Roles of Fc receptors in autoimmunity (original) (raw)
Sinclair, N. R., Lees, R. K. & Elliott, E. V. Role of the Fc fragment in the regulation of the primary immune response. Nature220, 1048–1049 (1968). ArticleCASPubMed Google Scholar
Sinclair N. R. Fc-signalling in the modulation of immune responses by passive antibody. Scand. J. Immunol.53, 322–330 (2001).This paper provides an historical overview of antibody-mediated activation and suppression of immune responses. ArticleCASPubMed Google Scholar
Paraskevas, F., Lee, S. T., Orr, K. B. & Israels, G. A receptor for Fc on mouse B lymphocytes. J. Immunol.108, 1319–1327 (1972). CASPubMed Google Scholar
Amigorena, S. & Bonnerot, C. Fc receptor signaling and trafficking: a connection for antigen processing. Immunol. Rev.172, 279–284 (1999). ArticleCASPubMed Google Scholar
Fridman, W. H. et al. Structural bases of Fcγ receptor functions. Immunol. Rev.125, 49–76 (1992). ArticleCASPubMed Google Scholar
Durum, S. K., Lee, C.-K., Geiman, T. M., Murphy, W. J. & Muegge, K. CD16 cross-linking blocks rearrangement of the TCRβ locus and development of αβ T cells and induces development of NK cells from thymic progenitors. J. Immunol.161, 3325–3329 (1998). CASPubMed Google Scholar
de Andres, B., Mueller, A. L., Verbeek, S., Sandor, M. & Lynch, R. G. A regulatory role for Fcγ receptors CD16 and CD32 in the development of murine B cells. Blood92, 2823–2829 (1998). CASPubMed Google Scholar
Kato, I., Takai, T. & Kudo, A. FcγRIIB negatively regulates the pre-BCR signaling for apoptosis. J. Immunol.168, 629–634 (2002). ArticleCASPubMed Google Scholar
Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J. V. FcR γ-chain deletion results in pleiotrophic effector-cell defects. Cell76, 519–529 (1994).Describes multiple immune-system defects in FcRγ-deficient mice. ArticleCASPubMed Google Scholar
Sylvestre, D. L. & Ravetch, J. V. Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science265, 1095–1098 (1994).Opens the discussion on the dominant role of Fc receptors over complement. ArticleCASPubMed Google Scholar
Clynes, R. & Ravetch, J. V. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity3, 21–26 (1995). ArticleCASPubMed Google Scholar
Clynes, R. et al. Modulation of immune-complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med.189, 179–186 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sylvestre, D. L. & Ravetch, J. V. A dominant role for mast-cell Fc receptors in the Arthus reaction. Immunity5, 387–390 (1996). ArticleCASPubMed Google Scholar
Hazenbos, W. L. W. et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in FcγRIII (CD16)-deficient mice. Immunity5, 181–188 (1996).The first description of the phenotypes of FcγRIII-deficient mice. ArticleCASPubMed Google Scholar
Ujike, A. et al. Modulation of IgE-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG. J. Exp. Med.189, 1573–1579 (1999). ArticleCASPubMedPubMed Central Google Scholar
Barnes, N. et al. FcγRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity16, 379–389 (2002). ArticleCASPubMed Google Scholar
Ioan-Facsinay, A. et al. FcγRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity16, 391–402 (2002).References16and17describe several noteworthy aspects of FcγRI-deficient mice. ArticleCASPubMed Google Scholar
Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J. V. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature379, 346–349 (1996).The first description of FcγRIIb-deficient mice, showing that FcγRIIb is an inhibitory receptorin vivo. ArticleCASPubMed Google Scholar
van de Winkel, J. G. J. & Capel, P. J. A. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol. Today14, 215–221 (1993). ArticleCASPubMed Google Scholar
Shibuya, A. et al. Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nature Immunol.1, 441–446 (2000). ArticleCAS Google Scholar
Launay, P. et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger's disease). Evidence for pathogenic soluble receptor–IgA complexes in patients and CD89 transgenic mice. J. Exp. Med.191, 1999–2009 (2000). ArticleCASPubMedPubMed Central Google Scholar
McDonald, K. J., Cameron, A. J., Allen, J. M. & Jardine, A. G. Expression of Fcα/μ receptor by human mesangial cells: a candidate receptor for immune-complex deposition in IgA nephropathy. Biochem. Biophys. Res. Commun.290, 438–442 (2002). ArticleCASPubMed Google Scholar
Davis, R. S., Wang, Y.-H., Kubagawa, H. & Cooper, M. D. Identification of a family of Fc-receptor homologs with preferential B-cell expression. Proc. Natl Acad. Sci. USA98, 9772–9777 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hatzivassiliou, G. et al. IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome 1q21 abnormalities in B-cell malignancy. Immunity14, 277–289 (2001). ArticleCASPubMed Google Scholar
Rigby, L. J. et al. Domain one of the high-affinity IgE receptor, FcɛRI, regulates binding to IgE through its interface with domain two. J. Biol. Chem.275, 9664–9672 (2000). ArticleCASPubMed Google Scholar
Rigby, L. J. et al. Monoclonal antibodies and synthetic peptides define the active site of FcγRI and a potential receptor antagonist. Allergy55, 609–619 (2000). ArticleCASPubMed Google Scholar
Sondermann, P., Huber, R., Oosthuizen, V. & Jacob, U. The 3.2-Å crystal structure of the human IgG1 Fc fragment–FcγRIII complex. Nature406, 267–273 (2000).Detailed three-dimensional structural analysis of the FcγR–IgG interaction, providing an insight into the unique binding stoichiometry of FcγRs and IgG. ArticleCASPubMed Google Scholar
Takai, T. & Ravetch, J. V. In Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity (eds van de Winkel, J. G. J. & Hogarth, P. M.) 37–48 (Kluwer Academic Publishers, Netherlands, 1998). Book Google Scholar
Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science290, 84–89 (2000).Provides an intriguing overview of inhibitory receptors in Fc- and NK-receptor families. ArticleCASPubMed Google Scholar
Takai, T. & Ono, M. Activating and inhibitory nature of the murine paired immunoglobulin-like receptor family. Immunol. Rev.181, 215–222 (2001). ArticleCASPubMed Google Scholar
Ravetch, J. V. & Clynes, R. A. Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol.16, 421–432 (1998).An excellent review of the crucial roles of Fc receptors in immunity. ArticleCASPubMed Google Scholar
Wang, A. V., Scholl, P. R. & Geha, R. S. Physical and functional association of the high-affinity immunoglobulin G receptor (FcγRI) with the kinases Hck and Lyn. J. Exp. Med.180, 1165–1170 (1994). ArticleCASPubMed Google Scholar
Ghazizadeh, S., Bolen, J. B. & Fleit, H. B. Physical and functional association of Src-related protein tyrosine kinases with FcγRII in monocytic THP-1 cells. J. Biol. Chem.269, 8878–8884 (1994). CASPubMed Google Scholar
Pricop, L. et al. Differential modulation of stimulatory and inhibitory Fcγ receptors on human monocytes by TH1 and TH2 cytokines. J. Immunol.166, 531–537 (2001). ArticleCASPubMed Google Scholar
Kwiatkowska, K. & Sobota, A. The clustered Fcγ receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. Eur. J. Immunol.31, 989–998 (2001). ArticleCASPubMed Google Scholar
Muta, T. et al. A 13-amino-acid motif in the cytoplasmic domain of FcγRIIB modulates B-cell-receptor signalling. Nature368, 70–73 (1994). ArticleCASPubMed Google Scholar
D'Ambrosio, D. et al. Recruitment and activation of PTP-1C in negative regulation of antigen-receptor signaling by FcγRIIB1. Science268, 293–297 (1995). ArticleCASPubMed Google Scholar
Damen, J. E. et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase. Proc. Natl Acad. Sci. USA93, 1689–1693 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ono, M., Bolland, S., Tempst, P. & Ravetch, J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature383, 263–266 (1996).Demonstrates, for the first time, the recruitment of SHIP to FcγRIIB. ArticleCASPubMed Google Scholar
Ono, M. et al. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell90, 293–301 (1997). ArticleCASPubMed Google Scholar
Fong, D. C. et al. Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated FcγRIIB during negative regulation of IgE-dependent mouse mast-cell activation. Immunol. Lett.54, 83–91 (1996). ArticleCASPubMed Google Scholar
Gupta, N. et al. Negative signaling pathways of the killer-cell inhibitory receptor and FcγRIIb1 require distinct phosphatases. J. Exp. Med.186, 473–478 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, K., Brauweiler, A. & Cambier, J. C. Effects of Src homology domain 2 (SH2)-containing inositol phosphatase (SHIP), SH2-containing phosphotyrosine phosphatase (SHP)-1, and SHP-2 SH2 decoy proteins on FcγRIIB1-effector interactions and inhibitory functions. J. Immunol.164, 631–638 (2000). ArticleCASPubMed Google Scholar
Scharenberg, A. M. et al. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J.17, 1961–1972 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fluckiger, A. C. et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell-receptor activation. EMBO J.17, 1973–1985 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bolland, S., Pearse, R. N., Kurosaki, T. & Ravetch, J. V. SHIP modulates immune-receptor responses by regulating membrane association of Btk. Immunity8, 509–516 (1998). ArticleCASPubMed Google Scholar
Liu, Q. et al. The inositol polyphosphate 5-phosphatase SHIP is a crucial negative regulator of B-cell antigen-receptor signaling. J. Exp. Med.188, 1333–1342 (1998). ArticleCASPubMedPubMed Central Google Scholar
Aman, M. J., Lamkin, T. D., Okada, H., Kurosaki, T. & Ravichandran, K. S. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J. Biol. Chem.273, 33922–33928 (1998). ArticleCASPubMed Google Scholar
Helgason, C. D. et al. A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of B lymphocytes in _Ship_−/− mice. J. Exp. Med.191, 781–794 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tridandapani, S. et al. Recruitment and phosphorylation of SH2-containing inositol phosphatase and Shc to the B-cell Fcγ immunoreceptor tyrosine-based inhibition motif peptide motif. Mol. Cell. Biol.17, 4305–4311 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tamir, I. et al. The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B cells. Immunity12, 347–358 (2000). ArticleCASPubMed Google Scholar
Tridandapani, S., Chacko, G. W., Van Brocklyn, J. R. & Coggeshall, K. M. Negative signaling in B cells causes reduced Ras activity by reducing Shc–Grb2 interactions. J. Immunol.158, 1125–1132 (1997). CASPubMed Google Scholar
Hashimoto, A. et al. Involvement of guanosine triphosphatases and phospholipase C-γ2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B-cell antigen receptor. J. Exp. Med.188, 1287–1295 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yamanashi, Y. et al. Role of the rasGAP-associated docking protein p62dok in negative regulation of B-cell-receptor-mediated signaling. Genes Dev.14, 11–16 (2000).Demonstrates the crucial role of Dok in FcγRIIb-mediated B-cell inhibition using Dok-deficient mice. CASPubMedPubMed Central Google Scholar
Hippen, K. L. et al. FcγRIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD19 dephosphorylation. Immunity7, 49–58 (1997). ArticleCASPubMed Google Scholar
Ashman, R. F., Peckham, D. & Stunz, L. L. Fc receptor off-signal in the B cell involves apoptosis. J. Immunol.157, 5–11 (1996). CASPubMed Google Scholar
Pearse, R. N. et al. SHIP recruitment attenuates FcγRIIB-induced B-cell apoptosis. Immunity10, 753–760 (1999).Introduces the unexpected role of FcγRIIB in inducing apoptosis in B cells. ArticleCASPubMed Google Scholar
Regnault, A. et al. Fcγ-receptor-mediated induction of dendritic-cell maturation and major histocompatibility complex class-I-restricted antigen presentation after immune-complex internalization. J. Exp. Med.189, 371–380 (1999).Provides evidence of the important role of FcγRs on dendritic cells for the enhancement of antigen presentation. ArticleCASPubMedPubMed Central Google Scholar
Booth, J. W., Kim, M.-K., Jankowski, A., Schreiber, A. D. & Grinstein, S. Contrasting requirements for ubiquitylation during Fc-receptor-mediated endocytosis and phagocytosis. EMBO J.21, 251–258 (2002). ArticleCASPubMedPubMed Central Google Scholar
Machy, P., Serre, K. & Leserman, L. Class-I-restricted presentation of exogenous antigen acquired by Fcγ-receptor-mediated endocytosis is regulated in dendritic cells. Eur. J. Immunol.30, 848–857 (2000). ArticleCASPubMed Google Scholar
Hamano, Y., Arase, H., Saisho, H. & Saito, T. Immune complex and Fc-receptor-mediated augmentation of antigen presentation for in vivo TH-cell responses. J. Immunol.164, 6113–6119 (2000). ArticleCASPubMed Google Scholar
Watanabe, N. et al. Mast cells induce autoantibody-mediated vasculitis syndrome through tumor-necrosis factor production upon triggering Fcγ receptors. Blood94, 3855–3863 (1999). CASPubMed Google Scholar
Hazenbos, W. L. W. et al. Murine IgG1 complexes trigger immune effector functions predominantly via FcγRIII (CD16). J. Immunol.161, 3026–3032 (1998). CASPubMed Google Scholar
Clynes, R., Dumitru, C. & Ravetch, J. V. Uncoupling of immune-complex formation and kidney damage in autoimmune glomerulonephritis. Science279, 1052–1054 (1998). ArticleCASPubMed Google Scholar
Suzuki, Y. et al. Distinct contribution of Fc receptors and angiotensin-II-dependent pathways in anti-GBM glomerulonephritis. Kidney Int.54, 1166–1174 (1998). ArticleCASPubMed Google Scholar
Dombrowicz, D. et al. Absence of FcɛRI α-chain results in upregulation of FcγRIII-dependent mast-cell degranulation and anaphylaxis. Evidence of competition between FcɛRI and FcγRIII for limiting amounts of FcR β- and γ-chain. J. Clin. Invest.99, 915–925 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dombrowicz, D., Flamand, V., Brigman, K. K., Koller, B. H. & Kinet, J.-P. Abolition of anaphylaxis by targeted disruption of the high-affinity immunoglobulin E receptor α-chain gene. Cell75, 969–976 (1993). ArticleCASPubMed Google Scholar
Schiller, C. et al. Mouse FcγRII is a negative regulator of FcγRIII in IgG immune-complex-triggered inflammation but not in autoantibody-induced hemolysis. Eur. J. Immunol.30, 481–490 (2000). ArticleCASPubMed Google Scholar
Kleinau, S., Martinsson, P. & Heyman, B. Induction and suppression of collagen-induced arthritis is dependent on distinct Fcγ receptors. J. Exp. Med.191, 1611–1616 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jiang, Y. et al. Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics51, 429–435 (2000). ArticleCASPubMed Google Scholar
Pritchard, N. R. et al. Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcγRII. Curr. Biol.10, 227–230 (2000). ArticleCASPubMed Google Scholar
Courtenay, J. S., Dallman, M. J., Dayan, A. D., Marten, A. & Mosedale, B. Immunization against heterologous type II collagen induces arthritis in mice. Nature283, 666–668 (1980). ArticleCASPubMed Google Scholar
Svensson, L., Jirholt, J., Holmdahl, R. & Jansson, L. B-cell-deficient mice do not develop type II collagen-induced arthritis (CIA). Clin. Exp. Immunol.111, 521–526 (1998). ArticleCASPubMedPubMed Central Google Scholar
Stuart, J. M. & Dixon, F. J. (1983) Serum transfers of collagen-induced arthritis in mice. J. Exp. Med.158, 378–392 (1983). ArticleCASPubMed Google Scholar
Wooley, P. H., Luthra, H. S., Stuart, J. M. & David, S. C. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I-region) linkage and antibody correlates. J. Exp. Med.154, 688–700 (1981). ArticleCASPubMed Google Scholar
Holmdahl, R. et al. Type II collagen autoimmunity in animals and provocations leading to arthritis. Immunol. Rev.118, 193–232 (1990). ArticleCASPubMed Google Scholar
Savage, C. O., Pusey, C. D., Bowman, C., Rees, A. J. & Lockwood, C. M. Antiglomerular basement membrane antibody-mediated disease in the British Isles. Br Med J (Clin Res Ed)292, 301–304 (1986). ArticleCAS Google Scholar
Nakamura, A. et al. Fcγ-receptor-IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J. Exp. Med.191, 899–906 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity13, 277–285 (2000).References12, 71, 72, 82and83describe the direct relationship of FcγRIIb defects with different types of autoimmunity. ArticleCASPubMed Google Scholar
Bolland, S., Yim, Y.-S., Tus, K., Wakeland, E. K. & Ravetch, J. V. Genetic modifiers of systemic lupus erythematosus in FcγRIIB−/− mice. J. Exp. Med.195, 1167–1174 (2002). ArticleCASPubMedPubMed Central Google Scholar
Luan, J. J. et al. Defective FcγRII gene expression in macrophages of NOD mice: genetic linkage with up-regulation of IgG1 and IgG2b in serum. J. Immunol.157, 4707–4716 (1996). CASPubMed Google Scholar
Jordan, M. A. et al. Linkage analysis of systemic lupus erythematosus induced in diabetes-prone nonobese diabetic mice by Mycobacterium bovis. J. Immunol.165, 1673–1684 (2000). ArticleCASPubMed Google Scholar
Myhr, K. M., Raknes, G., Nyland, H. & Vedeler, C. Imunoglobulin G Fc-receptor (FcγR) IIA and IIIB polymorphisms related to disability in MS. Neurology52, 1771–1776 (1999). ArticleCASPubMed Google Scholar
Abdul-Majid, K.-B. et al. Fc receptors are critical for autoimmune inflammatory damage to the central nervous system in experimental autoimmune encephalomyelitis. Scand. J. Immunol.55, 70–81 (2002).Indicates the importance of FcγRs to T-cell-mediated autoimmunity, such as EAE. ArticleCASPubMed Google Scholar
Bakker, A. B. H. et al. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity13, 345–353 (2000). ArticleCASPubMed Google Scholar
Tomasello, E. et al. Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity13, 355–364 (2000). ArticleCASPubMed Google Scholar
Kyogoku, C. et al. Association of Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to the genetic susceptibility to SLE. Arthritis Rheum.46, 1242–1254 (2002).DescribesFcγRIIBpolymorphisms and their relation to SLE. ArticleCASPubMed Google Scholar
Salmon, E. & Kimberly, R. P. In The Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity (eds van de Winkel, J. G. J. & Hogarth, P. M.) 267–278 (Kluwer Academic Publishers, Great Britain, 1998). Book Google Scholar
Salmon, J. E. & Pricop, L. Human receptors for immunoglobulin G: key elements in the pathogenesis of rheumatic disease. Arthritis Rheum.44, 739–750 (2001). ArticleCASPubMed Google Scholar
Duits, A. J. et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum.38, 1832–1836 (1995). ArticleCASPubMed Google Scholar
Salmon, J. E. et al. FcγRIIA alleles are heritable risk factors for lupus nephritis in African Americans. J. Clin. Invest.97, 1348–1354 (1996). ArticleCASPubMedPubMed Central Google Scholar
Song, Y. W. et al. Abnormal distribution of Fcγ receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum.41, 421–426 (1998). ArticleCASPubMed Google Scholar
Koene, H. R. et al. The FcγRIIIA–158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum.41, 1813–1818 (1998). ArticleCASPubMed Google Scholar
Wu, J. et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J. Clin. Invest.100, 1059–1070 (1997). ArticleCASPubMedPubMed Central Google Scholar
Salmon, J. E., Kimberly, R. P., Gibofsky, A. & Fotino, M. Defective mononuclear phagocyte function in systemic lupus erythematosus: dissociation of Fc-receptor ligand binding and internalization. J. Immunol.133, 2525–2531 (1984). CASPubMed Google Scholar
Hatta, Y. et al. Association of Fcγ receptor IIIB, but not of Fcγ receptor IIA and IIIA, polymorphisms with systemic lupus erythematosus in Japanese. Genes Immun.1, 53–60 (1999). ArticleCASPubMed Google Scholar
Nieto, A. et al. Involvement of Fcγ receptor IIIA genotypes in susceptibility to rheumatoid arthritis. Arthritis Rheum.43, 735–739 (2000). ArticleCASPubMed Google Scholar
Wainstein, E. et al. The neutrophil FcγRIIIB is associated with renal dysfunction in Wegener's granulomatosis (WG). Arthritis Rheum.39, S210 (1996). Google Scholar
Vedeler, C. A., Raknes, G., Myhr, K. M. & Nyland, H. IgG Fc-receptor polymorphisms in Guillain-Barré syndrome. Neurology55, 705–707 (2000). ArticleCASPubMed Google Scholar
Botto, M. et al. FγRIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin. Exp. Immunol.104, 264–268 (1996). ArticleCASPubMedPubMed Central Google Scholar
Oh, M. et al. Frequency of the _FcγRIIIA_–158F allele in African American patients with systemic lupus erythematosus. J. Rheumatol.26, 1486–1489 (1999). CASPubMed Google Scholar
Tax, W. J. M., Willems, H. W., Reekers, P. P. M., Capel, P. J. A. & Koene, R. A. P. Polymorphism in mitogenic effect of IgG1 monoclonal antibodies against T3 antigen on human T cells. Nature304, 445–447 (1983). ArticleCASPubMed Google Scholar
Lalezari, P. In Immunohaematology (eds Engelfreet, C. P., Van Loghem, J. J., Kr, A. E. G.) 33 (Elsevier Science, Amsterdam, 1984). Google Scholar
Salmon, J. E., Edberg, J. C. & Kimberly, R. P. Fcγ receptor III on human neutrophils. Allelic variants have functionally distinct capacities. J. Clin. Invest.85, 1287–1295 (1990). ArticleCASPubMedPubMed Central Google Scholar
Yasuda, K., Sugita, N., Yamamoto, K., Kobayashi, T. & Yoshie, H. Seven single nucleotide substitutions in human Fcγ receptor IIB gene. Tissue Antigens58, 339–342 (2001). ArticleCASPubMed Google Scholar
Gelfand, E. W. Antibody-directed therapy: past, present and future. J. Allergy Clin. Immunol.108, S111–S116 (2001). ArticleCASPubMed Google Scholar
Samuelsson, A., Towers, T. & Ravetch, J. V. Anti-inflammaotry activity of IVIG mediated through the inhibitory Fc receptor. Science291, 484–486 (2001).Describes the intriguing observation of FcγRIIb upregulation in macrophages after IVIG treatment in mice. ArticleCASPubMed Google Scholar
Wagle, N. M., Faassen, A. E., Kim, J. H. & Pierce, S. K. Regulation of B-cell-receptor-mediated MHC class II antigen processing by FcγRIIB1. J. Immunol.162, 2732–2740 (1999). CASPubMed Google Scholar
Rudge, E. R., Cutler, A. J., Pritchard, N. R. & Smith, K. G. C. Interleukin-4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcγRII-mediated B-cell suppression. J. Exp. Med.195, 1079–1085 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dombrowicz, D. et al. Allergy-associated FcRβ is a molecular amplifier of IgE- and IgG-mediated in vivo responses. Immunity8, 517–529 (1998). ArticleCASPubMed Google Scholar
Yu, P., Kosco-Vilbois, M., Richards, M., Kohler, G. & Lamers, M. C. Negative feedback regulation of IgE synthesis by murine CD23. Nature369, 753–756 (1994). ArticleCASPubMed Google Scholar
Israel, E. J., Wilsker, D. F., Hayes, K. C., Schoenfeld, D. & Simister, N. E. Increased clearance of IgG in mice that lack β2-microglobulin: possible protective role of FcRn. Immunology89, 573–578 (1996). ArticleCASPubMedPubMed Central Google Scholar
Christianson, G. J. et al. β2-microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J. Immunol.159, 4781–4792 (1997). CASPubMed Google Scholar
Shimada, S. et al. Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J. Immunol.163, 5367–5373 (1999). CASPubMed Google Scholar
de Haas, M., Kleijer, M., van Zwieten, R., Roos, D. & von dem Borne, A. E. Neutrophil FcγRIIIb deficiency, nature, and clinical consequences: a study of 21 individuals from 14 families. Blood86, 2403–2413 (1995). CASPubMed Google Scholar
van de Winkel, J. G., de Wit, T. P., Ernst, L. K., Capel, P. J. & Ceuppens, J. L. Molecular basis for a familial defect in phagocyte expression of IgG receptor I (CD64). J. Immunol.154, 2896–2903 (1995). CASPubMed Google Scholar