Mitogen-activated protein kinases in innate immunity (original) (raw)
Newton, K. & Dixit, V. M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol.4, a006049 (2012). PubMedPubMed Central Google Scholar
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol.11, 373–384 (2010). CAS Google Scholar
Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science327, 291–295 (2010). CASPubMedPubMed Central Google Scholar
Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nature Rev. Immunol.9, 692–703 (2009). CAS Google Scholar
Tseng, P. H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunol.11, 70–75 (2010). CAS Google Scholar
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature412, 346–351 (2001). This is the first study to establish a role for K63-linked ubiquitylation in MAPK signalling. CAS Google Scholar
Sakurai, H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol. Sci.33, 522–530 (2012). CASPubMed Google Scholar
Ajibade, A. A. et al. TAK1 negatively regulates NF-κB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils. Immunity36, 1–12 (2012). Google Scholar
Shim, J. H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev.19, 2668–2681 (2005). CASPubMedPubMed Central Google Scholar
Sato, S. et al. Essential function of the kinase TAK1 in innate and adaptive immune responses. Nature Immunol.6, 1087–1095 (2005). References 8 and 10 highlight the complex cell type-specific roles of TAK1 in MAPK and NF-κB activation by TLRs. CAS Google Scholar
Mendoza, H. et al. Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. Biochem. J.409, 711–722 (2008). CASPubMed Google Scholar
Omori, E., Inagaki, M., Mishina, Y., Matsumoto, K. & Ninomiya-Tsuji, J. Epithelial transforming growth factor β-activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proc. Natl Acad. Sci. USA109, 3365–3370 (2012). CASPubMed Google Scholar
Ori, D. et al. Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs. J. Immunol.190, 4037–4045 (2013). CASPubMed Google Scholar
Eftychi, C., Karagianni, N., Alexiou, M., Apostolaki, M. & Kollias, G. Myeloid TAKL acts as a negative regulator of the LPS response and mediates resistance to endotoxemia. PLoS ONE7, e31550 (2012). CASPubMedPubMed Central Google Scholar
Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nature Rev. Immunol.10, 170–181 (2010). CAS Google Scholar
Greten, F. R. et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKK. Cell130, 918–931 (2007). CASPubMedPubMed Central Google Scholar
Matsuzawa, A. et al. ROS-dependent activation of the TRAF6–ASK1–p38 pathway is selectively required for TLR4-mediated innate immunity. Nature Immunol.6, 587–592 (2005). CAS Google Scholar
Mnich, S. J. et al. Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int. Immunopharmacol.10, 1170–1176 (2010). CASPubMed Google Scholar
Noguchi, T. et al. Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J. Biol. Chem.280, 37033–37040 (2005). CASPubMed Google Scholar
Fujino, G. et al. Thioredoxin and TRAF family protiens regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interactioin of ASK1. Mol. Cell. Biol.27, 8152–8163 (2007). CASPubMedPubMed Central Google Scholar
Noh, K. T., Park, Y. M., Cho, S. G. & Choi, E. J. GSK-3β-induced ASK1 stabilization is crucial in LPS-induced endotoxin shock. Exp. Cell Res.317, 1663–1668 (2011). CASPubMed Google Scholar
Nakamura, K., Kimple, A. J., Siderovski, D. P. & Johnson, G. L. PB1 domain interaction of p62/sequestosome 1 and MEKK3 regulates NF-κB activation. J. Biol. Chem.285, 2077–2089 (2010). CASPubMed Google Scholar
Huang, Q. et al. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nature Immunol.5, 98–103 (2004). CAS Google Scholar
Kim, K., Duramad, O., Qin, X. F. & Su, B. MEKK3 is essential for lipopolysaccharide-induced interleukin-6 and granulocyte-macrophage colony-stimulating factor production in macrophages. Immunology120, 242–250 (2007). CASPubMedPubMed Central Google Scholar
Gantke, T., Sriskantharajah, S., Sadowski, M. & Ley, S. C. IκB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol. Rev.246, 168–182 (2012). PubMed Google Scholar
Beinke, S. et al. NF-κB p105 negatively regulates TPL-2 MEK kinase activity. Mol. Cell. Biol.23, 4739–4752 (2003). CASPubMedPubMed Central Google Scholar
Waterfield, M. R., Zhang, M., Norman, L. P. & Sun, S.-C. NF-κB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the TPL-2 kinase. Mol. Cell11, 685–694 (2003). CASPubMed Google Scholar
Beinke, S., Robinson, M. J., Hugunin, M. & Ley, S. C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol.24, 9658–9667 (2004). CASPubMedPubMed Central Google Scholar
Robinson, M. J., Beinke, S., Kouroumalis, A., Tsichlis, P. N. & Ley, S. C. Phosphorylation of TPL-2 on serine 400 is essential for lipopolysaccharide activation of extracellular signal-regulated kinase in macrophages. Mol. Cell. Biol.27, 7355–7364 (2007). CASPubMedPubMed Central Google Scholar
Roget, K. et al. IKK2 regulates TPL-2 activation of ERK-1/2 MAP kinases by direct phosphorylation of TPL-2 serine 400. Mol. Cell. Biol.32, 4684–4690 (2012). References 26–30 establish the direct regulation of TPL2 activation by IKK2-mediated phosphorylation of p105, showing a direct link between ERK1 and ERK2 activation and NF-κB activation in TLR-stimulated macrophages. CASPubMedPubMed Central Google Scholar
Rincon, M. & Davis, R. J. Regulation of the immune response by stress-activated protein kinases. Immunol. Rev.228, 212–224 (2009). CASPubMed Google Scholar
Han, M. S. et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science339, 218–222 (2013). This is the first study to provide clear genetic evidence of a role for JNK in regulating gene expression in TLR-stimulated macrophages. CASPubMed Google Scholar
Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol.27, 451–483 (2009). CASPubMed Google Scholar
Odegaard, J. I. & Chawla, A. Alternative macrophage activation and metabolism. Annu. Rev. Pathol.6, 275–297 (2011). CASPubMedPubMed Central Google Scholar
Dumitru, C. D. et al. TNFα induction by LPS is regulated post-transcriptionally via a TPL2/ERK-dependent pathway. Cell103, 1071–1083 (2000). CASPubMed Google Scholar
Kaiser, F. et al. TPL-2 negatively regulates interferon-β production in macrophages and myeloid dendritic cells. J. Exp. Med.206, 1863–1871 (2009). CASPubMedPubMed Central Google Scholar
Mielke, L. A. et al. Tumor progression locus 2 (Map3k8) is critical for host defense against Listeria monocytogenes and IL-1 production. J. Immunol.183, 7984–7993 (2009). CASPubMedPubMed Central Google Scholar
Yang, H. T. et al. Coordinate regulation of TPL-2 and NF-κB signaling in macrophages by NF-κB1 p105. Mol. Cell. Biol.32, 3438–3451 (2012). CASPubMedPubMed Central Google Scholar
Cohen, P. Targeting protein kinases for the development of anti-inflammatory drugs. Curr. Opin. Cell Biol.21, 1–8 (2009). Google Scholar
Beardmore, V. A. et al. Generation and characterization of p38β (MAPK11) gene-targeted mice. Mol. Cell. Biol.25, 10454–10464 (2005). CASPubMedPubMed Central Google Scholar
Kang, Y. J. et al. Macrophage deletion of p38α partially impairs lipopolysaccharide-induced cellular activation. J. Immunol.180, 5075–5082 (2008). CASPubMed Google Scholar
O'Keefe, S. J. et al. Chemical genetics define the roles of p38 and p38β in acute and chronic inflammation. J. Biol. Chem.282, 34663–34671 (2007). This elegant study uses chemical genetics to establish that the anti-inflammatory effects of p38 inhibitors are mediated via p38α. CASPubMed Google Scholar
Kim, C. et al. The kinase p38α serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nature Immunol.9, 1019–1027 (2008). CAS Google Scholar
Guma, M. et al. Pro- and anti-inflammatory functions of the p38 pathway in rheumatoid arthritis: Advantages of targeting upstream kinases MKK3 or MKK6. Arthritis Rheum.64, 2887–2895 (2012). CASPubMedPubMed Central Google Scholar
Bohm, C. et al. The α-isoform of p38 MAPK specifically regulates arthritic bone loss. J. Immunol.183, 5938–5947 (2009). PubMed Google Scholar
Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nature Immunol.9, 1028–1036 (2008). Reference 44 and 46 provide genetic evidence for both pro- and anti-inflammatory roles for p38α, and the roles of MSK1 and MSK2 downstream of p38α, in regulating IL-10 production. CAS Google Scholar
Cheung, P. C., Campbell, D. G., Nebreda, A. R. & Cohen, P. Feedback control of the protein kinase TAK1 by SAPK2a/p38α. EMBO J.22, 5793–5805 (2003). CASPubMedPubMed Central Google Scholar
Gonzalez-Teran, B. et al. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. J. Clin. Invest.123, 164–178 (2013). CASPubMed Google Scholar
Risco, A. et al. p38γ and p38δ kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation. Proc. Natl Acad. Sci. USA109, 11200–11205 (2012). This study describes the surprising requirement for p38γ and p38δ for the maintenance of TPL2 protein levels in myeloid cells. CASPubMed Google Scholar
Kotlyarov, A. et al. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nature Cell Biol.1, 94–97 (1999). CASPubMed Google Scholar
Hitti, E. et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell. Biol.26, 2399–2407 (2006). CASPubMedPubMed Central Google Scholar
Tiedje, C. et al. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet.8, e1002977 (2012). This study establishes how p38α regulatesTnftranslation via MK2 phosphorylation of tristetraprolin. CASPubMedPubMed Central Google Scholar
Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity10, 387–398 (1999). CASPubMed Google Scholar
Carballo, E., Gilkeson, G. S. & Blackshear, P. J. Bone marrow transplantation reproduces the tristetraprolin-deficiency syndrome in recombination activating gene-2 (−/−) mice. Evidence that monocyte/macrophage progenitors may be responsible for TNFα overproduction. J. Clin. Invest.100, 986–995 (1997). CASPubMedPubMed Central Google Scholar
Qiu, L. Q., Stumpo, D. J. & Blackshear, P. J. Myeloid-specific tristetraprolin deficiency in mice results in extreme lipopolysaccharide sensitivity in an otherwise minimal phenotype. J. Immunol.188, 5150–5159 (2012). CASPubMedPubMed Central Google Scholar
Ronkina, N. et al. The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2 and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and stabilization of p38 MAPK. Mol. Cell. Biol.27, 170–181 (2007). CASPubMed Google Scholar
Ronkina, N. et al. Stress induced gene expression: a direct role for MAPKAP kinases in transcriptional activation of immediate early genes. Nucleic Acids Res.39, 2503–2518 (2010). PubMedPubMed Central Google Scholar
Zaru, R., Ronkina, N., Gaestel, M., Arthur, J. S. & Watts, C. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nature Immunol.8, 1227–1235 (2007). CAS Google Scholar
Darragh, J., Ananieva, O., Courtney, A., Elcombe, S. & Arthur, J. S. MSK1 regulates the transcription of IL-1ra in response to TLR activation in macrophages. Biochem. J.425, 595–602 (2010). CASPubMed Google Scholar
Mackenzie, K. F. et al. MSK1 and 2 inhibit LPS induced prostaglandin production via an IL-10 feedback loop. Mol. Cell. Biol.33, 1456–1467 (2013). CASPubMedPubMed Central Google Scholar
Brook, M. et al. Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol. Cell. Biol.26, 2408–2418 (2006). CASPubMedPubMed Central Google Scholar
MacKenzie, K. F. et al. PGE2 induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J. Immunol.190, 565–577 (2013). CASPubMedPubMed Central Google Scholar
Alvarez, Y., Municio, C., Alonso, S., Sanchez Crespo, M. & Fernandez, N. The induction of IL-10 by zymosan in dendritic cells depends on CREB activation by the coactivators CREB-binding protein and TORC2 and autocrine PGE2. J. Immunol.183, 1471–1479 (2009). CASPubMed Google Scholar
Caunt, C. J. & Keyse, S. M. Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J.280, 489–504 (2012). PubMed Google Scholar
Liu, Y., Shepherd, E. G. & Nelin, L. D. MAPK phosphatases--regulating the immune response. Nature Rev. Immunol.7, 202–212 (2007). CAS Google Scholar
Rodriguez, N. et al. Increased inflammation and impaired resistance to Chlamydophila pneumoniae infection in _Dusp1_−/− mice: critical role of IL-6. J. Leukoc. Biol.88, 579–587 (2010). CASPubMed Google Scholar
Hammer, M. et al. Increased inflammation and lethality of _Dusp1_−/− mice in polymicrobial peritonitis models. Immunology131, 395–404 (2010). CASPubMedPubMed Central Google Scholar
Frazier, W. J. et al. Increased inflammation, impaired bacterial clearance, and metabolic disruption after gram-negative sepsis in Mkp-1-deficient mice. J. Immunol.183, 7411–7419 (2009). CASPubMedPubMed Central Google Scholar
Wang, X. et al. Knockout of Mkp-1 enhances the host inflammatory responses to Gram-positive bacteria. J. Immunol.178, 5312–5320 (2007). CASPubMed Google Scholar
Hammer, M. et al. Control of dual-specificity phosphatase-1 expression in activated macrophages by IL-10. Eur. J. Immunol.35, 2991–3001 (2005). CASPubMed Google Scholar
Valledor, A. F. et al. IFN-γ-mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation. Blood112, 3274–3282 (2008). CASPubMed Google Scholar
Lee, C. H. et al. Glutamine suppresses airway neutrophilia by blocking cytosolic phospholipase A2 via an induction of MAPK phosphatase-1. J. Immunol.189, 5139–5146 (2012). CASPubMed Google Scholar
Ayush, O. et al. Glutamine suppresses DNFB-induced contact dermatitis by deactivating p38 mitogen-activated protein kinase via induction of MAPK phosphatase-1. J. Invest. Dermatol.133, 723–731 (2013). CASPubMed Google Scholar
Ko, H. M. et al. Glutamine protects mice from lethal endotoxic shock via a rapid induction of MAPK phosphatase-1. J. Immunol.182, 7957–7962 (2009). CASPubMed Google Scholar
Abraham, S. M. et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med.203, 1883–1889 (2006). CASPubMedPubMed Central Google Scholar
Maier, J. V. et al. Dual specificity phosphatase 1 knockout mice show enhanced susceptibility to anaphylaxis but are sensitive to glucocorticoids. Mol. Endocrinol.21, 2663–2671 (2007). CASPubMed Google Scholar
Wang, X. et al. The role of MAP kinase phosphatase-1 in the protective mechanism of dexamethasone against endotoxemia. Life Sci.83, 671–680 (2008). CASPubMedPubMed Central Google Scholar
Cao, W., Bao, C., Padalko, E. & Lowenstein, C. J. Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J. Exp. Med.205, 1491–1503 (2008). This is the first work to establish that DUSPs can be regulated by acetylation. CASPubMedPubMed Central Google Scholar
Jeffrey, K. L. et al. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nature Immunol.7, 274–283 (2006). CAS Google Scholar
Cornell, T. T., Rodenhouse, P., Cai, Q., Sun, L. & Shanley, T. P. Mitogen-activated protein kinase phosphatase 2 regulates the inflammatory response in sepsis. Infect. Immun.78, 2868–2876 (2010). CASPubMedPubMed Central Google Scholar
Al-Mutairi, M. S. et al. MAP kinase phosphatase-2 plays a critical role in response to infection by Leishmania mexicana. PLoS Pathog.6, e1001192 (2010). PubMedPubMed Central Google Scholar
Grasset, M. F., Gobert-Gosse, S., Mouchiroud, G. & Bourette, R. P. Macrophage differentiation of myeloid progenitor cells in response to M-CSF is regulated by the dual-specificity phosphatase DUSP5. J. Leukoc. Biol.87, 127–135 (2010). CASPubMed Google Scholar
Zhang, Y. et al. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature430, 793–797 (2004). CASPubMed Google Scholar
Qian, F. et al. A non-redundant role for MKP5 in limiting ROS production and preventing LPS-induced vascular injury. EMBO J.28, 2896–2907 (2009). CASPubMedPubMed Central Google Scholar
Guo, T. et al. The role of male chromosomal polymorphism played in spermatogenesis and the outcome of IVF/ICSI-ET treatment. Int. J. Androl.35, 802–809 (2012). CASPubMed Google Scholar
Roy, C. R. & Mocarski, E. S. Pathogen subversion of cell-intrinsic innate immunity. Nature Immunol.8, 1179–1187 (2007). CAS Google Scholar
Turk, B. E. Manipulation of host signalling pathways by anthrax toxins. Biochem. J.402, 405–417 (2007). CASPubMed Google Scholar
Ali, S. R. et al. Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity35, 34–44 (2011). CASPubMedPubMed Central Google Scholar
Halle, M. et al. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J. Biol. Chem.284, 6893–6908 (2009). CASPubMedPubMed Central Google Scholar
Ma, L. et al. An evolutionary analysis of trypanosomatid GP63 proteases. Parasitol. Res.109, 1075–1084 (2011). PubMed Google Scholar
Schorey, J. S. & Cooper, A. M. Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cell. Microbiol.5, 133–142 (2003). CASPubMed Google Scholar
Kim, K. H. et al. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc. Natl Acad. Sci. USA109, 7729–7734 (2010). Google Scholar
Trosky, J. E., Liverman, A. D. & Orth, K. Yersinia outer proteins: yops. Cell. Microbiol.10, 557–565 (2008). CASPubMed Google Scholar
Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science312, 1211–1214 (2006). CASPubMed Google Scholar
Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl Acad. Sci. USA103, 18574–18579 (2006). CASPubMed Google Scholar
Paquette, N. et al. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl Acad. Sci. USA109, 12710–12715 (2012). References 94–96 describe howYersiniaYopJ inhibits MAPK activation by the acetylation of MKKs. CASPubMed Google Scholar
Trosky, J. E. et al. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J. Biol. Chem.282, 34299–34305 (2007). CASPubMed Google Scholar
Jones, R. M. et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe3, 233–244 (2008). CASPubMed Google Scholar
Mazurkiewicz, P. et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol. Microbiol.67, 1371–1383 (2008). CASPubMedPubMed Central Google Scholar
Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science315, 1000–1003 (2007). CASPubMed Google Scholar
Zhu, Y. et al. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol. Cell28, 899–913 (2007). References 99–101 establish thatS. enterica- andShigellaspp.-encoded phosphothreonine lyases irreversibly inactivate MAPKs to modulate host immune responses. CASPubMed Google Scholar
Brennan, D. F. & Barford, D. Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases. Trends Biochem. Sci.34, 108–114 (2009). CASPubMed Google Scholar
Reiterer, V. et al. Shigella flexneri type III secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection. Cell. Signal.23, 1188–1196 (2011). CASPubMed Google Scholar
Odendall, C. et al. The Salmonella kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Cell Host Microbe12, 657–668 (2012). This study describes how SteC kinase modulatesS. entericavirulence by activating ERK1 and ERK2 via direct phosphorylation of MKK1 and MKK2. CASPubMedPubMed Central Google Scholar
Figueira, R. & Holden, D. W. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology158, 1147–1161 (2012). CASPubMed Google Scholar
Dar, A. C. & Shokat, K. M. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem.80, 769–795 (2011). CASPubMed Google Scholar
Goldstein, D. M., Kuglstatter, A., Lou, Y. & Soth, M. J. Selective p38α inhibitors clinically evaluated for the treatment of chronic inflammatory disorders. J. Med. Chem.53, 2345–2353 (2010). CASPubMed Google Scholar
Genovese, M. C. et al. A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis. J. Rheumatol.38, 846–854 (2011). CASPubMed Google Scholar
Cohen, S. B. et al. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum.60, 335–344 (2009). CASPubMed Google Scholar
Damjanov, N., Kauffman, R. S. & Spencer-Green, G. T. Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized, double-blind, placebo-controlled clinical studies. Arthritis Rheum.60, 1232–1241 (2009). PubMed Google Scholar
Lomas, D. A. et al. An oral inhibitor of p38 MAP kinase reduces plasma fibrinogen in patients with chronic obstructive pulmonary disease. J. Clin. Pharmacol.52, 416–424 (2012). CASPubMed Google Scholar
Anand, P. et al. Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur. J. Pain15, 1040–1048 (2011). CASPubMed Google Scholar
Ninomiya-Tsuji, J. et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J. Biol. Chem.278, 18485–18490 (2003). CASPubMed Google Scholar
Pauls, E. et al. Essential role for IKKβ in production of type 1 interferons by plasmacytoid dendritic cells. J. Biol. Chem.287, 19216–19228 (2012). CASPubMedPubMed Central Google Scholar
Hegen, M., Gaestel, M., N. Ickerson-Nutter, C. L., Lin, L. L. & Telliez, J. B. MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J. Immunol.177, 1913–1917 (2006). CASPubMed Google Scholar
Mourey, R. J. et al. A benzothiophene inhibitor of mitogen-activated protein kinase-activated protein kinase 2 inhibits tumor necrosis factor-α production and has oral anti-inflammatory efficacy in acute and chronic models of inflammation. J. Pharmacol. Exp. Ther.333, 797–807 (2010). CASPubMed Google Scholar
Thiel, M. J. et al. Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. Arthritis Rheum.56, 3347–3357 (2007). CASPubMed Google Scholar
George, D. & Salmeron, A. Cot/Tpl-2 protein kinase as a target for the treatment of inflammatory disease. Curr. Top. Med. Chem.9, 611–622 (2009). CASPubMed Google Scholar
Kontoyiannis, D. et al. Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn's-like inflammatory bowel disease. J. Exp. Med.196, 1563–1574 (2002). CASPubMedPubMed Central Google Scholar
Wilhelmsen, K., Mesa, K. R., Lucero, J., Xu, F. & Hellman, J. ERK5 protein promotes, whereas MEK1 protein differentially regulates, the Toll-like receptor 2 protein-dependent activation of human endothelial cells and monocytes. J. Biol. Chem.287, 26478–26494 (2012). CASPubMedPubMed Central Google Scholar
Carlson, S. M. et al. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation of ETV3. Sci. Signal.4, rs11 (2011). PubMedPubMed Central Google Scholar
Cargnello, M. & Roux, P. P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev.75, 50–83 (2011). CASPubMedPubMed Central Google Scholar
O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA104, 1604–1609 (2007). CASPubMed Google Scholar
Fleming, Y. et al. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochem. J.352, 145–154 (2000). CASPubMedPubMed Central Google Scholar
Tournier, C. et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev.15, 1419–1426 (2001). CASPubMedPubMed Central Google Scholar
Zou, H. et al. Differential requirement of MKK4 and MKK7 in JNK activation by distinct scaffold proteins. FEBS Lett.581, 196–202 (2007). CASPubMed Google Scholar
Symons, A., Beinke, S. & Ley, S. C. MAP kinase kinase kinases and innate immunity. Trends Immunol.27, 40–48 (2006). CASPubMed Google Scholar
Dhanasekaran, D. N., Kashef, K., Lee, C. M., Xu, H. & Reddy, E. P. Scaffold proteins of MAP-kinase modules. Oncogene26, 3185–3202 (2007). CASPubMed Google Scholar
Paul, A. et al. Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide-mediated induction of cyclo-oxygenase-2 but not nitric oxide synthase in RAW 264.7 macrophages. Cell. Signal.11, 491–497 (1999). CASPubMed Google Scholar
Caivano, M. Role of MAP kinase cascades in inducing arginine transporters and nitric oxide synthetase in RAW264 macrophages. FEBS Lett.429, 249–253 (1998). CASPubMed Google Scholar
Chan, E. D. et al. Induction of inducible nitric oxide synthase-NO• by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-κB signaling pathways. Infect. Immun.69, 2001–2010 (2001). CASPubMedPubMed Central Google Scholar
Chen, C., Chen, Y. H. & Lin, W. W. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology97, 124–129 (1999). CASPubMedPubMed Central Google Scholar
Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev.87, 245–313 (2007). CASPubMed Google Scholar
El-Benna, J., Dang, P. M., Gougerot-Pocidalo, M. A., Marie, J. C. & Braut-Boucher, F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp. Mol. Med.41, 217–225 (2009). CASPubMedPubMed Central Google Scholar
Laroux, F. S., Romero, X., Wetzler, L., Engel, P. & Terhorst, C. Cutting edge: MyD88 controls phagocyte NADPH oxidase function and killing of Gram-negative bacteria. J. Immunol.175, 5596–5600 (2005). CASPubMed Google Scholar
Dang, P. M. et al. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J. Clin. Invest.116, 2033–2043 (2006). CASPubMedPubMed Central Google Scholar
Parsa, K. V., Butchar, J. P., Rajaram, M. V., Cremer, T. J. & Tridandapani, S. The tyrosine kinase Syk promotes phagocytosis of Francisella through the activation of Erk. Mol. Immunol.45, 3012–3021 (2008). CASPubMedPubMed Central Google Scholar
Blander, J. M. & Medzhitov, R. Regulation of phagosome maturation by signals from Toll-like receptors. Science304, 1014–1018 (2004). CASPubMed Google Scholar
Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell136, 1098–1109 (2009). CASPubMed Google Scholar
Emmerich, C.H., Schmukle, A.C. & Walczak, H. The emerging role of linear ubiquitination in cell signaling. Sci. Signal.4, re5 (2011). PubMed Google Scholar
Zak, D.E. et al. Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses. Proc. Natl Acad. Sci. USA108, 11536–11541 (2011). CASPubMed Google Scholar
Brondello, J. M., Pouyssegur, J. & McKenzie, F. R. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science286, 2514–2517 (1999). CASPubMed Google Scholar
Lin, Y. W. & Yang, J. L. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J. Biol. Chem.281, 915–926 (2006). CASPubMed Google Scholar
Zhou, B. et al. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc. Natl Acad. Sci. USA107, 4573–4578 (2010). CASPubMed Google Scholar
Guo, X. et al. Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway. EMBO Mol. Med.2, 504–515 (2010). CASPubMedPubMed Central Google Scholar
Sebolt-Leopold, J. S. Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway. Clin. Cancer Res.14, 3651–3656 (2008). CASPubMed Google Scholar
Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med.367, 107–114 (2012). CASPubMed Google Scholar