The unconventional lifestyle of NKT cells (original) (raw)
Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity and function. Annu. Rev. Immunol.15, 535–562 (1997). ArticleCASPubMed Google Scholar
Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today21, 573–583 (2000). ArticleCASPubMed Google Scholar
Lantz, O. & Bendelac, A. An invariant T-cell receptor α-chain is used by a unique subset of major histocompatibility complex class-I-specific CD4+ and CD4−8− T cells in mice and humans. J. Exp. Med.180, 1097–1106 (1994). ArticleCASPubMed Google Scholar
Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science268, 863–865 (1995).The first demonstration that Vα14iT cells recognize the non-classical MHC class I molecule CD1d. ArticleCASPubMed Google Scholar
Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science278, 1626–1629 (1997).This study shows that Vα14iT cells recognize the glycolipid α-galactosyl ceramide (α-GalCer) presented by CD1d. ArticleCASPubMed Google Scholar
Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol.161, 3271–3281 (1998). CASPubMed Google Scholar
Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med.191, 1895–1903 (2000). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med.192, 741–754 (2000).The first study of the Vα14iT-cell responseex vivousing CD1d tetramers. ArticleCASPubMedPubMed Central Google Scholar
Gumperz, J. E. et al. Murine CD1d-restricted T-cell recognition of cellular lipids. Immunity12, 211–221 (2000). ArticleCASPubMed Google Scholar
Gui, M., Li, J., Wen, L. J., Hardy, R. R. & Hayakawa, K. TCR β-chain influences but does not solely control autoreactivity of Vα14Jα281 T cells. J. Immunol.167, 6239–6246 (2001). ArticleCASPubMed Google Scholar
Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med.188, 1521–1528 (1998). ArticleCASPubMedPubMed Central Google Scholar
Spada, F. M., Koezuka, Y. & Porcelli, S. A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med.188, 1529–1534 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ishihara, S. et al. CD8+NKR−P1A+ T cells preferentially accumulate in human liver. Eur. J. Immunol.29, 2406–2413 (1999). ArticleCASPubMed Google Scholar
Metelitsa, L. S. et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J. Immunol.167, 3114–3122 (2001). ArticleCASPubMed Google Scholar
Hammond, K. J. et al. CD1d-restricted NKT cells: an interstrain comparison. J. Immunol.167, 1164–1173 (2001). ArticleCASPubMed Google Scholar
Lantz, O., Sharara, L. I., Tilloy, F., Andersson, A. & DiSanto, J. P. Lineage relationships and differentiation of natural killer (NK) T cells: intrathymic selection and interleukin (IL)-4 production in the absence of NKR-P1 and Ly49 molecules. J. Exp. Med.185, 1395–1401 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gapin, L., Matsuda, J. L., Surh, C. D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nature Immunol.2, 971–978 (2001).A direct demonstration that double-positive thymocytes contain precursors of Vα14iT cells. ArticleCAS Google Scholar
Pellicci, D. G. et al. NKT cells develop through a thymus-dependent NK1.1-CD4+ CD1d-dependent precursor stage. J. Exp. Med.195, 835–844 (2002).Evidence that Vα14iT cells are thymus dependent and that expression of NK1.1 can be acquired after export from the thymus. ArticleCASPubMedPubMed Central Google Scholar
Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NKT-cell lineage. Science296, 553–555 (2002).Identification of the developmental intermediate stages of Vα14iT cells in the thymus. ArticleCASPubMed Google Scholar
Chen, H. & Paul, W. E. A population of CD62LlowNk1.1−CD4+ T cells that resembles NK1.1+CD4+ T cells. Eur. J. Immunol.28, 3172–3182 (1998). ArticleCASPubMed Google Scholar
Eberl, G. et al. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol.162, 6410–6419 (1999). CASPubMed Google Scholar
Cardell, S. et al. CD1-restricted CD4+ T cells in major histocompatibility complex class-II-deficient mice. J. Exp. Med.182, 993–1004 (1995). ArticleCASPubMed Google Scholar
Behar, S. M., Podrebarac, T. A., Roy, C. J., Wang, C. R. & Brenner, M. B. Diverse TCRs recognize murine CD1. J. Immunol.162, 161–167 (1999). CASPubMed Google Scholar
Park, S.-H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T-cell receptor families. J. Exp. Med.193, 893–904 (2001). ArticleCASPubMedPubMed Central Google Scholar
Exley, M. A. et al. A major fraction of human bone-marrow lymphocytes are TH2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J. Immunol.167, 5531–5534 (2001). ArticleCASPubMed Google Scholar
Wang, B., Chun, T. & Wang, C. R. Comparative contribution of CD1 on the development of CD4+ and CD8+ T-cell compartments. J. Immunol.164, 739–745 (2000). ArticleCASPubMed Google Scholar
Hammond, K. J. et al. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol.29, 3768–3781 (1999). ArticleCASPubMed Google Scholar
Slifka, M. K., Pagarigan, R. R. & Whitton, J. L. NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J. Immunol.164, 2009–2015 (2000). ArticleCASPubMed Google Scholar
Kambayashi, T. et al. Emergence of CD8+ T cells expressing NK-cell receptors in influenza A virus-infected mice. J. Immunol.165, 4964–4969 (2000). ArticleCASPubMed Google Scholar
Arase, H., Saito, T., Phillips, J. H. & Lanier, L. L. Cutting edge: the mouse NK-cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol.167, 1141–1144 (2001). ArticleCASPubMed Google Scholar
Gonzalez, A., Andre-Schmutz, I., Carnaud, C., Mathis, D. & Benoist, C. Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes. Nature Immunol.2, 1117–1125 (2001). ArticleCAS Google Scholar
Moodycliffe, A. M., Nghiem, D., Clydesdale, G. & Ullrich, S. E. Immune suppression and skin-cancer development: regulation by NKT cells. Nature Immunol.1, 521–525 (2000). ArticleCAS Google Scholar
Smiley, S. T., Kaplan, M. H. & Grusby, M. J. Immunoglobulin-E production in the absence of interleukin-4-secreting CD1-dependent cells. Science275, 977–979 (1997). ArticleCASPubMed Google Scholar
Chen, Y. H., Chiu, N. M., Mandal, M., Wang, N. & Wang, C. R. Impaired NK1+ T-cell development and early IL-4 production in CD1-deficient mice. Immunity6, 459–467 (1997). ArticleCASPubMed Google Scholar
Mendiratta, S. K. et al. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity6, 469–477 (1997). ArticleCASPubMed Google Scholar
Taniguchi, M. & Nakayama, T. Recognition and function of Vα14 NKT cells. Semin. Immunol.12, 543–550 (2000). ArticleCASPubMed Google Scholar
Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science263, 1774–1778 (1994). ArticleCASPubMed Google Scholar
Ohteki, T. & MacDonald, H. R. Major histocompatibility complex class-I-related molecules control the development of CD4+8− and CD4−8− subsets of natural killer 1.1+ T-cell receptor-α/β+ cells in the liver of mice. J. Exp. Med.180, 699–704 (1994). ArticleCASPubMed Google Scholar
Coles, M. C. & Raulet, D. H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol.164, 2412–2418 (2000). ArticleCASPubMed Google Scholar
Sykes, M., Hoyles, K. A., Romick, M. L. & Sachs, D. H. In vitro and in vivo analysis of bone-marrow-derived CD3+, CD4−, CD8−, NK1.1+ cell lines. Cell. Immunol.129, 478–493 (1990). ArticleCASPubMed Google Scholar
Levitsky, H. I., Golumbek, P. T. & Pardoll, D. M. The fate of CD4−8− T-cell receptor-αβ+ thymocytes. J. Immunol.146, 1113–1117 (1991). CASPubMed Google Scholar
Makino, Y. et al. Extrathymic development of Vα14+ T cells. J. Exp. Med.177, 1399–1408 (1993). ArticleCASPubMed Google Scholar
MacDonald, H. R. CD1d–glycolipid tetramers: a new tool to monitor natural killer T cells in health and disease. J. Exp. Med.192, F15–F20 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hammond, K., Cain, W., van Driel, I. & Godfrey, D. Three-day neonatal thymectomy selectively depletes NK1.1+ T cells. Int. Immunol.10, 1491–1499 (1998). ArticleCASPubMed Google Scholar
Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med.182, 2091–2096 (1995). ArticleCASPubMed Google Scholar
Robey, E. & Fowlkes, B. J. Selective events in T-cell development. Annu. Rev. Immunol.12, 675–705 (1994). ArticleCASPubMed Google Scholar
Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med.184, 9–18 (1996). ArticleCASPubMed Google Scholar
Eberl, G., Lowin-Kropf, B. & MacDonald, H. R. Cutting edge: NKT-cell development is selectively impaired in Fyn-deficient mice. J. Immunol.163, 4091–4094 (1999). CASPubMed Google Scholar
Gadue, P., Morton, N. & Stein, P. L. The Src-family tyrosine kinase Fyn regulates natural killer T-cell development. J. Exp. Med.190, 1189–1196 (1999). ArticleCASPubMedPubMed Central Google Scholar
Walunas, T. L., Wang, B., Wang, C. R. & Leiden, J. M. Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol.164, 2857–2860 (2000). ArticleCASPubMed Google Scholar
Ohteki, T., Ho, S., Suzuki, H., Mak, T. W. & Ohashi, P. S. Role for IL-15/IL-15 receptor β-chain in natural killer 1.1+ T-cell receptor-αβ+ cell development. J. Immunol.159, 5931–5935 (1997). CASPubMed Google Scholar
Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T-cell lineages in interleukin-15-deficient mice. J. Exp. Med.191, 771–780 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669–676 (1998). ArticleCASPubMed Google Scholar
Iizuka, K. et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl Acad. Sci. USA96, 6336–6340 (1999). ArticleCASPubMedPubMed Central Google Scholar
Elewaut, D. et al. Membrane lymphotoxin is required for the development of different subpopulations of NK T cells. J. Immunol.165, 671–679 (2000). ArticleCASPubMed Google Scholar
Shimamura, M., Ohteki, T., Beutner, U. & MacDonald, H. R. Lack of directed Vα14–Jα281 rearrangements in NK1+ T cells. Eur. J. Immunol.27, 1576–1579 (1997). ArticleCASPubMed Google Scholar
Iwabuchi, K. et al. Defective development of NK1.1+ T-cell antigen receptor-αβ+ cells in ζ-associated protein 70 null mice with an accumulation of NK1.1+CD3− NK-like cells in the thymus. Blood97, 1765–1775 (2001). ArticleCASPubMed Google Scholar
Sato, H. et al. Induction of differentiation of pre-NKT cells to mature Vα14 NKT cells by granulocyte–macrophage colony-stimulating factor. Proc. Natl Acad. Sci. USA96, 7439–7444 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ballas, Z. K., Rasmussen, W. L., Alber, C. A. & Sandor, M. Ontogeny of thymic NK1.1+ cells. J. Immunol.159, 1174–1181 (1997). CASPubMed Google Scholar
Matsuda, J. L. et al. Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T-cell receptor-β repertoire and small clone size. Proc. Natl Acad. Sci. USA98, 12636–12641 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takahama, Y., Kosugi, A. & Singer, A. Phenotype, ontogeny and repertoire of CD4−CD8− T-cell receptor-αβ+ thymocytes. Variable influence of self-antigens on T-cell receptor Vβ usage. J. Immunol.146, 1134–1141 (1991). CASPubMed Google Scholar
Wu, L., Pearse, M., Egerton, M., Petrie, H. & Scollay, R. CD4−CD8− thymocytes that express the T-cell receptor may have previously expressed CD8. Int. Immunol.2, 51–56 (1990). ArticleCASPubMed Google Scholar
Bendelac, A., Hunziker, R. D. & Lantz, O. Increased interleukin-4 and immunoglobulin-E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med.184, 1285–1293 (1996). ArticleCASPubMed Google Scholar
Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14–Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med.188, 1831–1839 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zerrahn, J. et al. Class I MHC molecules on hematopoietic cells can support intrathymic positive selection of T-cell receptor transgenic T cells. Proc. Natl Acad. Sci. USA96, 11470–11475 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol.2, 301–306 (2001). ArticleCAS Google Scholar
Leishman, A. et al. Thymic selection of CD8αα+ T cells with MHC class I and class II restricted TCRs is induced by agonist self-peptides. Immunity16, 355–364 (2002). ArticleCASPubMed Google Scholar
Chiu, Y. H. et al. Multiple defects in antigen presentation and T-cell development by mice expressing cytoplasmic tail-truncated CD1d. Nature Immunol.3, 55–60 (2002).This study shows that the loading of a natural ligand during intracellular CD1d transport is likely to be important for the selection of Vα14iT cells. ArticleCAS Google Scholar
Legendre, V. et al. Selection of phenotypically distinct NK1.1+ T cells upon antigen expression in the thymus or in the liver. Eur. J. Immunol.29, 2330–2343 (1999). ArticleCASPubMed Google Scholar
Ohwatari, R. et al. Developmental and functional analyses of CD8+ NK1.1+ T cells in class-I-restricted TCR-transgenic mice. Cell. Immunol.213, 24–33 (2001). ArticleCASPubMed Google Scholar
Wack, A., Coles, M., Norton, T., Hostert, A. & Kioussis, D. Early onset of CD8 transgene expression inhibits the transition from DN3 to DP thymocytes. J. Immunol.165, 1236–1242 (2000). ArticleCASPubMed Google Scholar
Ohteki, T., Maki, C., Koyasu, S., Mak, T. W. & Ohashi, P. S. Cutting edge: LFA-1 is required for liver NK1.1+TCRαβ+ cell development: evidence that liver NK1.1+TCRαβ+ cells originate from multiple pathways. J. Immunol.162, 3753–3756 (1999). CASPubMed Google Scholar
Emoto, M., Mittrucker, H. W., Schmits, R., Mak, T. W. & Kaufmann, S. H. Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+ NKT cells. J. Immunol.162, 5094–5098 (1999). CASPubMed Google Scholar
Mempel, M. et al. Natural killer T cells restricted by the monomorphic MHC class 1b CD1d1 molecules behave like inflammatory cells. J. Immunol.168, 365–371 (2002). ArticleCASPubMed Google Scholar
Mempel, M. et al. Comparison of the T-cell patterns in leprous and cutaneous sarcoid granulomas. Presence of Vα24-invariant natural killer T cells in T-cell-reactive leprosy together with a highly biased T-cell receptor Vα repertoire. Am. J. Pathol.157, 509–523 (2000). ArticleCASPubMedPubMed Central Google Scholar
Faunce, D. E., Sonoda, K. H. & Stein-Streilein, J. MIP-2 recruits NKT cells to the spleen during tolerance induction. J. Immunol.166, 313–321 (2001). ArticleCASPubMed Google Scholar
Kawakami, K. et al. Monocyte chemoattractant protein-1-dependent increase of Vα14 NKT cells in lungs and their roles in TH1 response and host defense in cryptococcal infection. J. Immunol.167, 6525–6532 (2001).This paper, together with related work from this group, shows that Vα14iT cells localize to the lungs in response to MCP1 and are important for the response toCryptococcus neoformans. ArticleCASPubMed Google Scholar
D'Andrea, A. et al. Neonatal invariant Vα24+ NKT lymphocytes are activated memory cells. Eur. J. Immunol.30, 1544–1550 (2000). ArticleCASPubMed Google Scholar
van Der Vliet, H. J. et al. Human natural killer T cells acquire a memory-activated phenotype before birth. Blood95, 2440–2442 (2000). CASPubMed Google Scholar
Park, S. H., Benlagha, K., Lee, D., Balish, E. & Bendelac, A. Unaltered phenotype, tissue distribution and function of Vα14+ NKT cells in germ-free mice. Eur. J. Immunol.30, 620–625 (2000). ArticleCASPubMed Google Scholar
Ikarashi, Y. et al. Dendritic-cell maturation overrules H-2D-mediated natural killer T (NKT)-cell inhibition. Critical role for B7 in CD1d-dependent NKT-cell interferon-γ production. J. Exp. Med.194, 1179–1186 (2001). ArticleCASPubMedPubMed Central Google Scholar
Maeda, M., Lohwasser, S., Yamamura, T. & Takei, F. Regulation of NKT cells by Ly49: analysis of primary NKT cells and generation of NKT-cell line. J. Immunol.167, 4180–4186 (2001). ArticleCASPubMed Google Scholar
Exley, M., Porcelli, S., Furman, M., Garcia, J. & Balk, S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant Vα24 JαQ T-cell receptor α-chains. J. Exp. Med.188, 867–876 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bousso, P. & Kourilsky, P. A clonal view of αβ T-cell responses. Semin. Immunol.11, 423–431 (1999). ArticleCASPubMed Google Scholar
Leite-De-Moraes, M. C. et al. Fas/Fas ligand interactions promote activation-induced cell death of NK T lymphocytes. J. Immunol.165, 4367–4371 (2000). ArticleCASPubMed Google Scholar
Osman, Y. et al. Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur. J. Immunol.30, 1919–1928 (2000). ArticleCASPubMed Google Scholar
Hayakawa, Y. et al. Critical contribution of IFN-γ and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. Eur. J. Immunol.31, 1720–1727 (2001). ArticleCASPubMed Google Scholar
Eberl, G. & MacDonald, H. R. Rapid death and regeneration of NKT cells in anti-CD3ɛ- or IL-12-treated mice: a major role for bone marrow in NKT-cell homeostasis. Immunity9, 345–353 (1998).A demonstration that Vα14iT cells respond quickly then disappear, probably through the activation-induced cell-death process. ArticleCASPubMed Google Scholar
Hobbs, J. A. et al. Selective loss of natural killer T cells by apoptosis following infection with lymphocytic choriomeningitis virus. J. Virol.75, 10746–10754 (2001). ArticleCASPubMedPubMed Central Google Scholar
MacDonald, H. R., Lees, R. K. & Held, W. Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J. Exp. Med.187, 2109–2114 (1998). ArticleCAS Google Scholar
Skold, M. & Cardell, S. Differential regulation of Ly49 expression on CD4+ and CD4−CD8− (double negative) NK1.1+ T cells. Eur. J. Immunol.30, 2488–2496 (2000). ArticleCASPubMed Google Scholar
Kawano, T. et al. Antitumor cytotoxicity mediated by ligand-activated human Vα24 NKT cells. Cancer Res.59, 5102–5105 (1999). CASPubMed Google Scholar
Carnaud, C. et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol.163, 4647–4650 (1999). CASPubMed Google Scholar
Eberl, G. & MacDonald, H. R. Selective induction of NK-cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol.30, 985–992 (2000). ArticleCASPubMed Google Scholar
Singh, N. et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a TH2 phenotype. J. Immunol.163, 2373–2377 (1999). CASPubMed Google Scholar
Nishimura, T. et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int. Immunol.12, 987–994 (2000). ArticleCASPubMed Google Scholar
Gonzalez-Aseguinolaza, G. et al. Natural killer T-cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med.195, 617–624 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, R. et al. Antitumor activity of α-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor-infiltrating cells. Oncol. Res.12, 51–58 (2000). ArticleCASPubMed Google Scholar
Burdin, N., Brossay, L. & Kronenberg, M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards TH2 cytokine synthesis. Eur. J. Immunol.29, 2014–2025 (1999). ArticleCASPubMed Google Scholar
Naumov, Y. N. et al. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic-cell subsets. Proc. Natl Acad. Sci. USA98, 13838–13843 (2001). ArticleCASPubMedPubMed Central Google Scholar
Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature413, 531–534 (2001).This paper shows that Vα14iT cells can be polarized towards a TH2 phenotype using α-GalCer analogues, and shows the importance of this subset in protection against allergic encephalomyelitis. ArticleCASPubMed Google Scholar
Kadowaki, N. et al. Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells. J. Exp. Med.193, 1221–1226 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gumperz, J. E., Miyake, S., Yamamura, T. & Brenner, M. B. Functionally distinct subsets of CD1d-restricted NKT cells revealed by CD1d tetramer staining. J. Exp. Med.195, 625–636 (2002).This paper shows that human CD4+ Vα24iT cells, but not double-negative T cells, can produce IL-4. See also Reference104. ArticleCASPubMedPubMed Central Google Scholar
Lee, P. T., Benlagha, K., Teyton, L. & Bendelac, A. Distinct functional lineages of human Vαl24 natural killer T cells. J. Exp. Med.195, 637–641 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med.7, 1052–1056 (2001). ArticleCASPubMed Google Scholar
Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nature Med.7, 1057–1062 (2001). ArticleCASPubMed Google Scholar
Singh, A. K. et al. Natural killer T-cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med.194, 1801–1811 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cui, J. et al. Inhibition of T helper cell type 2 cell differentiation and immunoglobulin-E response by ligand-activated Vα14 natural killer T cells. J. Exp. Med.190, 783–792 (1999). ArticleCASPubMedPubMed Central Google Scholar
Schofield, L. et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science283, 225–229 (1999). ArticleCASPubMed Google Scholar
Molano, A. et al. Cutting edge: the IgG response to the circumsporozoite protein is MHC class-II-dependent and CD1d-independent: exploring the role of GPIs in NK T-cell activation and antimalarial responses. J. Immunol.164, 5005–5009 (2000). ArticleCASPubMed Google Scholar
Romero, J. F., Eberl, G., MacDonald, H. R. & Corradin, G. CD1d-restricted NK T cells are dispensable for specific antibody responses and protective immunity against liver-stage malaria infection in mice. Parasite Immunol.23, 267–269 (2001). ArticleCASPubMed Google Scholar
Gonzalez-Aseguinolaza, G. et al. α-galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria. Proc. Natl Acad. Sci. USA97, 8461–8466 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mannoor, M. K. et al. Resistance to malarial infection is achieved by the cooperation of NK1.1+ and NK1.1− subsets of intermediate TCR cells, which are constituents of innate immunity. Cell. Immunol.211, 96–104 (2001). ArticleCASPubMed Google Scholar
Kakimi, K., Guidotti, L. G., Koezuka, Y. & Chisari, F. V. Natural killer T-cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med.192, 921–930 (2000). ArticleCASPubMedPubMed Central Google Scholar
Baron, J. L. et al. Activation of a nonclassical NKT-cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity16, 583–594 (2002). ArticleCASPubMed Google Scholar
Sumida, T. et al. Selective reduction of T cells bearing invariant Vα24JαQ antigen receptor in patients with systemic sclerosis. J. Exp. Med.182, 1163–1168 (1995). ArticleCASPubMed Google Scholar
van der Vliet, H. J. et al. Circulating Vα24+Vβ11+ NKT-cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol.100, 144–148 (2001). ArticleCASPubMed Google Scholar
Illes, Z. et al. Differential expression of NK T cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol.164, 4375–4381 (2000). ArticleCASPubMed Google Scholar
Kojo, S., Adachi, Y., Keino, H., Taniguchi, M. & Sumida, T. Dysfunction of T-cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum.44, 1127–1138 (2001). ArticleCASPubMed Google Scholar
Bonish, B. et al. Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-γ production by NKT cells. J. Immunol.165, 4076–4085 (2000). ArticleCASPubMed Google Scholar
Nagane, Y., Utsugisawa, K., Obara, D. & Tohgi, H. NKT-associated markers and perforin in hyperplastic thymuses from patients with Myasthenia gravis. Muscle Nerve24, 1359–1364 (2001). ArticleCASPubMed Google Scholar
Smyth, M. J. et al. NKT cells — conductors of tumor immunity? Curr. Opin. Immunol.14, 165–171 (2002). ArticleCASPubMed Google Scholar
Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science278, 1623–1626 (1997).Stimulation of Vα14iT cells by α-GalCer or IL-12 induces tumour rejection. ArticleCASPubMed Google Scholar
Tomura, M. et al. A novel function of Vα14+CD4+NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J. Immunol.163, 93–101 (1999). CASPubMed Google Scholar
Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med.189, 1121–1128 (1999). ArticleCASPubMedPubMed Central Google Scholar
Smyth, M. J. et al. Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of γ-galactosylceramide. Blood99, 1259–1266 (2002). ArticleCASPubMed Google Scholar
Smyth, M. J. et al. Tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon-γ-dependent natural killer cell protection from tumor metastasis. J. Exp. Med.193, 661–670 (2001). ArticleCASPubMedPubMed Central Google Scholar
Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med.191, 661–668 (2000).The first description that Vα14iT cells have an anti-tumour function in the absence of exogenous stimulation with α-GalCer. ArticleCASPubMedPubMed Central Google Scholar
Terabe, M. et al. NKT-cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nature Immunol.1, 515–520 (2000). ArticleCAS Google Scholar
Baxter, A. G., Kinder, S. J., Hammond, K. J., Scollay, R. & Godfrey, D. I. Association between αβTCR+CD4−CD8− T-cell deficiency and IDDM in NOD/Lt mice. Diabetes46, 572–582 (1997). ArticleCASPubMed Google Scholar
Falcone, M., Yeung, B., Tucker, L., Rodriguez, E. & Sarvetnick, N. A defect in interleukin-12-induced activation and interferon-γ secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J. Exp. Med.190, 963–972 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hammond, K. J. L. et al. α/β-T-cell receptor TCR+CD4−CD8− (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med.187, 1047–1056 (1998).This paper shows that the restoration of a normal Vα14iT-cell repertoire by the transfer of Vα14iT cells from non-immune-prone mice into NOD mice confers protection against diabetes. ArticleCASPubMedPubMed Central Google Scholar
Poulton, L. D. et al. Cytometric and functional analyses of NK- and NKT-cell deficiencies in NOD mice. Int. Immunol.13, 887–896 (2001). ArticleCASPubMed Google Scholar
Wilson, S. B. et al. Extreme TH1 bias of invariant Vα24JaQ T cells in type 1 diabetes. Nature391, 177–181 (1998).This paper provides evidence that diabetic patients have a reduced number of Vα24iT cells compared with non-diabetic siblings. ArticleCASPubMed Google Scholar
Shi, F. D. et al. Germ-line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA98, 6777–6782 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, B., Geng, Y. B. & Wang, C. R. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med.194, 313–320 (2001). ArticlePubMedPubMed Central Google Scholar
Jahng, A. W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med.194, 1789–1799 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ishikawa, H. et al. CD4+ Vα14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int. Immunol.12, 1267–1274 (2000). ArticleCASPubMed Google Scholar
Porcelli, S. A. & Modlin, R. L. The CD1 system: antigen-presenting molecules for T-cell recognition of lipids and glycolipids. Annu. Rev. Immunol.17, 297–329 (1999). ArticleCASPubMed Google Scholar
Behar, S. M., Dascher, C. C., Grusby, M. J., Wang, C. R. & Brenner, M. B. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J. Exp. Med.189, 1973–1980 (1999). ArticleCASPubMedPubMed Central Google Scholar
Apostolou, I. et al. Murine natural killer T (NKT) cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl Acad. Sci. USA96, 5141–5146 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dieli, F. et al. Resistance of natural killer T-cell-deficient mice to systemic Shwartzman reaction. J. Exp. Med.192, 1645–1652 (2000). ArticleCASPubMedPubMed Central Google Scholar
van der Vliet, H. J. et al. Potent expansion of human natural killer T cells using α-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J. Immunol. Methods247, 61–72 (2001). ArticleCASPubMed Google Scholar
Ohteki, T. et al. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T-cell receptor-α/β+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med.187, 967–972 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, K. et al. Generation of NK1.1+ T-cell antigen receptor α/β+ thymocytes associated with intact thymic structure. Proc. Natl Acad. Sci. USA94, 2472–2477 (1997). ArticleCASPubMedPubMed Central Google Scholar
Degermann, S., Sollami, G. & Karjalainen, K. Impaired NK1.1 T-cell development in mice transgenic for a T-cell receptor β-chain lacking the large, solvent-exposed Cβ FG loop. J. Exp. Med.190, 1357–1362 (1999). ArticleCASPubMedPubMed Central Google Scholar
Saubermann, L. J. et al. Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology119, 119–128 (2000). ArticleCASPubMed Google Scholar
Takeda, K. et al. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc. Natl Acad. Sci. USA97, 5498–5503 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kaneko, Y. et al. Augmentation of Vα14 NKT-cell-mediated cytotoxicity by interleukin-4 in an autocrine mechanism resulting in the development of concanavalin-A-induced hepatitis. J. Exp. Med.191, 105–114 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sonoda, K. H. et al. NK T-cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J. Immunol.166, 42–50 (2001). ArticleCASPubMed Google Scholar
Seino, K. I. et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc. Natl Acad. Sci. USA98, 2577–2581 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ikehara, Y. et al. CD4+ Vα14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J. Clin. Invest.105, 1761–1767 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kumar, H., Belperron, A., Barthold, S. W. & Bockenstedt, L. K. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J. Immunol.165, 4797–4801 (2000). ArticleCASPubMed Google Scholar
Kawakami, K. et al. Activation of Vα14+ natural killer T cells by α-galactosylceramide results in development of TH1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun.69, 213–220 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kawakami, K. et al. Enhanced γ-interferon production through activation of Vα14+ natural killer T cells by α-galactosylceramide in interleukin-18-deficient mice with systemic cryptococcosis. Infect. Immun.69, 6643–6650 (2001). ArticleCASPubMedPubMed Central Google Scholar
Duthie, M. S. et al. During Trypanosoma cruzi infection, CD1d-restricted NK T cells limit parasitemia and augment the antibody response to a glycophosphoinositol-modified surface protein. Infect. Immun.70, 36–48 (2002). ArticleCASPubMedPubMed Central Google Scholar