The IL-20 subfamily of cytokines — from host defence to tissue homeostasis (original) (raw)
Ouyang, W., Rutz, S., Crellin, N. K., Valdez, P. A. & Hymowitz, S. G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol.29, 71–109 (2011). CASPubMed Google Scholar
Sabat, R., Ouyang, W. & Wolk, K. Therapeutic opportunities of the IL-22–IL-22R1 system. Nature Rev. Drug Discov.13, 21–38 (2014). CAS Google Scholar
Leng, R.-X., Pan, H.-F., Tao, J.-H. & Ye, D.-Q. IL-19, IL-20 and IL-24: potential therapeutic targets for autoimmune diseases. Expert Opin. Ther. Targets15, 119–126 (2011). CASPubMed Google Scholar
Gallagher, G. et al. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun.1, 442–450 (2000). CASPubMed Google Scholar
Blumberg, H. et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell104, 9–19 (2001). CASPubMed Google Scholar
Dumoutier, L., Louahed, J. & Renauld, J. C. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J. Immunol.164, 1814–1819 (2000). CASPubMed Google Scholar
Jiang, H., Lin, J. J., Su, Z. Z., Goldstein, N. I. & Fisher, P. B. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene11, 2477–2486 (1995). CASPubMed Google Scholar
Wang, T., Diaz-Rosales, P., Martin, S. A. & Secombes, C. J. Cloning of a novel interleukin (IL)-20-like gene in rainbow trout Oncorhynchus mykiss gives an insight into the evolution of the IL-10 family. Dev. Comp. Immunol.34, 158–167 (2010). CASPubMed Google Scholar
Knappe, A., Hor, S., Wittmann, S. & Fickenscher, H. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J. Virol.74, 3881–3887 (2000). CASPubMedPubMed Central Google Scholar
Jones, E. A. & Flavell, R. A. Distal enhancer elements transcribe intergenic RNA in the IL-10 family gene cluster. J. Immunol.175, 7437–7446 (2005). CASPubMed Google Scholar
Pestka, S. et al. Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol.22, 929–979 (2004). CASPubMed Google Scholar
Aggarwal, S., Xie, M. H., Maruoka, M., Foster, J. & Gurney, A. L. Acinar cells of the pancreas are a target of interleukin-22. J. Interferon Cytokine Res.21, 1047–1053 (2001). CASPubMed Google Scholar
Kotenko, S. V. et al. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J. Immunol.166, 7096–7103 (2001). CASPubMed Google Scholar
Xu, W. et al. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc. Natl Acad. Sci. USA98, 9511–9516 (2001). CASPubMed Google Scholar
Martin, J. C. et al. Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunol.7, 101–113 (2014). CASPubMed Google Scholar
Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature491, 259–263 (2012). CASPubMedPubMed Central Google Scholar
Weathington, N. M. et al. Glycogen synthase kinase-3β stabilizes the interleukin (IL)-22 receptor from proteasomal degradation in murine lung epithelia. J. Biol. Chem.289, 17610–17619 (2014). CASPubMedPubMed Central Google Scholar
Wolk, K., Kunz, S., Asadullah, K. & Sabat, R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J. Immunol.168, 5397–5402 (2002). References 5, 12 and 18 are the first studies to describe the expression of receptors for IL-20 subfamily cytokines on epithelial tissues, which defined this group of cytokines as a means of communication between the immune system and the epithelium. CASPubMed Google Scholar
Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445, 648–651 (2007). CASPubMed Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med.14, 282–289 (2008). CASPubMed Google Scholar
de Luca, A. et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol.3, 361–373 (2010). CASPubMed Google Scholar
Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med.206, 1465–1472 (2009). CASPubMedPubMed Central Google Scholar
Zindl, C. L. et al. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc. Natl Acad. Sci. USA110, 12768–12773 (2013). CASPubMed Google Scholar
Wang, F. et al. Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects. J. Investigative Dermatol.126, 1590–1599 (2006). CAS Google Scholar
Wolk, K. et al. Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes. J. Leukoc. Biol.83, 1181–1193 (2008). CASPubMed Google Scholar
Sa, S. M. et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J. Immunol.178, 2229–2240 (2007). This is the first study to define IL-20 subfamily cytokines on the basis of receptor expression and to carry out a comparative analysis of downstream functions in the skin. CASPubMed Google Scholar
Yano, S., Banno, T., Walsh, R. & Blumenberg, M. Transcriptional responses of human epidermal keratinocytes to cytokine interleukin-1. J. Cell. Physiol.214, 1–13 (2008). CASPubMed Google Scholar
Hunt, D. W. et al. Ultraviolet B light stimulates interleukin-20 expression by human epithelial keratinocytes. Photochem. Photobiol.82, 1292–1300 (2006). CASPubMed Google Scholar
Wolk, K. et al. The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis. Eur. J. Immunol.39, 3570–3581 (2009). CASPubMed Google Scholar
Aujla, S. J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Med.14, 275–281 (2008). CASPubMed Google Scholar
Huang, F. et al. Potentiation of IL-19 expression in airway epithelia by IL-17A and IL-4/IL-13: important implications in asthma. J. Allergy Clin. Immunol.121, 1415–1421 (2008). CASPubMedPubMed Central Google Scholar
Rutz, S., Eidenschenk, C. & Ouyang, W. IL-22, not simply a Th17 cytokine. Immunol. Rev.252, 116–132 (2013). PubMed Google Scholar
Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity28, 454–467 (2008). CASPubMedPubMed Central Google Scholar
Colonna, M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity31, 15–23 (2009). CASPubMed Google Scholar
Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nature Immunol.10, 66–74 (2009). CAS Google Scholar
Martin, B., Hirota, K., Cua, D. J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity31, 321–330 (2009). CASPubMed Google Scholar
Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity31, 331–341 (2009). CASPubMed Google Scholar
Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med.206, 35–41 (2009). CASPubMedPubMed Central Google Scholar
Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nature Rev. Immunology13, 145–149 (2013). CAS Google Scholar
Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity29, 958–970 (2008). CASPubMed Google Scholar
Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nature Immunol.10, 75–82 (2009). CAS Google Scholar
Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol.10, 83–91 (2009). CAS Google Scholar
Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature457, 722–725 (2009). CASPubMed Google Scholar
Crellin, N. K., Trifari, S., Kaplan, C. D., Cupedo, T. & Spits, H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med.207, 281–290 (2010). CASPubMedPubMed Central Google Scholar
Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med.203, 2271–2279 (2006). References 19 and 45 identify IL-22 as a TH17 cell cytokine and pioneer research into IL-22 biology. CASPubMedPubMed Central Google Scholar
Chung, Y. et al. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res.16, 902–907 (2006). CASPubMed Google Scholar
Gurney, A. L. IL-22, a Th1 cytokine that targets the pancreas and select other peripheral tissues. Int. Immunopharmacol.4, 669–677 (2004). CASPubMed Google Scholar
Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nature Immunol.10, 857–863 (2009). CAS Google Scholar
Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest.119, 3573–3585 (2009). CASPubMedPubMed Central Google Scholar
Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nature Immunol.10, 864–871 (2009). CAS Google Scholar
Basu, R. et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity37, 1061–1075 (2012). CASPubMedPubMed Central Google Scholar
McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nature Immunol.8, 1390–1397 (2007). CAS Google Scholar
Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature448, 480–483 (2007). CASPubMed Google Scholar
Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol.179, 8098–8104 (2007). CASPubMed Google Scholar
Siegemund, S. et al. Differential IL-23 requirement for IL-22 and IL-17A production during innate immunity against Salmonella enterica serovar Enteritidis. Int. Immunol.21, 555–565 (2009). CASPubMed Google Scholar
Mus, A. M. C. et al. Interleukin-23 promotes Th17 differentiation by inhibiting T-bet and FoxP3 and is required for elevation of interleukin-22, but not interleukin-21, in autoimmune experimental arthritis. Arthritis Rheum.62, 1043–1050 (2010). CASPubMed Google Scholar
Mukherjee, S., Schaller, M. A., Neupane, R., Kunkel, S. L. & Lukacs, N. W. Regulation of T cell activation by Notch ligand, DLL4, promotes IL-17 production and Rorc activation. J. Immunol.182, 7381–7388 (2009). CASPubMedPubMed Central Google Scholar
Alam, M. S. et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA107, 5943–5948 (2010). PubMed Google Scholar
Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med.206, 43–49 (2009). CASPubMedPubMed Central Google Scholar
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature453, 106–109 (2008). CASPubMed Google Scholar
Schaefer, G., Venkataraman, C. & Schindler, U. Cutting edge: FISP (IL-4-induced secreted protein), a novel cytokine-like molecule secreted by Th2 cells. J. Immunol.166, 5859–5863 (2001). CASPubMed Google Scholar
Stevens, L. et al. Involvement of GATA3 in protein kinase C θ-induced Th2 cytokine expression. Eur. J. Immunol.36, 3305–3314 (2006). CASPubMed Google Scholar
Sahoo, A. et al. Stat6 and c-Jun mediate Th2 cell-specific IL-24 gene expression. J. Immunol.186, 4098–4109 (2011). CASPubMed Google Scholar
Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunol.8, 950–957 (2007). CAS Google Scholar
Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunol.9, 641–649 (2008). CAS Google Scholar
Crellin, N. K. et al. Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity33, 752–764 (2010). CASPubMed Google Scholar
Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nature Immunol.14, 937–948 (2013). CAS Google Scholar
Van Maele, L. et al. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3negCD127+ immune cells in spleen and mucosa. J. Immunol.185, 1177–1185 (2010). CASPubMedPubMed Central Google Scholar
Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity31, 502–512 (2009). CASPubMed Google Scholar
Coombes, J. L. & Maloy, K. J. Control of intestinal homeostasis by regulatory T cells and dendritic cells. Semin. Immunol.19, 116–126 (2007). CASPubMed Google Scholar
Kinnebrew, M. A. et al. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity36, 276–287 (2012). CASPubMedPubMed Central Google Scholar
Kinnebrew, M. A. et al. Bacterial flagellin stimulates Toll-like receptor 5–dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis.201, 534–543 (2010). CASPubMedPubMed Central Google Scholar
Ota, N. et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nature Immunol.12, 941–948 (2011). CAS Google Scholar
Tumanov, A. V. et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe10, 44–53 (2011). CASPubMedPubMed Central Google Scholar
Spahn, T. W. et al. The lymphotoxin-β receptor is critical for control of murine _Citrobacter rodentium_-induced colitis. Gastroenterology127, 1463–1473 (2004). CASPubMed Google Scholar
Wang, Y. et al. Lymphotoxin β receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity32, 403–413 (2010). PubMedPubMed Central Google Scholar
Manta, C. et al. CX3CR1+ macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium. Mucosal Immunol.6, 177–188 (2013). References 67, 72 and 78 investigate the upstream cell types required for induction of IL-22 during infection. CASPubMed Google Scholar
Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity34, 122–134 (2011). CASPubMed Google Scholar
Zigmond, E. et al. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity37, 1076–1090 (2012). CASPubMed Google Scholar
Kim, Y.-G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity34, 769–780 (2011). CASPubMedPubMed Central Google Scholar
Colonna, M. Skin function for human CD1a-reactive T cells. Nature Immunol.11, 1079–1080 (2010). CAS Google Scholar
de Jong, A. et al. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nature Immunol.11, 1102–1109 (2010). CAS Google Scholar
Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nature Immunol.12, 383–390 (2011). CAS Google Scholar
Hackstein, H. et al. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection. Respir. Res.14, 91 (2013). PubMedPubMed Central Google Scholar
Ermers, M. J. et al. IL10 family member genes IL19 and IL20 are associated with recurrent wheeze after respiratory syncytial virus bronchiolitis. Pediatr. Res.70, 518–523 (2011). CASPubMed Google Scholar
Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science336, 1321–1325 (2012). CASPubMedPubMed Central Google Scholar
Eidenschenk, C., Rutz, S., Liesenfeld, O. & Ouyang, W. Role of IL-22 in microbial host defense. Curr. Top. Microbiol. Immunol.380, 213–236 (2014). CASPubMed Google Scholar
Paget, C. et al. Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damages. J. Biol. Chem.287, 8816–8829 (2012). CASPubMedPubMed Central Google Scholar
Wolk, K. et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol.36, 1309–1323 (2006). CASPubMed Google Scholar
Boniface, K. et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol.174, 3695–3702 (2005). CASPubMed Google Scholar
Dambacher, J. et al. The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut58, 1207–1217 (2009). CASPubMed Google Scholar
Behnsen, J. et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity40, 262–273 (2014). CASPubMedPubMed Central Google Scholar
Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe11, 227–239 (2012). CASPubMedPubMed Central Google Scholar
Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe5, 476–486 (2009). CASPubMedPubMed Central Google Scholar
Stelter, C. et al. Salmonella-induced mucosal lectin RegIIIβ kills competing gut microbiota. PLoS ONE6, e20749 (2011). CASPubMedPubMed Central Google Scholar
Winter, S. E., Lopez, C. A. & Baumler, A. J. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep.14, 319–327 (2013). CASPubMedPubMed Central Google Scholar
Myles, I. A. et al. Signaling via the IL-20 receptor inhibits cutaneous production of IL-1β and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nature Immunol.14, 804–811 (2013). This study reports a specific function for IL-19, IL-20 and IL-24 during infection. CAS Google Scholar
Miller, L. S. et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity24, 79–91 (2006). CASPubMed Google Scholar
Cho, J. S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest.120, 1762–1773 (2010). PubMedPubMed Central Google Scholar
Lowes, M. A., Bowcock, A. M. & Krueger, J. G. Pathogenesis and therapy of psoriasis. Nature445, 866–873 (2007). CASPubMed Google Scholar
He, M. & Liang, P. IL-24 transgenic mice: in vivo evidence of overlapping functions for IL-20, IL-22, and IL-24 in the epidermis. J. Immunol.184, 1793–1798 (2010). CASPubMed Google Scholar
Wolk, K. et al. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-γ are not. J. Mol. Med.87, 523–536 (2009). CASPubMed Google Scholar
Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity21, 241–254 (2004). References 91 and 104 provide the first description of the downstream functions of IL-22 and define the biology of IL-20 subfamily cytokines. CASPubMed Google Scholar
Romer, J. et al. Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol. J. Invest. Dermatol.121, 1306–1311 (2003). CASPubMed Google Scholar
Otkjaer, K. et al. The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis. Br. J. Dermatol.153, 911–918 (2005). CASPubMed Google Scholar
Ouyang, W. Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease. Cytokine Growth Factor Rev.21, 435–441 (2010). CASPubMed Google Scholar
Brand, S. et al. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol.290, G827–G838 (2006). CASPubMed Google Scholar
Andoh, A. et al. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology129, 969–984 (2005). CASPubMed Google Scholar
Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest.118, 534–544 (2008). CASPubMedPubMed Central Google Scholar
Zenewicz, L. A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity29, 947–957 (2008). CASPubMedPubMed Central Google Scholar
Neufert, C. et al. Activation of epithelial STAT3 regulates intestinal homeostasis. Cell Cycle9, 652–655 (2010). CASPubMed Google Scholar
Fonseca-Camarillo, G., Furuzawa-Carballeda, J., Granados, J. & Yamamoto-Furusho, J. K. Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clin. Exp. Immunol.177, 64–75 (2014). CASPubMedPubMed Central Google Scholar
Fonseca-Camarillo, G., Furuzawa-Carballeda, J., Llorente, L. & Yamamoto-Furusho, J. K. IL-10- and IL-20-expressing epithelial and inflammatory cells are increased in patients with ulcerative colitis. J. Clin. Immunol.33, 640–648 (2013). CASPubMed Google Scholar
Andoh, A. et al. Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J. Immunol.183, 687–695 (2009). CASPubMed Google Scholar
Azuma, Y. T. et al. Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm. Bowel Dis.16, 1017–1028 (2010). PubMed Google Scholar
Sakurai, N. et al. Expression of IL-19 and its receptors in RA: potential role for synovial hyperplasia formation. Rheumatol.47, 815–820 (2008). CAS Google Scholar
Ikeuchi, H. et al. Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum.52, 1037–1046 (2005). CASPubMed Google Scholar
Kragstrup, T. W. et al. The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy. Cytokine41, 16–23 (2008). CASPubMed Google Scholar
Corvaisier, M. et al. IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biol.10, e1001395 (2012). CASPubMedPubMed Central Google Scholar
Alanara, T., Karstila, K., Moilanen, T., Silvennoinen, O. & Isomaki, P. Expression of IL-10 family cytokines in rheumatoid arthritis: elevated levels of IL-19 in the joints. Scand. J. Rheumatol39, 118–126 (2010). CASPubMed Google Scholar
Hsu, Y.-H. et al. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum.54, 2722–2733 (2006). CASPubMed Google Scholar
Pène, J. et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J. Immunol.180, 7423–7430 (2008). PubMed Google Scholar
Shen, H., Goodall, J. C. & Hill Gaston, J. S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum.60, 1647–1656 (2009). CASPubMed Google Scholar
Leipe, J. et al. Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann. Rheum. Dis.70, 1453–1457 (2011). CASPubMed Google Scholar
Zhang, L. et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS ONE7, e31000 (2012). CASPubMedPubMed Central Google Scholar
Hsu, Y. H., Hsieh, P. P. & Chang, M. S. Interleukin-19 blockade attenuates collagen-induced arthritis in rats. Rheumatol.51, 434–442 (2012). CAS Google Scholar
Zhang, L. et al. Elevated Th22 cells correlated with Th17 cells in patients with rheumatoid arthritis. J. Clin. Immunol.31, 606–614 (2011). CASPubMed Google Scholar
da Rocha, L. F. et al. Increased serum interleukin 22 in patients with rheumatoid arthritis and correlation with disease activity. J. Rheumatol.39, 1320–1325 (2012). PubMed Google Scholar
Geboes, L. et al. Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum.60, 390–395 (2009). CASPubMed Google Scholar
Justa, S., Zhou, X. & Sarkar, S. Endogenous IL-22 plays a dual role in arthritis: regulation of established arthritis via IFN-γ responses. PLoS ONE9, e93279 (2014). PubMedPubMed Central Google Scholar
Marijnissen, R. J. et al. Increased expression of interleukin-22 by synovial Th17 cells during late stages of murine experimental arthritis is controlled by interleukin-1 and enhances bone degradation. Arthritis Rheum.63, 2939–2948 (2011). CASPubMed Google Scholar
Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4−CD8− entheseal resident T cells. Nature Med.18, 1069–1076 (2012). CASPubMed Google Scholar
Benham, H. et al. IL-23-mediates the intestinal response to microbial β-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol.66, 1755–1767 (2014). CASPubMed Google Scholar
Benham, H. et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res. Ther.15, R136 (2013). PubMedPubMed Central Google Scholar
Ortonne, J. P. Aetiology and pathogenesis of psoriasis. Br. J. Dermatol.135 (Suppl. 49), 1–5 (1996). PubMed Google Scholar
Sano, S. et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nature Med.11, 43–49 (2005). CASPubMed Google Scholar
Sun, D. P. et al. Interleukin (IL)-19 promoted skin wound healing by increasing fibroblast keratinocyte growth factor expression. Cytokine62, 360–368 (2013). CASPubMed Google Scholar
McGee, H. M. et al. IL-22 promotes fibroblast-mediated wound repair in the skin. J. Invest. Dermatol.133, 1321–1329 (2013). References 138 and 139 define the functions of IL-20 subfamily cytokines in wound healing. CASPubMed Google Scholar
Poindexter, N. J. et al. IL-24 is expressed during wound repair and inhibits TGFα-induced migration and proliferation of keratinocytes. Exp. Dermatol.19, 714–722 (2010). CASPubMedPubMed Central Google Scholar
Bao, P. et al. The role of vascular endothelial growth factor in wound healing. J. Surg. Res.153, 347–358 (2009). CASPubMed Google Scholar
Perera, G. K. et al. Integrative biology approach identifies cytokine targeting strategies for psoriasis. Sci. Transl. Med.6, 223ra22 (2014). PubMed Google Scholar
Hanash, A. M. et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity37, 339–350 (2012). CASPubMedPubMed Central Google Scholar
Radaeva, S., Sun, R., Pan, H. N., Hong, F. & Gao, B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology39, 1332–1342 (2004). CASPubMed Google Scholar
Zenewicz, L. A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity27, 647–659 (2007). CASPubMedPubMed Central Google Scholar
Pan, H., Hong, F., Radaeva, S. & Gao, B. Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell. Mol. Immunol.1, 43–49 (2004). CASPubMed Google Scholar
Park, O. et al. In vivo consequences of liver-specific interleukin-22 expression in mice: implications for human liver disease progression. Hepatology54, 252–261 (2011). PubMedPubMed Central Google Scholar
Ki, S. H. et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology52, 1291–1300 (2010). CASPubMedPubMed Central Google Scholar
Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology56, 1150–1159 (2012). CASPubMedPubMed Central Google Scholar
Ren, X. & Colletti, L. M. IL-22 is involved in liver regeneration after hepatectomy. Am. J. Physiol. Gastrointest Liver Physiol.298, G74–G80 (2009). PubMedPubMed Central Google Scholar
Xue, J., Nguyen, D. T. & Habtezion, A. Aryl hydrocarbon receptor regulates pancreatic IL-22 production and protects mice from acute pancreatitis. Gastroenterology143, 1670–1680 (2012). CASPubMedPubMed Central Google Scholar
Feng, D. et al. Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway. Int. J. Biol. Sci.8, 249–257 (2012). CASPubMedPubMed Central Google Scholar
Kulkarni, O. P. et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol.25, 978–989 (2014). CASPubMedPubMed Central Google Scholar
Xu, M. J. et al. IL-22 ameliorates renal ischemia-reperfusion injury by targeting proximal tubule epithelium. J. Am. Soc. Nephrol.25, 967–977 (2014). CASPubMedPubMed Central Google Scholar
Hsu, Y. H. et al. Interleukin-19 mediates tissue damage in murine ischemic acute kidney injury. PLoS ONE8, e56028 (2013). CASPubMedPubMed Central Google Scholar
Chiu, Y. S., Wei, C. C., Lin, Y. J., Hsu, Y. H. & Chang, M. S. IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology60, 1003–1014 (2014). CASPubMed Google Scholar
Hsu, Y. H. et al. Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J. Immunol.188, 1981–1991 (2012). CASPubMed Google Scholar
Baird, A. M., Gray, S. G. & O'Byrne, K. J. IL-20 is epigenetically regulated in NSCLC and down regulates the expression of VEGF. Eur. J. Cancer47, 1908–1918 (2011). CASPubMed Google Scholar
Hsu, Y. H., Wei, C. C., Shieh, D. B., Chan, C. H. & Chang, M. S. Anti-IL-20 monoclonal antibody alleviates inflammation in oral cancer and suppresses tumor growth. Mol. Cancer Res.10, 1430–1439 (2012). CASPubMed Google Scholar
Lee, S. J. et al. Interleukin-20 promotes migration of bladder cancer cells through extracellular signal-regulated kinase (ERK)-mediated MMP-9 protein expression leading to nuclear factor (NF-κB) activation by inducing the up-regulation of p21WAF1 protein expression. J. Biol. Chem.288, 5539–5552 (2013). CASPubMed Google Scholar
Lee, S. J. et al. Identification of pro-inflammatory cytokines associated with muscle invasive bladder cancer; the roles of IL-5, IL-20, and IL-28A. PLoS ONE7, e40267 (2012). CASPubMedPubMed Central Google Scholar
Nagakawa, H. et al. Expression of interleukin-22 in murine carcinoma cells did not influence tumour growth in vivo but did improve survival of the inoculated hosts. Scand. J. Immunol.60, 449–454 (2004). CASPubMed Google Scholar
Wen, Z. et al. High expression of interleukin-22 and its receptor predicts poor prognosis in pancreatic ductal adenocarcinoma. Ann. Surg. Oncol.21, 125–132 (2014). PubMed Google Scholar
Lim, C. & Savan, R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev.25, 257–271 (2014). CASPubMed Google Scholar
Emdad, L. et al. Historical perspective and recent insights into our understanding of the molecular and biochemical basis of the antitumor properties of mda-7/IL-24. Cancer Biol. Ther.8, 391–400 (2009). PubMed Google Scholar
Whitaker, E. L., Filippov, V. A. & Duerksen-Hughes, P. J. Interleukin 24: mechanisms and therapeutic potential of an anti-cancer gene. Cytokine Growth Factor Rev.23, 323–331 (2012). CASPubMed Google Scholar
Kreis, S., Philippidou, D., Margue, C. & Behrmann, I. IL-24: a classic cytokine and/or a potential cure for cancer? J. Cell. Mol. Med.16, 2505–2510 (2008). Google Scholar
Kreis, S. et al. Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells. PLoS ONE2, e1300 (2007). This paper investigates whether IL-24 can directly elicit anticancer activity as a cytokine. PubMedPubMed Central Google Scholar
Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Rev. Cancer9, 798–809 (2009). CAS Google Scholar
Musteanu, M. et al. Stat3 is a negative regulator of intestinal tumor progression in _Apc_Min mice. Gastroenterology138, 1003–1011. e1-5 (2010). CASPubMed Google Scholar
You, W. et al. IL-26 promotes the proliferation and survival of human gastric cancer cells by regulating the balance of STAT1 and STAT3 activation. PLoS ONE8, e63588 (2013). PubMedPubMed Central Google Scholar
Meira, L. B. et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Invest.118, 2516–2525 (2008). CASPubMedPubMed Central Google Scholar
Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med.210, 917–931 (2013). CASPubMedPubMed Central Google Scholar
Yang, L. et al. Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J. Hepatol.53, 339–347 (2010). This study reports the role of IL-22 in regulating lipid metabolism. CASPubMed Google Scholar
Kanneganti, T. D. & Dixit, V. D. Immunological complications of obesity. Nature Immunol.13, 707–712 (2012). CAS Google Scholar
Inoue, H. et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nature Med.10, 168–174 (2004). CASPubMed Google Scholar
Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science328, 228–231 (2010). CASPubMedPubMed Central Google Scholar
Wang, X. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature514, 237–241 (2014). This study demonstrates that IL-22 mediates several essential functions linked to metabolic syndrome, including modulating lipid metabolism in adipose tissue and reducing food consumption. CASPubMed Google Scholar
Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.352, 1685–1695 (2005). CASPubMed Google Scholar
Prodanovich, S. et al. Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality. Arch. Dermatol.145, 700–703 (2009). PubMed Google Scholar
Ellison, S. et al. Attenuation of experimental atherosclerosis by interleukin-19. Arterioscler Thromb. Vasc. Biol.33, 2316–2324 (2013). CASPubMedPubMed Central Google Scholar
Chen, W. Y., Cheng, B. C., Jiang, M. J., Hsieh, M. Y. & Chang, M. S. IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arteriosclerosis, Thromb. Vascular Biol.26, 2090–2095 (2006). CAS Google Scholar
Zenewicz, L. A. et al. IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J. Immunol.190, 5306–5312 (2013). CASPubMedPubMed Central Google Scholar
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity31, 677–689 (2009). CASPubMed Google Scholar
Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139, 485–498 (2009). CASPubMedPubMed Central Google Scholar
Wu, H.-J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity32, 815–827 (2010). CASPubMedPubMed Central Google Scholar
Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4615–4622 (2011). CASPubMed Google Scholar
Qiu, J. et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity39, 386–399 (2013). CASPubMed Google Scholar
Upadhyay, V. et al. Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nature Immunol.13, 947–953 (2012). CAS Google Scholar