7, 1266–1273 (2006). ArticleCAS Google Scholar
Haselmayer, P., Grosse-Hovest, L., von Landenberg, P., Schild, H. & Radsak, M. P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood110, 1029–1035 (2007). In this article, the authors demonstrated that platelets express the ligand for TREM1, and showed that the binding of this molecule to neutrophil TREM1 augments LPS-induced neutrophil activation, and ultimately the innate inflammatory response. ArticleCASPubMed Google Scholar
Washington, A. V. et al. TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J. Clin. Invest.119, 1489–1501 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dong, Z. M., Brown, A. A. & Wagner, D. D. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation101, 2290–2295 (2000). ArticleCASPubMed Google Scholar
Burger, P. C. & Wagner, D. D. Platelet P-selectin facilitates atherosclerotic lesion development. Blood101, 2661–2666 (2003). ArticleCASPubMed Google Scholar
Lindemann, S. et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis. J. Cell Biol.154, 485–490 (2001). ArticleCASPubMedPubMed Central Google Scholar
Langer, H. F. & Gawaz, M. P. Platelet-vessel wall interactions in atherosclerotic disease. Thromb. Haemost.99, 480–486 (2008). ArticleCASPubMed Google Scholar
Davi, G. & Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med.357, 2482–2494 (2007). ArticleCASPubMed Google Scholar
Langer, H. F. et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler. Thromb. Vasc. Biol.27, 1463–1470 (2007). ArticleCASPubMed Google Scholar
Langer, H. F., Baughman, R. P., Lower, E. E., Flessa, H. C. & Tollerud, D. J. Thrombocytopenia in the intensive care unit. Chest104, 1243–1247 (1993). Article Google Scholar
Gawaz, M., Dickfeld, T., Bogner, C., Fateh-Moghadam, S. & Neumann, F. J. Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med.23, 379–385 (1997). ArticleCASPubMed Google Scholar
Jacoby, R. C. et al. Platelet activation and function after trauma. J. Trauma51, 639–647 (2001). ArticleCASPubMed Google Scholar
Ogura, H. et al. Activated platelets enhance microparticle formation and platelet–leukocyte interaction in severe trauma and sepsis. J. Trauma50, 801–809 (2001). ArticleCASPubMed Google Scholar
Mause, S. F., von Hundelshausen, P., Zernecke, A., Koenen, R. R. & Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol.25, 1512–1518 (2005). ArticleCASPubMed Google Scholar
Boman, H. G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol.13, 61–92 (1995). ArticleCASPubMed Google Scholar
Yeaman, M. R., Puentes, S. M., Norman, D. C. & Bayer, A. S. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect. Immun.60, 1202–1209 (1992). ArticleCASPubMedPubMed Central Google Scholar
Krijgsveld, J. et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem.275, 20374–20381 (2000). ArticleCASPubMed Google Scholar
Cox, D. & McConkey, S. The role of platelets in the pathogenesis of cerebral malaria. Cell. Mol. Life Sci.67, 557–568 (2010). ArticleCASPubMed Google Scholar
McMorran, B. J. et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science323, 797–800 (2009). This elegant study demonstrated that platelets can kill parasitesin vitroand in mice, and found that platelet-deficient mice are more likely to die from malaria than mice with normal platelet counts. In addition, it showed that a single dose of aspirin may interfere with platelets sufficiently to prevent their killing power. ArticleCASPubMed Google Scholar
Choy, E. H. & Panayi, G. S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med.344, 907–916 (2001). ArticleCASPubMed Google Scholar
Knijff-Dutmer, E. A., Koerts, J., Nieuwland, R., Kalsbeek-Batenburg, E. M. & van de Laar, M. A. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum.46, 1498–1503 (2002). ArticleCASPubMed Google Scholar
Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science327, 580–583 (2010). This interesting study described an essential role for platelet-derived microparticles in the development of the autoimmune disease rheumatoid arthritis, and identified the collagen receptor glycoprotein VI as a key stimulator of microparticle generation. ArticleCASPubMedPubMed Central Google Scholar
Looney, M. R., Gropper, M. A. & Matthay, M. A. Transfusion-related acute lung injury: a review. Chest126, 249–258 (2004). ArticlePubMed Google Scholar
Cognasse, F., Lafarge, S., Chavarin, P., Acquart, S. & Garraud, O. Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med.33, 382–384 (2007). ArticlePubMed Google Scholar
Khan, S. Y. et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood108, 2455–2462 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cines, D. B., Bussel, J. B., Liebman, H. A. & Luning Prak, E. T. The ITP syndrome: pathogenic and clinical diversity. Blood113, 6511–6521 (2009). ArticleCASPubMedPubMed Central Google Scholar
Semple, J. W., Provan, D., Garvey, M. B. & Freedman, J. Recent progress in understanding the pathogenesis of immune thrombocytopenia (ITP). Curr. Opin. Haematol.17, 590–595 (2010). ArticleCAS Google Scholar
Semple, J. W. Infections, antigen presenting cells, T cells and immune tolerance: their role in the pathogenesis of immune thrombocytopenia (ITP). Hematol. Oncol. Clin. North Am.23, 1177–1192 (2009). ArticlePubMed Google Scholar
Harrington, W. J., Minnich, V., Hollingsworth, J. W. & Moore, C. V. Demonstration of a thrombocytopenic factor in the blood of patients with thrombocytopenic purpura. J. Lab. Clin. Med.38, 1–10 (1951). CASPubMed Google Scholar
Evans, R. S., Takahashi, K., Duane, R. T., Payne, R. & Liu, C. Primary thrombocytopenic purpura and acquired hemolytic anemia; evidence for a common etiology. Arch. Intern. Med.87, 48–65 (1951). ArticleCAS Google Scholar
Nardi, M., Tomlinson, S., Greco, M. & Karpatkin, S. Complement-independent, peroxide-induced antibody lysis of platelets in HIV-1-related immune thrombocytopenia. Cell106, 551–561 (2000). Article Google Scholar
Olsson, B. et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nature Med.9, 1123–1124 (2003). ArticleCASPubMed Google Scholar
Delaflor-Weiss, E. & Mintz, P. D. The evaluation and management of platelet refractoriness and alloimmunization. Transfus. Med. Rev.14, 180–196 (2000). ArticleCASPubMed Google Scholar
Landau, M. & Rosenberg, N. Molecular insight into human platelet antigens: structural and evolutionary conservation analyses offer new perspective to immunogenic disorders. Transfusion51, 558–569 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kaplan C. Neonatal alloimmune thrombocytopenia: a 50-year story. Immunohematology23, 9–13 (2007). ArticleCASPubMed Google Scholar
Shtalrid, M. et al. Post-transfusion purpura: a challenging diagnosis. Isr. Med. Assoc. J.8, 672–674 (2006). PubMed Google Scholar
Kao, K. J., Cook, D. J. & Scornik, J. C. Quantitative analysis of platelet surface HLA by W6/32 anti-HLA monoclonal antibody. Blood68, 627–632 (1986). ArticleCASPubMed Google Scholar
Gouttefangeas, C. et al. Thrombocyte HLA molecules retain nonrenewable endogenous peptides of megakaryocyte lineage and do not stimulate direct allocytotoxicity in vitro. Blood95, 3168–3175 (2000). ArticleCASPubMed Google Scholar
Aslam, R., Speck, E. R., Kim, M., Freedman, J. & Semple, J. W. Transfusion-related immunomodulation (TRIM) by platelets is dependent on their expression of MHC class I molecules and is independent of leukocytes. Transfusion48, 1778–1786 (2008). ArticlePubMed Google Scholar
Chow, L. et al. A novel mouse model demonstrating both antibody- and T cell-mediated thrombocytopenia: differential response to therapy. Blood115, 1247–1253 (2010). ArticleCASPubMed Google Scholar
Weyrich, A. S. & Zimmerman, G. A. Platelets: signaling cells in the immune continuum. TrendsImmunol.25, 489–495 (2004). CAS Google Scholar