No one is naive: the significance of heterologous T-cell immunity (original) (raw)

References

  1. Matthew, A. et al. Predominance of HLA-restricted cytotoxic T-lymphocyte responses to serotype-cross-reactive epitopes on nonstructural proteins following natural secondary dengue virus infection. J. Virol. 72, 3999–4004 (1998).This study shows that different dengue-virus serotypes have high homology in terms of T-cell epitopes, and they induce crossreactive T-cell responses.
    Google Scholar
  2. Halstead, S. B. Antibody, macrophages, dengue-virus infection, shock and hemorrhage: a pathogenetic cascade. Rev. Infect. Dis. 11, S830–S839 (1989).
    PubMed Google Scholar
  3. Bjorkman, P. J. MHC restriction in three dimensions: a view of T-cell receptor/ligand interactions. Cell 89, 167–170 (1997).
    CAS PubMed Google Scholar
  4. Yewdell, J. W. & Bennink, J. R. Immunodominance in major histocompatibility complex class-I-restricted T-lymphocyte responses. Annu. Rev. Immunol. 17, 51–88 (1999).
    CAS PubMed Google Scholar
  5. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).
    CAS PubMed Google Scholar
  6. Kaech, S. M. & Ahmed, R. Memory CD8+ T-cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).
    CAS Google Scholar
  7. van Stipdonk, M. J., Lemmens, E. E. & Schoenberger, S. P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunol. 2, 423–429 (2001).
    CAS Google Scholar
  8. Mercado, R. et al. Early programming of T-cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839 (2000).
    CAS PubMed Google Scholar
  9. Selin, L. K., Vergilis, K., Welsh, R. M. & Nahill, S. R. Reduction of otherwise remarkably stable virus-specific cytotoxic T-lymphocyte memory by heterologous viral infections. J. Exp. Med. 183, 2489–2499 (1996).This study quantifies the expanding number of virus-specific CD8+ T cells during viral infections, and shows that this population remains stable in long-term memory, and that heterologous virus infections disrupt this stability and cause reductions in the memory response to previously encountered viruses.
    CAS PubMed Google Scholar
  10. Razvi, E. S., Jiang, Z., Woda, B. A. & Welsh, R. M. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr and _Bcl-2-_transgenic mice. Am. J. Pathol. 147, 79–91 (1995).
    CAS PubMed PubMed Central Google Scholar
  11. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).Memory T cells reside at high frequencies in peripheral organs.
    CAS PubMed Google Scholar
  12. Marshall, D. R. et al. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl Acad. Sci. USA 98, 6313–6318 (2001).This report describes how memory CD8+ T cells migrate into peripheral organs as they disappear from the lymphoid organs at the end stage of the T-cell response to viral infections.
    CAS PubMed PubMed Central Google Scholar
  13. Van der Most, R. G. et al. Identification of Db- and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice. Virology 240, 158–167 (1998).
    CAS PubMed Google Scholar
  14. Chen, W., Anton, L. C., Bennink, J. R. & Yewdell, J. W. Dissecting the multifactorial causes of immunodominance in class-I-restricted T-cell responses to viruses. Immunity 12, 83–93 (2000).
    CAS PubMed Google Scholar
  15. Vitiello, A. et al. Immunodominance analysis of CTL responses to influenza PR8 virus reveals two dominant and subdominant Kb-restricted epitopes. J. Immunol. 157, 5555–5562 (1996).
    CAS PubMed Google Scholar
  16. Stevenson, P. G., Belz, G. T., Altman, J. D. & Doherty, P. C. Changing patterns of dominance in the CD8+ T-cell response during acute and persistent murine γ-herpesvirus infection. Eur. J. Immunol. 29, 1059–1067 (1999).
    CAS PubMed Google Scholar
  17. Wallace, M. E., Keating, R., Heath, W. R. & Carbone, F. R. The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J. Virol. 73, 7619–7626 (1999).
    CAS PubMed PubMed Central Google Scholar
  18. Belz, G. T., Stevenson, P. G. & Doherty, P. C. Contemporary analysis of MHC-related immunodominance hierarchies in the CD8+ T-cell response to influenza A viruses. J. Immunol. 165, 2404–2409 (2000).
    CAS PubMed Google Scholar
  19. Lin, M. Y. & Welsh, R. M. Stability and diversity of T-cell receptor (TCR) repertoire usage during lymphocytic choriomeningitis virus infection of mice. J. Exp. Med. 188, 1993–2005 (1998).The virus-induced T-cell repertoire usage differs between genetically identical mice, even though the specificity of the CD8+ T-cell response is similar.
    CAS PubMed PubMed Central Google Scholar
  20. Bousso, P. et al. Individual variations in the murine T-cell response to a specific peptide reflect variability in naive repertoire. Immunity 9, 169–178 (1998).
    CAS PubMed Google Scholar
  21. Blattman, J. N., Sourdive, D. J., Murali-Krishna, K., Ahmed, R. & Altman, J. D. Evolution of the T-cell repertoire during primary, memory and recall responses to viral infection. J. Immunol. 165, 6081–6090 (2000).
    CAS PubMed Google Scholar
  22. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell repertoire. Immunol. Today 19, 395–404 (1998).This paper provides theoretical calculations that indicate that T cells must be highly crossreactive.
    CAS PubMed Google Scholar
  23. Tabi, Z., Lynch, F., Ceredig, R., Allan, J. E. & Doherty, P. C. Virus-specific memory T cells are Pgp-1+ and can be selectively activated with phorbol ester and calcium ionophore. Cell. Immunol. 113, 268–277 (1988).
    CAS PubMed Google Scholar
  24. Bradley, L. M., Croft, M. & Swain, S. L. T-cell memory: new perspectives. Immunol. Today 14, 197–199 (1993).
    CAS PubMed Google Scholar
  25. Pihlgren, M., Dubois, P. M., Tomkowiak, M., Sjogren, T. & Marvel, J. Resting memory CD8+ T cells are hyperactive to antigenic challenge in vitro. J. Exp. Med. 184, 2141–2151 (1996).
    CAS PubMed PubMed Central Google Scholar
  26. Curtsinger, J. M., Lins, D. C. & Mescher, M. F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells (CD44low, Ly6C−) to TCR/CD8 signaling in response to antigen. J. Immunol. 160, 3236–3243 (1998).
    CAS PubMed Google Scholar
  27. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8 T cells to antigen stimulation in vivo. Nature Immunol. 1, 47–53 (2000).
    CAS Google Scholar
  28. Sheil, J. M., Bevan, M. J. & Lefrancois, L. Characterization of dual-reactive H-2Kb-restricted anti-vesicular stomatitis virus and alloreactive cytotoxic T cells. J. Immunol. 138, 3654–3660 (1987).
    CAS PubMed Google Scholar
  29. Braciale, T. J., Andrew, M. E. & Braciale, V. L. Simultaneous expression of H-2-restricted and alloreactive recognition by a cloned line of influenza virus-specific cytotoxic T lymphocytes. J. Exp. Med. 153, 1371–1376 (1981).
    CAS PubMed Google Scholar
  30. Anderson, R. W., Bennick, J. R., Yewdell, J. W., Maloy, W. L. & Coligan, J. E. Influenza basic polymerase 2 peptides are recognized by influenza nucleoprotein-specific cytotoxic T lymphocytes. Mol. Immunol. 29, 1089–1096 (1992).
    CAS PubMed Google Scholar
  31. Kuwano, K., Reyes, R. E., Humphreys, R. E. & Ennis, F. A. Recognition of disparate HA and NS1 peptides by an H-2kd-restricted, influenza-specific CTL clone. Mol. Immunol. 28, 1–7 (1991).
    CAS PubMed Google Scholar
  32. Yang, H. & Welsh, R. M. Induction of alloreactive cytotoxic T cells by acute virus infection of mice. J. Immunol. 136, 1186–1193 (1986).
    CAS PubMed Google Scholar
  33. Tomkinson, B. E., Maziarz, R. & Sullivan, J. L. Characterization of the T-cell-mediated cellular cytotoxicity during infectious mononucleosis. J. Immunol. 143, 660–670 (1989).
    CAS PubMed Google Scholar
  34. Strang, G. & Rickinson, A. B. Multiple HLA class-I-dependent cytotoxicities constitute the 'non-HLA-restricted' response in infectious mononucleosis. Eur. J. Immunol. 17, 1007–1013 (1987).
    CAS PubMed Google Scholar
  35. Burrows, S. R. et al. Cross-reactive memory T cells for Epstein–Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. Eur. J. Immunol. 27, 1726–1736 (1997).
    CAS PubMed Google Scholar
  36. Burrows, S. R., Khanna, R., Silins, S. L. & Moss, D. J. The influence of antiviral T-cell responses on the alloreactive repertoire. Immunol. Today 20, 203–207 (1999).
    CAS PubMed Google Scholar
  37. Nahill, S. R. & Welsh, R. M. High frequency of cross-reactive cytotoxic T lymphocytes elicited during the virus-induced polyclonal cytotoxic T-lymphocyte response. J. Exp. Med. 177, 317–327 (1993).
    CAS PubMed Google Scholar
  38. Selin, L. K., Nahill, S. R. & Welsh, R. M. Cross-reactivities in memory cytotoxic T-lymphocyte recognition of heterologous viruses. J. Exp. Med. 179, 1933–1943 (1994).
    CAS PubMed Google Scholar
  39. Yang, H., Dundon, P. L., Nahill, S. R. & Welsh, R. M. Virus-induced polyclonal cytotoxic T-lymphocyte stimulation. J. Immunol. 142, 1710–1718 (1989).
    CAS PubMed Google Scholar
  40. Daniel, C., Horvath, S. & Allen, P. M. A basis for alloreactivity: MHC helical residues broaden peptide recognition by the TCR. Immunity 8, 543–552 (1998).
    CAS PubMed Google Scholar
  41. Speir, J. A. et al. Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity 8, 553–562 (1998).
    CAS PubMed Google Scholar
  42. Alam, S. M. & Gascoigne, N. R. Posttranslational regulation of TCR Vα allelic exclusion during T-cell differentiation. J. Immunol. 160, 3883–3890 (1998).
    CAS PubMed Google Scholar
  43. Welsh, R. M. et al. Virus-induced abrogation of transplantation tolerance induced by donor-specific transfusion and anti-CD154 antibody. J. Virol. 74, 2210–2218 (2000).
    CAS PubMed PubMed Central Google Scholar
  44. Betts, M. R. et al. Putative immunodominant human immunodeficiency virus-specific CD8+ T-cell responses cannot be predicted by major histocompatibility complex class I haplotype. J. Virol. 74, 9144–9151 (2000).These authors show that predictable hierarchies of immunodominant epitopes of HIV are not seen in the 'wild' human population.
    CAS PubMed PubMed Central Google Scholar
  45. Day, C. L. et al. Relative dominance of epitope-specific cytotoxic T-lymphocyte responses in human immunodeficiency virus type-1-infected persons with shared HLA alleles. J. Virol. 75, 6279–6291 (2001).
    CAS PubMed PubMed Central Google Scholar
  46. Fazekas de St Groth, S. & Webster, R. G. Disquisitions on original antigenic sin. II. Proof in lower creatures. J. Exp. Med. 124, 347–361 (1966).
    CAS PubMed Google Scholar
  47. Haanan, J. B., Wolkers, M. C., Kruisbeek, A. M. & Schumacher, T. N. Selective expansion of cross-reactive CD8+ memory T cells by viral variants. J. Exp. Med. 190, 1319–1328 (1999).This study used viral strain-specific tetramers to show that a related virus will selectively stimulate the expansion of crossreactive but not non-crossreactive CD8+ T-cell populations during infection.
    Google Scholar
  48. Klenerman, P. & Zinkernagel, R. M. Original antigenic sin impairs cytotoxic T-lymphocyte responses to viruses bearing variant epitopes. Nature 394, 421–422 (1998).
    Google Scholar
  49. Tough, D. F., Borrow, P. & Sprent, J. Induction of bystander T-cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).
    CAS PubMed Google Scholar
  50. Sprent, J., Zhang, X., Sun, S. & Tough, D. T-cell turnover in vivo and the role of cytokines. Immunol. Lett. 65, 21–25 (1999).
    CAS PubMed Google Scholar
  51. Zarozinski, C. C. & Welsh, R. M. Minimal bystander activation of CD8 T cells during the virus-induced polyclonal T-cell response. J. Exp. Med. 185, 1629–1639 (1997).
    CAS PubMed PubMed Central Google Scholar
  52. McNally, J. M. et al. Attrition of bystander CD8 T cells during virus-induced T-cell and interferon responses. J. Virol. 75, 5965–5976 (2001).This report shows that non-virus-specific 'bystander' CD8+ T cells are reduced in number during virus infections and that type I IFN induces the apoptosis of memory CD8+ T cells.
    CAS PubMed PubMed Central Google Scholar
  53. Mahalingam, S., Foster, P. S., Lobigs, S., Farber, J. M. & Karupiah, G. Interferon-inducible chemokines and immunity to poxvirus infections. Immunol. Rev. 177, 127–133 (2000).
    CAS PubMed Google Scholar
  54. Topham, D. J., Castrucci, M., Wingo, F. S., Belz, G. T. & Doherty, P. C. The role of antigen in the localization of naive, acutely activated and memory CD8+ T cells to the lung during influenza pneumonia. J. Immunol. 167, 6983–6990 (2001).
    CAS PubMed Google Scholar
  55. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).
    CAS PubMed Google Scholar
  56. Flynn, K. J., Riberdy, J. M., Christensen, J. P., Altman, J. D. & Doherty, P. C. In vivo proliferation of naive and memory influenza-specific CD8+ T cells. Proc. Natl Acad. Sci. USA 96, 8597–8602 (1999).
    CAS PubMed PubMed Central Google Scholar
  57. Belz, G. T. & Doherty, P. C. Virus-specific and bystander CD8+ T-cell proliferation in the persistent phases of a γ-herpesvirus infection. J. Virol. 75, 4435–4438 (2001).
    CAS PubMed PubMed Central Google Scholar
  58. Turner, S. J., Cross, R., Xie, W. & Doherty, P. C. Concurrent naive and memory CD8+ T-cell responses to an influenza virus. J. Immunol. 167, 2753–2758 (2001).
    CAS PubMed Google Scholar
  59. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994).
    CAS PubMed Google Scholar
  60. Homann, D., Teyton, L. & Oldstone, M. B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ memory. Nature Med. 7, 892–893 (2001).
    Google Scholar
  61. Razvi, E. S., Welsh, R. M. & McFarland, H. I. In vivo state of antiviral CTL precursors: characterization of a cycling population containing CTL precursors in immune mice. J. Immunol. 154, 620–632 (1995).
    CAS PubMed Google Scholar
  62. Sprent, J. & Tough, D. F. Lymphocyte life-span and memory. Science 265, 1395–1400 (1994).
    CAS PubMed Google Scholar
  63. Zimmermann, C., Brduscha-Riem, K., Blaser, C., Zinkernagel, R. M. & Pircher, H. Visualization, characterization and turnover of CD8+ memory T cells in virus-infected hosts. J. Exp. Med. 183, 1367–1375 (1996).
    CAS Google Scholar
  64. Selin, L. K. et al. Attrition of T-cell memory: selective loss of lymphocytic choriomeningitis virus (LCMV) epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).This study shows that CD8+ T cells that are specific for previously encountered viruses are reduced in number by heterologous viral infections, and there is a selective loss of some specificities but not others.
    CAS PubMed Google Scholar
  65. Chen, H. D. et al. Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nature Immunol. 2, 1067–1076 (2001).This study shows the recruitment and activation of LCMV-specific memory T cells into the lung during vaccinia virus infection, which results in marked immunopathology in a respiratory model of heterologous immunity.
    CAS Google Scholar
  66. Varga, S. M. & Welsh, R. M. Cutting edge: detection of a high frequency of virus-specific CD4+ T cells during acute infection with lymphocytic choriomeningitis virus. J. Immunol. 161, 3215–3218 (1998).
    CAS PubMed Google Scholar
  67. Varga, S. M. & Welsh, R. M. High frequency of virus-specific interleukin-2-producing CD4+ T cells and TH1 dominance during lymphocytic choriomeningitis virus infection. J. Virol. 74, 4429–4432 (2000).
    CAS PubMed PubMed Central Google Scholar
  68. Varga, S. M., Selin, L. K. & Welsh, R. M. Independent regulation of lymphocytic choriomeningitis virus-specific T-cell memory pools: relative stability of CD4 memory under conditions of CD8 memory T-cell loss. J. Immunol. 166, 1554–1561 (2001).This study shows that heterologous viral infections cause less of a decline in CD4+ T-cell memory than they do in CD8+ T-cell memory.
    CAS PubMed Google Scholar
  69. Selin, L. K., Varga, S. M., Wong, I. C. & Welsh, R. M. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T-cell populations. J. Exp. Med. 188, 1705–1715 (1998).This shows the principle of heterologous immunity and immunopathology during viral infections.
    CAS PubMed PubMed Central Google Scholar
  70. Schlesinger, C., Meyer, C. A., Veeraraghavan, S. & Koss, M. N. Constrictive (obliterative) bronchiolitis: diagnosis, etiology and a critical review of the literature. Ann. Diagn. Pathol. 2, 321–334 (1998).
    CAS PubMed Google Scholar
  71. Ploegh, H. L. Viral strategies of immune evasion. Science 280, 248–253 (1998).
    CAS PubMed Google Scholar
  72. Aaby, P. et al. Non-specific beneficial effect of measles immunisation: analysis of mortality studies from developing countries. BMJ 311, 481–485 (1995).
    CAS PubMed PubMed Central Google Scholar
  73. Doherty, P. C. et al. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol. Rev. 159, 105–117 (1997).
    CAS PubMed Google Scholar
  74. Jameson, J., Cruz, J. & Ennis, F. A. Human cytotoxic T-lymphocyte repertoire to influenza A viruses. J. Virol. 72, 8682–8689 (1998).This paper identifies several influenza virus T-cell epitopes, some of which are crossreactive between strains.
    CAS PubMed PubMed Central Google Scholar
  75. Yang, H., Joris, I., Majno, G. & Welsh, R. M. Necrosis of adipose tissue induced by sequential infections with unrelated viruses. Am. J. Pathol. 120, 173–177 (1985).
    CAS PubMed PubMed Central Google Scholar
  76. Bolognia, J. & Braverman, I. M. In Harrison's Principles of Internal Medicine (eds Isselbacher, K. J. et al.) 290–307 (McGraw–Hill, New York, 1992).
    Google Scholar
  77. Zhao, Z.-S., Granucci, F., Yeh, L., Schaffer, P. A. & Cantor, H. Molecular mimicry by herpes simplex virus type-1: autoimmune disease after viral infection. Science 279, 1344–1347 (1998).
    CAS PubMed Google Scholar
  78. Evans, C. F., Horwitz, M. S., Hobbs, M. V. & Oldstone, M. B. Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J. Exp. Med. 184, 2371–2384 (1996).This study shows that a virus can break tolerance to a transgene in the brain and induce transient encephalitis, which will undergo remission until exacerbated by a heterologous virus infection.
    CAS PubMed PubMed Central Google Scholar
  79. Swain, S. L. Helper T-cell differentiation. Curr. Opin. Immunol. 11, 180–185 (1999).
    CAS PubMed Google Scholar
  80. Ismail, N. & Bretscher, P. A. More antigen-dependent CD4+ T cell/CD4+ T cell interactions are required for the primary generation of TH2 than of TH1 cells. Eur. J. Immunol. 31, 1765–1771 (2001).
    CAS PubMed Google Scholar
  81. Swain, S. L. Interleukin-18: tipping the balance towards a T helper cell 1 response. J. Exp. Med. 194, F11–F14 (2001).
    CAS PubMed PubMed Central Google Scholar
  82. Cohn, L., Herrick, C., Niu, N., Homer, R. & Bottomly, K. IL-4 promotes airways eosinophilia by suppressing IFN-γ production: defining a novel role for IFN-γ in the regulation of allergic airway inflammation. J. Immunol. 166, 2760–2767 (2001).
    CAS PubMed Google Scholar
  83. Rook, G. A. & Stanford, J. L. Give us this day our daily germs. Immunol. Today 19, 113–116 (1998).
    CAS PubMed Google Scholar
  84. Varga, S. M., Wang, X., Welsh, R. M. & Braciale, T. J. Immunopathology in RSV infection is mediated by a discrete oligoclonal subset of antigen-specific CD4+ T cells. Immunity 15, 637–646 (2001).
    CAS PubMed Google Scholar
  85. Kapikian, A. Z., Mitchell, R. H., Chanock, R. M., Shvedoff, R. A. & Stewart, C. E. An epidemiological study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am. J. Epidemiol. 89, 405–421 (1969).
    CAS PubMed Google Scholar
  86. Cohn, L., Homer, R. J., Niu, N. & Bottomly, K. T helper 1 cells and interferon-γ regulate allergic airway inflammation and mucus production. J. Exp. Med. 190, 1309–1318 (1999).
    CAS PubMed PubMed Central Google Scholar
  87. Graham, B. S., Bunton, L. A., Wright, P. F. & Karzon, D. T. Role of T-lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J. Clin. Invest. 88, 1026–1033 (1991).
    CAS PubMed PubMed Central Google Scholar
  88. Walzl, G., Tafuro, S., Moss, P., Openshaw, P. J. & Hussell, T. Influenza virus lung infection protects from respiratory syncytial virus-induced immunopathology. J. Exp. Med. 192, 1317–1326 (2000).A heterologous influenza-virus infection can alter the ability of a vaccinia-virus recombinant to prime a host to make a damaging T H 2-like response to RSV.
    CAS PubMed PubMed Central Google Scholar
  89. Johnson, T. R. & Graham, B. S. Secreted respiratory syncytial virus G glycoprotein induces interleukin-5 (IL-5), IL-13 and eosinophilia by an IL-4-dependent mechanism. J. Virol. 73, 8485–8495 (1999).
    CAS PubMed PubMed Central Google Scholar
  90. Shirakawa, T., Enomoto, T., Shimazu, S. & Hopkin, J. M. The inverse association between tuberculin responses and atopic disorder. Science 275, 77–79 (1997).
    CAS PubMed Google Scholar
  91. Martinez, F. D. et al. Asthma and wheezing in the first six years of life. N. Engl. J. Med. 332, 133–138 (1995).
    CAS PubMed Google Scholar
  92. Shaheen, S. O. et al. Measles and atopy in Guinea–Bissau. Lancet 347, 1792–1796 (1996).
    CAS PubMed Google Scholar
  93. Erb, K. J., Holloway, J. W., Sobeck, A., Moll, H. & Le Gros, G. Infection of mice with Mycobacterium bovis bacillus Calmette–Guerin (BCG) suppresses allergen-induced airway eosinophilia. J. Exp. Med. 187, 561–569 (1998).This study shows that a history of BCG infection can render a host refractory to the induction of a T H 2 response by an allergen.
    CAS PubMed PubMed Central Google Scholar
  94. Wedemeyer, H., Mizukoshi, E., Davis, A. R., Bennink, J. R. & Rehermann, B. Cross-reactivity between hepatitis C virus and influenza A virus determinant-specific cytotoxic T cells. J. Virol. 75, 11392–11400 (2001).Defines a strong crossreactive epitope between hepatitis C virus and influenza virus.
    CAS PubMed PubMed Central Google Scholar
  95. Weinstein, L. & Meade, R. H. Respiratory manifestations of chickenpox. Arch. Intern. Med. 98, 91–99 (1956).
    CAS Google Scholar
  96. Rickinson, A. B. & Kieff, E. In Virology Vol. 2 (eds Fields, B. N. et al.) 2397–2446 (Lippincott–Raven, Philadelphia, 1996).
    Google Scholar
  97. Moss, D. J., Burrows, S. R., Silins, S. L., Misko, I. & Khanna, R. The immunology of Epstein–Barr virus infection. Philos Trans R Soc Lond B Biol Sci 356, 475–488 (2001).
    CAS PubMed PubMed Central Google Scholar
  98. Kaul, R. et al. CD8+ lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J. Clin. Invest. 107, 1303–1310 (2001).This study provides evidence of HIV-specific T cells in seronegative and HIV-negative subjects at high risk of HIV infection.
    CAS PubMed PubMed Central Google Scholar
  99. Tillmann, H. L. et al. Infection with GB virus C and reduced mortality among HIV-infected patients. N. Engl. J. Med. 345, 715–724 (2001).
    CAS PubMed Google Scholar
  100. Xiang, J. et al. Effect of coinfection with GB virus C on survival among patients with HIV infection. N. Engl. J. Med. 345, 707–714 (2001).
    CAS PubMed Google Scholar
  101. Barnett, L. A. & Fujinami, R. S. Molecular mimicry: a mechanism for autoimmune injury. FASEB J. 6, 840–844 (1992).
    CAS PubMed Google Scholar
  102. Janeway, C. A. Innate immunity acknowledged. Immunologist 3, 198–200 (1995).
    CAS Google Scholar
  103. Smoller, B. R., Weishar, M. & Gray, M. H. An unusual cutaneous manifestation in Crohn's disease. Arch Pathol Lab Med 114, 609–610 (1990).
    CAS PubMed Google Scholar
  104. Brehm, M. B. et al. T-cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nature Immunol. (in the press). This study shows that cross-reactive CD8+ T-cell responses during heterologous virus infections influence immunodominance, as the T cells that are specific for the cross-reactive memory epitopes dominate acute responses to the second virus and are preferentially maintained in memory of the first virus, whereas non-crossreactive memory T cells are lost.

Download references