Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination (original) (raw)
Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity33, 492–503 (2010). CASPubMed CentralPubMed Google Scholar
Pulendran, B. & Ahmed, R. Immunological mechanisms of vaccination. Nature Immunol.131, 509–517 (2011). Google Scholar
Plotkin, S. A. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis.47, 401–409 (2008). PubMed Google Scholar
Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science327, 291–295 (2010). CASPubMed CentralPubMed Google Scholar
Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity27, 370–383 (2007). CASPubMed Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010). CASPubMed Google Scholar
Barbalat, R., Ewald, S. E., Mouchess, M. L. & Barton, G. M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol.29, 185–214 (2011). CASPubMed Google Scholar
Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nature Rev. Immunol.10, 826–837 (2010). CAS Google Scholar
Blasius, A. L. & Beutler, B. Intracellular Toll-like receptors. Immunity32, 305–315 (2010). CASPubMed Google Scholar
Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity34, 637–650 (2011). CASPubMed Google Scholar
Kadowaki, N. et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med.194, 863–869 (2001). CASPubMed CentralPubMed Google Scholar
Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol.5, 987–995 (2004). CAS Google Scholar
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol.11, 373–384 (2010). CAS Google Scholar
Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunol.10, 1065–1072 (2009). CAS Google Scholar
Chiu, Y.-H., MacMillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell138, 576–591 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med.205, 1601–1610 (2008). CASPubMed CentralPubMed Google Scholar
Malathi, K., Dong, B., Gale, M. & Silverman, R. H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature448, 816–819 (2007). CASPubMed CentralPubMed Google Scholar
Venkataraman, T. et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol.178, 6444–6455 (2007). CASPubMed Google Scholar
Satoh, T. et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl Acad. Sci. USA107, 1512–1517 (2010). CASPubMed CentralPubMed Google Scholar
Monroe, K. M., McWhirter, S. M. & Vance, R. E. Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog.5, e1000665 (2009). PubMed CentralPubMed Google Scholar
Li, X. D. et al. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proc. Natl Acad. Sci. USA108, 17390–17395 (2011). CASPubMedPubMed Central Google Scholar
Poeck, H. et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nature Immunol.11, 63–69 (2010). CAS Google Scholar
Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature455, 674–678 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity29, 538–550 (2008). CASPubMed Google Scholar
Oshiumi, H., Sakai, K., Matsumoto, M. & Seya, T. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential. Eur. J. Immunol.40, 940–948 (2010). CASPubMed Google Scholar
Zhang, Z. et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity34, 866–878 (2011). CASPubMed CentralPubMed Google Scholar
Miyashita, M., Oshiumi, H., Matsumoto, M. & Seya, T. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol. Cell. Biol.31, 3802–3819 (2011). CASPubMed CentralPubMed Google Scholar
Kim, T. et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA107, 15181–15186 (2010). CASPubMedPubMed Central Google Scholar
Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature Immunol.12, 959–965 (2011). CAS Google Scholar
Zhang, Z., Yuan, B., Lu, N., Facchinetti, V. & Liu, Y. J. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J. Immunol.187, 4501–4508 (2011). CASPubMed Google Scholar
Elinav, E., Strowig, T., Henao-Mejia, J. & Flavell, R. A. Regulation of the antimicrobial response by NLR proteins. Immunity34, 665–679 (2011). CASPubMed Google Scholar
Sabbah, A. et al. Activation of innate immune antiviral responses by Nod2. Nature Immunol.10, 1073–1080 (2009). CAS Google Scholar
Kanneganti, T. D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem.281, 36560–36568 (2006). CASPubMed Google Scholar
Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity30, 556–565 (2009). CASPubMed CentralPubMed Google Scholar
Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity36, 401–414 (2012). CASPubMed CentralPubMed Google Scholar
Keating, S. E., Baran, M. & Bowie, A. G. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol.32, 574–581 (2011). CASPubMed Google Scholar
Burckstummer, T. et al. An orthogonal proteomic–genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunol.10, 266–272 (2009). Google Scholar
Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature458, 509–513 (2009). CASPubMed CentralPubMed Google Scholar
Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature458, 514–518 (2009). CASPubMed CentralPubMed Google Scholar
Roberts, T. L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science323, 1057–1060 (2009). CASPubMed Google Scholar
Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nature Immunol.11, 997–1004 (2010). CAS Google Scholar
Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe9, 363–375 (2011). CASPubMed CentralPubMed Google Scholar
Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448, 501–505 (2007). CASPubMed Google Scholar
Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol.181, 6427–6434 (2008). CASPubMed Google Scholar
Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature451, 725–729 (2008). CASPubMed Google Scholar
Yang, P. et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β-catenin-dependent pathway. Nature Immunol.11, 487–494 (2010). CAS Google Scholar
Querec, T. et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med.203, 413–424 (2006). PubMed CentralPubMed Google Scholar
Gaucher, D. et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med.205, 3119–3131 (2008). CASPubMed CentralPubMed Google Scholar
Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunol.10, 116–125 (2009). CAS Google Scholar
Caskey, M. et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med.208, 2357–2366 (2011). References 51–53 illustrate how systems biology may help to deconstruct the mechanisms of action of current vaccines in humans. CASPubMed CentralPubMed Google Scholar
Samuelsson, C. et al. Survival of lethal poxvirus infection in mice depends on TLR9, and therapeutic vaccination provides protection. J. Clin. Invest.118, 1776–1784 (2008). CASPubMed CentralPubMed Google Scholar
Delaloye, J. et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog.5, e1000480 (2009). PubMed CentralPubMed Google Scholar
Zhu, J., Martinez, J., Huang, X. & Yang, Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-β. Blood109, 619–625 (2007). CASPubMed CentralPubMed Google Scholar
Quigley, M., Martinez, J., Huang, X. & Yang, Y. A critical role for direct TLR2–MyD88 signaling in CD8 T-cell clonal expansion and memory formation following vaccinia viral infection. Blood113, 2256–2264 (2009). CASPubMed CentralPubMed Google Scholar
Martinez, J., Huang, X. & Yang, Y. Toll-like receptor 8- mediated activation of murine plasmacytoid dendritic cells by vaccinia viral DNA. Proc. Natl Acad. Sci. USA107, 6442–6447 (2010). CASPubMedPubMed Central Google Scholar
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303, 1529–1531 (2004). CASPubMed Google Scholar
Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA101, 5598–5603 (2004). CASPubMedPubMed Central Google Scholar
Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol.5, 730–737 (2004). CAS Google Scholar
Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity23, 19–28 (2005). CASPubMed Google Scholar
Thomas, P. G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity30, 566–575 (2009). CASPubMed CentralPubMed Google Scholar
Koyama, S. et al. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci. Transl. Med.2, 25ra24 (2010). PubMed Google Scholar
Aoshi, T., Koyama, S., Kobiyama, K., Akira, S. & Ishii, K. J. Innate and adaptive immune responses to viral infection and vaccination. Curr. Opin. Virol.1, 226–232 (2011). CASPubMed Google Scholar
Mancuso, G. et al. Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nature Immunol.10, 587–594 (2009). CAS Google Scholar
von Meyenn, F. et al. Toll-like receptor 9 contributes to recognition of Mycobacterium bovis Bacillus Calmette-Guerin by Flt3-ligand generated dendritic cells. Immunobiology211, 557–565 (2006). CASPubMed Google Scholar
Sander, L. E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature474, 385–389 (2011). This study supports the idea that bacterial nucleic acids may be recognized as a signal of microbial viability and may contribute to an enhanced adaptive immune response against the pathogen. CASPubMed CentralPubMed Google Scholar
Liu, M. A. Immunologic basis of vaccine vectors. Immunity33, 504–515 (2010). CASPubMed Google Scholar
Coban, C. et al. Novel strategies to improve DNA vaccine immunogenicity. Curr. Gene Ther.11, 479–484 (2011). CASPubMed Google Scholar
Spies, B. et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J. Immunol.171, 5908–5912 (2003). CASPubMed Google Scholar
Babiuk, S. et al. TLR9−/− and TLR9+/+ mice display similar immune responses to a DNA vaccine. Immunology113, 114–120 (2004). CASPubMed CentralPubMed Google Scholar
Rottembourg, D. et al. Essential role for TLR9 in prime but not prime–boost plasmid DNA vaccination to activate dendritic cells and protect from lethal viral infection. J. Immunol.184, 7100–7107 (2010). CASPubMed Google Scholar
Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461, 788–792 (2009). This study identifies STING as an essential adapter protein in the signalling pathways of TBK1-activating cytosolic DNA sensors. CASPubMed CentralPubMed Google Scholar
Mbow, M. L., De Gregorio, E., Valiante, N. M. & Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol.22, 411–416 (2010). CASPubMed Google Scholar
McKee, A. S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol.183, 4403–4414 (2009). CASPubMed Google Scholar
Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nature Rev. Immunol.9, 287–293 (2009). CAS Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol.9, 847–856 (2008). CAS Google Scholar
Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453, 1122–1126 (2008). CASPubMed CentralPubMed Google Scholar
Spreafico, R., Ricciardi-Castagnoli, P. & Mortellaro, A. The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. Eur. J. Immunol.40, 638–642 (2010). CASPubMed Google Scholar
Goto, N. et al. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine15, 1364–1371 (1997). CASPubMed Google Scholar
Munks, M. W. et al. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood116, 5191–5199 (2010). CASPubMed CentralPubMed Google Scholar
Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med.205, 869–882 (2008). CASPubMed CentralPubMed Google Scholar
Kool, M. et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity34, 527–540 (2011). CASPubMed Google Scholar
Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nature Med.17, 996–1002 (2011). CASPubMed Google Scholar
Lore, K. et al. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J. Immunol.171, 4320–4328 (2003). CASPubMed Google Scholar
Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature433, 887–892 (2005). CASPubMed Google Scholar
Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med.207, 1247–1260 (2010). CASPubMed CentralPubMed Google Scholar
Jelinek, I. et al. TLR3-specific double-stranded RNA oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection. J. Immunol.186, 2422–2429 (2011). CASPubMed Google Scholar
Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med.207, 1261–1271 (2010). CASPubMed CentralPubMed Google Scholar
Trumpfheller, C. et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc. Natl Acad. Sci. USA105, 2574–2579 (2008). CASPubMedPubMed Central Google Scholar
Longhi, M. P. et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med.206, 1589–1602 (2009). CASPubMed CentralPubMed Google Scholar
Stahl-Hennig, C. et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog.5, e1000373 (2009). PubMed CentralPubMed Google Scholar
Kumar, H., Koyama, S., Ishii, K. J., Kawai, T. & Akira, S. Cutting edge: cooperation of IPS-1- and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J. Immunol.180, 683–687 (2008). CASPubMed Google Scholar
Tewari, K. et al. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in non human primates. Vaccine28, 7256–7266 (2010). CASPubMed CentralPubMed Google Scholar
Wang, Y., Cella, M., Gilfillan, S. & Colonna, M. Cutting edge: polyinosinic:polycytidylic acid boosts the generation of memory CD8 T cells through melanoma differentiation-associated protein 5 expressed in stromal cells. J. Immunol.184, 2751–2755 (2010). CASPubMed Google Scholar
Russo, C. et al. Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells. Blood117, 5683–5691 (2011). CASPubMed Google Scholar
Levy, O., Suter, E. E., Miller, R. L. & Wessels, M. R. Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood108, 1284–1290 (2006). CASPubMed CentralPubMed Google Scholar
Hamm, S. et al. Immunostimulatory RNA is a potent inducer of antigen-specific cytotoxic and humoral immune response in vivo. Int. Immunol.19, 297–304 (2007). CASPubMed Google Scholar
Zhang, W. W. & Matlashewski, G. Immunization with a Toll-like receptor 7 and/or 8 agonist vaccine adjuvant increases protective immunity against Leishmania major in BALB/c mice. Infect. Immun.76, 3777–3783 (2008). CASPubMed CentralPubMed Google Scholar
Rajagopal, D. et al. Plasmacytoid dendritic cell-derived type I interferon is crucial for the adjuvant activity of Toll-like receptor 7 agonists. Blood115, 1949–1957 (2010). CASPubMed CentralPubMed Google Scholar
Wille-Reece, U. et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA102, 15190–15194 (2005). CASPubMedPubMed Central Google Scholar
Kastenmuller, K. et al. Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. J. Clin. Invest.121, 1782–1796 (2011). References 102 and 103 show how optimizing the formulation of agonists for nucleic acid sensors may affect quantitative and qualitative aspects of the response to subunit vaccines adjuvanted with such molecules. CASPubMed CentralPubMed Google Scholar
Huang, X. & Yang, Y. Targeting the TLR9–MyD88 pathway in the regulation of adaptive immune responses. Expert Opin. Ther. Targets14, 787–796 (2010). CASPubMed CentralPubMed Google Scholar
Campbell, J. D. et al. CpG-containing immunostimulatory DNA sequences elicit TNF-α-dependent toxicity in rodents but not in humans. J. Clin. Invest.119, 2564–2576 (2009). CASPubMed CentralPubMed Google Scholar
Wagner, M. et al. IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J. Immunol.172, 954–963 (2004). CASPubMed Google Scholar
Poeck, H. et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood103, 3058–3064 (2004). CASPubMed Google Scholar
Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374, 546–549 (1995). CASPubMed Google Scholar
Chen, W., Kuolee, R. & Yan, H. The potential of 3',5'-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine28, 3080–3085 (2010). CASPubMed Google Scholar
Karaolis, D. K. et al. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol.178, 2171–2181 (2007). CASPubMed Google Scholar
McWhirter, S. M. et al. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med.206, 1899–1911 (2009). CASPubMed CentralPubMed Google Scholar
Sauer, J. D. et al. The _N_-ethyl-_N_-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun.79, 688–694 (2011). CASPubMed Google Scholar
Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nature Rev. Immunol.7, 179–190 (2007). CAS Google Scholar
Zhu, Q. et al. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc. Natl Acad. Sci. USA105, 16260–16265 (2008). CASPubMedPubMed Central Google Scholar
Zhu, Q. et al. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Invest.120, 607–616 (2010). CASPubMed CentralPubMed Google Scholar
Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature470, 543–547 (2011). References 115 and 116 illustrate how combining nucleic acid sensor agonists and optimizing their delivery strategies could allow fine-tuning of the responses to subunit vaccines. CASPubMed CentralPubMed Google Scholar
Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ.18, 581–588 (2011). CASPubMed CentralPubMed Google Scholar
Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity35, 323–335 (2011). CASPubMed CentralPubMed Google Scholar
Palucka, K., Banchereau, J. & Mellman, I. Designing vaccines based on biology of human dendritic cell subsets. Immunity33, 464–478 (2010). CASPubMed CentralPubMed Google Scholar
Gilliet, M., Cao, W. & Liu, Y.-J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature Rev. Immunol.8, 594–606 (2008). CAS Google Scholar
Takagi, H. et al. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity35, 958–971 (2011). This study suggests a direct role of pDCs in the priming of CD8+ T cell responsesin vivo. CASPubMed Google Scholar
Reizis, B., Colonna, M., Trinchieri, G., Barrat, F. & Gilliet, M. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nature Rev. Immunol.11, 558–565 (2011). CAS Google Scholar
Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54 (Pt 1), 1–13 (1989). CASPubMed Google Scholar
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994). CASPubMed Google Scholar
González-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nature Rev. Immunol.12, 125–135 (2012). Google Scholar
Sadler, A. J. & Williams, B. R. Interferon-inducible antiviral effectors. Nature Rev. Immunol.8, 559–568 (2008). CAS Google Scholar