Emerging roles of PPARS in inflammation and immunity (original) (raw)
Desvergne, B. & Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev20, 649–688 (1999). CASPubMed Google Scholar
Clark, RB. The role of PPARs in inflammation and immunity. J Leukoc Biol71, 388–400 (2002). CASPubMed Google Scholar
Chinetti, G. et al. Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages. J. Biol. Chem.273, 25573–25580 (1998). ArticleCASPubMed Google Scholar
Jones, DC, Ding, X & Daynes, RA Nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is expressed in resting murine lymphocytes. The PPARα in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem277, 6838–6845 (2002).This paper, together with reference83, was the first to describe the presence of PPARα in lymphocytes and to establish a role for this nuclear receptor in the regulation of cytokine production by activated T cells. ArticleCASPubMed Google Scholar
Gosset, P. et al. Peroxisome proliferator-activated receptor γ activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol.31, 2857–2865 (2001).This paper describes a role for PPARγ in the regulation of dendritic-cell maturation, and cytokine and chemokine production. ArticleCASPubMed Google Scholar
Harris, S. G. & Phipps, R. P. The nuclear receptor PPARγ is expressed by mouse T lymphocytes and PPARγ agonists induce apoptosis. Eur. J. Immunol.31, 1098–1105 (2001). ArticleCASPubMed Google Scholar
Alleva, D. G. et al. Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-γ: counter-regulatory activity by IFN-γ. J. Leukocyte Biol.71, 677–685 (2002). CASPubMed Google Scholar
Setoguchi, K. et al. Peroxisome proliferator-activated receptor-γ haploinsufficiency enhances B-cell proliferative responses and exacerbates experimentally induced arthritis. J. Clin. Invest.108, 1667–1675 (2001).This study usedPparγ+/−mice to describe a role for PPARγ in B-cell physiology. It showed that these mice have increased levels of circulating IgG and IgM and are more susceptible to autoimmune diseases. ArticleCASPubMedPubMed Central Google Scholar
Padilla, J., Kaur, K., Cao, H. J., Smith, T. J. & Phipps, R. P. Peroxisome proliferator activator receptor-γ agonists and 15-deoxy-Δ12,14-PGJ2 induce apoptosis in normal and malignant B-lineage cells. J. Immunol.165, 6941–6948 (2000).This was the first report to describe the presence of PPARγ in B cells. ArticleCASPubMed Google Scholar
Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature347, 645–650 (1990). ArticleCASPubMed Google Scholar
Corton, J. C., Anderson, S. P. & Stauber, A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Ann. Rev. Pharmacol. Toxicol.40, 491–518 (2000). ArticleCAS Google Scholar
Gonzalez, F. J. The role of peroxisome proliferator-activated receptor-α in peroxisome proliferation, physiological homeostasis and chemical carcinogenesis. Adv. Exp. Med. Biol.422, 109–125 (1997). ArticleCASPubMed Google Scholar
Dreyer, C. et al. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell68, 879–887 (1992). ArticleCASPubMed Google Scholar
Laudet, V., Hanni, C., Coll, J., Catzeflis, F. & Stehelin, D. Evolution of the nuclear receptor gene superfamily. EMBO J.11, 1003–1013 (1992). ArticleCASPubMedPubMed Central Google Scholar
Miyata, K. S., McCaw, S. E., Marcus, S. L., Rachubinski, R. A. & Capone, J. P. The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo. Gene148, 327–330 (1994). ArticleCASPubMed Google Scholar
Tugwood, J. D. et al. The mouse peroxisome proliferator-activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J.11, 433–439 (1992). ArticleCASPubMedPubMed Central Google Scholar
Mascaro, C. et al. Characterization of a response element for peroxisomal proliferator-activated receptor (PPRE) in human muscle-type carnitine palmitoyltransferase I. Adv. Exp. Med. Biol.466, 79–85 (1999). ArticleCASPubMed Google Scholar
Green, S. & Wahli, W. Peroxisome proliferator-activated receptors: finding the orphan a home. Mol. Cell. Endocrinol.100, 149–153 (1994). ArticleCASPubMed Google Scholar
IJpenberg, A., Jeannin, E., Wahli, W. & Desvergne, B. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J. Biol. Chem.272, 20108–20117 (1997). ArticleCASPubMed Google Scholar
Gervois, P. et al. Fibrates increase human REV-ERBα expression in liver via a novel peroxisome proliferator-activated receptor response element. Mol. Endocrinol.13, 400–409 (1999). CASPubMed Google Scholar
Zhu, Y., Qi, C., Calandra, C., Rao, M. S. & Reddy, J. K. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor-γ. Gene Expr.6, 185–195 (1996). CASPubMed Google Scholar
Zamir, I., Zhang, J. & Lazar, M. A. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev.11, 835–846 (1997). ArticleCASPubMed Google Scholar
Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell89, 341–347 (1997). ArticleCASPubMed Google Scholar
Dowell, P. et al. Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor-α-interacting protein. J. Biol. Chem.274, 15901–15907 (1999). ArticleCASPubMed Google Scholar
Shi, Y., Hon, M. & Evans, R. M. The peroxisome proliferator-activated receptor-δ, an integrator of transcriptional repression and nuclear-receptor signaling. Proc. Natl Acad. Sci. USA99, 2613–2618 (2002). ArticleCASPubMedPubMed Central Google Scholar
DiRenzo, J. et al. Peroxisome proliferator-activated receptors and retinoic-acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators and corepressors. Mol. Cell. Biol.17, 2166–2176 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dowell, P. et al. p300 functions as a coactivator for the peroxisome proliferator-activated receptor-α. J. Biol. Chem.272, 33435–33443 (1997). ArticleCASPubMed Google Scholar
Zhu, Y., Qi, C., Jain, S., Rao, M. S. & Reddy, J. K. Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J. Biol. Chem.272, 25500–25506 (1997). ArticleCASPubMed Google Scholar
Yuan, C. X., Ito, M., Fondell, J. D., Fu, Z. Y. & Roeder, R. G. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl Acad. Sci. USA95, 7939–7944 (1998). ArticleCASPubMedPubMed Central Google Scholar
Xu, H. E. et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell3, 397–403 (1999). ArticleCASPubMed Google Scholar
Gottlicher, M., Widmark, E., Li, Q. & Gustafsson, J. A. Fatty acids activate a chimera of the clofibric-acid-activated receptor and the glucocorticoid receptor. Proc. Natl Acad. Sci. USA89, 4653–4657 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kliewer, S. A. et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor-γ and promotes adipocyte differentiation. Cell83, 813–819 (1995). ArticleCASPubMed Google Scholar
Shibata, T. et al. 15-deoxy-Δ12,14-prostaglandin J2. A prostaglandin D2 metabolite generated during inflammatory processes. J. Biol. Chem.277, 10459–10466 (2002). ArticleCASPubMed Google Scholar
Forman, B. M., Chen, J. & Evans, R. M. Hypolipidemic drugs, polyunsaturated fatty acids and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc. Natl Acad. Sci. USA94, 4312–4317 (1997). ArticleCASPubMedPubMed Central Google Scholar
Leibowitz, M. D. et al. Activation of PPARδ alters lipid metabolism in db/db mice. Fed. Eur. Biochem. Soc. Letts473, 333–336 (2000). ArticleCAS Google Scholar
Oliver, W. R. Jr et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA98, 5306–5311 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vosper, H. et al. The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J. Biol. Chem.276, 44258–44265 (2001). ArticleCASPubMed Google Scholar
Delerive, P., Fruchart, J. C. & Staels, B. Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol.169, 453–459 (2001). ArticleCASPubMed Google Scholar
Poynter, M. E. & Daynes, R. A. Peroxisome proliferator-activated receptor-α activation modulates cellular redox status, represses nuclear factor-κB signaling and reduces inflammatory cytokine production in aging. J. Biol. Chem.273, 32833–32841 (1998). ArticleCASPubMed Google Scholar
Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature391, 79–82 (1998). ArticleCASPubMed Google Scholar
Li, M., Pascual, G. & Glass, C. K. Peroxisome proliferator-activated receptor-γ-dependent repression of the inducible nitric oxide synthase gene. Mol. Cell. Biol.20, 4699–4707 (2000). ArticleCASPubMedPubMed Central Google Scholar
Delerive, P. et al. Peroxisome proliferator-activated receptor-α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J. Biol. Chem.274, 32048–32054 (1999). ArticleCASPubMed Google Scholar
Delerive, P. et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circulation Res.85, 394–402 (1999). ArticleCASPubMed Google Scholar
Delerive, P., Gervois, P., Fruchart, J. C. & Staels, B. Induction of IκBα expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-α activators. J. Biol. Chem.275, 36703–36707 (2000). ArticleCASPubMed Google Scholar
Desreumaux, P. et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor-γ (PPARγ) heterodimer. A basis for new therapeutic strategies. J. Exp. Med.193, 827–838 (2001). ArticleCASPubMedPubMed Central Google Scholar
Devchand, P. R. et al. The PPARα–leukotriene-B4 pathway to inflammation control. Nature384, 39–43 (1996).A key paper that usedPparα−/−mice to describe a role for PPARα in the regulation of inflammation. ArticleCASPubMed Google Scholar
Field, C. J., Johnson, I. R. & Schley, P. D. Nutrients and their role in host resistance to infection. J. Leukocyte Biol.71, 16–32 (2002). CASPubMed Google Scholar
Grimble, R. F. Nutritional modulation of immune function. Proc. Nutr. Soc.60, 389–397 (2001). ArticleCASPubMed Google Scholar
Spencer, N. F., Poynter, M. E., Hennebold, J. D., Mu, H. H. & Daynes, R. A. Does DHEAS restore immune competence in aged animals through its capacity to function as a natural modulator of peroxisome activities? Ann. NY Acad. Sci.774, 200–216 (1995). ArticleCASPubMed Google Scholar
Weksler, M. E. Immune senescence and adrenal steroids: immune dysregulation and the action of dehydroepiandrosterone (DHEA) in old animals. Eur. J. Clin. Pharmacol.45, S21–S23 (1993). ArticleCASPubMed Google Scholar
Jump, D. B. & Clarke, S. D. Regulation of gene expression by dietary fat. Ann. Rev. Nutr.19, 63–90 (1999). ArticleCAS Google Scholar
Peters, J. M. et al. Peroxisome proliferator-activated receptor-α required for gene induction by dehydroepiandrosterone-3 β-sulfate. Mol. Pharmacol.50, 67–74 (1996). CASPubMed Google Scholar
Staels, B. et al. Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators. Nature393, 790–793 (1998). ArticleCASPubMed Google Scholar
Jiang, C., Ting, A. T. & Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature391, 82–86 (1998). ArticleCASPubMed Google Scholar
Kippenberger, S. et al. Activators of peroxisome proliferator-activated receptors protect human skin from ultraviolet-B-light-induced inflammation. J. Invest. Dermatol.117, 1430–1436 (2001). ArticleCASPubMed Google Scholar
Combs, C. K., Bates, P., Karlo, J. C. & Landreth, G. E. Regulation of β-amyloid-stimulated proinflammatory responses by peroxisome proliferator-activated receptor-α. Neurochem. Int.39, 449–457 (2001). ArticleCASPubMed Google Scholar
Gupta, R. A. et al. Activation of peroxisome proliferator-activated receptor γ suppresses nuclear factor-κB-mediated apoptosis induced by Helicobacter pylori in gastric epithelial cells. J. Biol. Chem.276, 31059–31066 (2001). ArticleCASPubMed Google Scholar
Willson, T. M., Brown, P. J., Sternbach, D. D. & Henke, B. R. The PPARs: from orphan receptors to drug discovery. J. Med. Chem.43, 527–550 (2000). ArticleCASPubMed Google Scholar
Chawla, A. et al. PPAR-γ-dependent and -independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Med.7, 48–52 (2001).This paper used macrophages derived fromPparγ−/−embryonic stem cells to describe PPARγ-independent and -dependant effects on the regulation of gene transcription. ArticleCASPubMed Google Scholar
Castrillo, A., Diaz-Guerra, M. J., Hortelano, S., Martin-Sanz, P. & Bosca, L. Inhibition of IκB kinase and IκB phosphorylation by 15-deoxy-Δ12,14-prostaglandin J2 in activated murine macrophages. Mol. Cell. Biol.20, 1692–1698 (2000). ArticleCASPubMedPubMed Central Google Scholar
Straus, D. S. et al. 15-deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc. Natl Acad. Sci. USA97, 4844–4849 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rival, Y. et al. PPARα and PPARδ activators inhibit cytokine-induced nuclear translocation of NF-κB and expression of VCAM-1 in EAhy926 endothelial cells. Eur. J. Pharmacol.435, 143–151 (2002). ArticleCASPubMed Google Scholar
Michalik, L. et al. Impaired skin-wound healing in peroxisome proliferator-activated receptor (PPAR)α and PPARβ mutant mice. J. Cell Biol.154, 799–814 (2001). ArticleCASPubMedPubMed Central Google Scholar
Peters, J. M. et al. Growth, adipose, brain and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol. Cell. Biol.20, 5119–5128 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, M. et al. An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J. Immunol.166, 7128–7135 (2001). ArticleCASPubMed Google Scholar
Komuves, L. G. et al. Keratinocyte differentiation in hyperproliferative epidermis: topical application of PPARα activators restores tissue homeostasis. J. Invest. Dermatol.115, 361–367 (2000). ArticleCASPubMed Google Scholar
Tsutsumi-Ishii, Y. & Nagaoka, I. NF-κB-mediated transcriptional regulation of human β-defensin-2 gene following lipopolysaccharide stimulation. J. Leukocyte Biol.71, 154–162 (2002). CASPubMed Google Scholar
Wada, A. et al. _Helicobacter pylori_-mediated transcriptional regulation of the human β-defensin-2 gene requires NF-κB. Cell. Microbiol.3, 115–123 (2001). ArticleCASPubMed Google Scholar
Serghides, L. & Kain, K. C. Peroxisome proliferator-activated receptor-γ-retinoid X receptor agonists increase CD36-dependent phagocytosis of _Plasmodium falciparum_-parasitized erythrocytes and decrease malaria-induced TNF-α secretion by monocytes/macrophages. J. Immunol.166, 6742–6748 (2001). ArticleCASPubMed Google Scholar
Hermanowski-Vosatka, A. et al. PPARα agonists reduce 11β-hydroxysteroid dehydrogenase type 1 in the liver. Biochem. Biophys. Res. Commun.279, 330–336 (2000). ArticleCASPubMed Google Scholar
Berger, J. et al. Peroxisome proliferator-activated receptor-γ ligands inhibit adipocyte 11β-hydroxysteroid dehydrogenase type 1 expression and activity. J. Biol. Chem.276, 12629–12635 (2001). ArticleCASPubMed Google Scholar
Yau, J. L. et al. Lack of tissue glucocorticoid reactivation in 11β-hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments. Proc. Natl Acad. Sci. USA98, 4716–4721 (2001). ArticleCASPubMedPubMed Central Google Scholar
Morton, N. M. et al. Improved lipid and lipoprotein profile, hepatic insulin sensitivity and glucose tolerance in 11β-hydroxysteroid dehydrogenase type 1 null mice. J. Biol. Chem.276, 41293–41300 (2001). ArticleCASPubMed Google Scholar
Sandeep, T. C. & Walker, B. R. Pathophysiology of modulation of local glucocorticoid levels by 11β-hydroxysteroid dehydrogenases. Trends Endocrinol. Metab.12, 446–453 (2001). ArticleCASPubMed Google Scholar
Steinman, R. M., Pack, M. & Inaba, K. Dendritic-cell development and maturation. Adv. Exp. Med. Biol.417, 1–6 (1997). ArticleCASPubMed Google Scholar
Mellman, I., Turley, S. J. & Steinman, R. M. Antigen processing for amateurs and professionals. Trends Cell Biol.8, 231–237 (1998). ArticleCASPubMed Google Scholar
Faveeuw, C. et al. Peroxisome proliferator-activated receptor-γ activators inhibit interleukin-12 production in murine dendritic cells. Fed. Eur. Biochem. Soc. Letts486, 261–266 (2000). ArticleCAS Google Scholar
Yang, X. Y. et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor-γ (PPARγ) agonists. PPARγ co-association with transcription factor NFAT. J. Biol. Chem.275, 4541–4544 (2000).This paper was one of the first to show that the activation of PPARγ regulates T-cell cytokine production through the repression of NFAT. ArticleCASPubMed Google Scholar
Wang, P. et al. Inhibition of the transcription factors AP-1 and NF-κB in CD4 T cells by peroxisome proliferator-activated receptor-γ ligands. Int. Immunopharmacol.1, 803–812 (2001). ArticleCASPubMed Google Scholar
Cunard, R. et al. Regulation of cytokine expression by ligands of peroxisome proliferator-activated receptors. J. Immunol.168, 2795–2802 (2002). ArticleCASPubMed Google Scholar
Clark, R. B. et al. The nuclear receptor PPARγ and immunoregulation: PPARγ mediates inhibition of helper T-cell responses. J. Immunol.164, 1364–1371 (2000).This paper was the first to show that activation of PPARγ regulates T-cell cytokine production. ArticleCASPubMed Google Scholar
Harris, S. G., Smith, R. S. & Phipps, R. P. 15-deoxy-Δ12,14-PGJ2 induces IL-8 production in human T cells by a mitogen-activated protein kinase pathway. J. Immunol.168, 1372–1379 (2002). ArticleCASPubMed Google Scholar
Padilla, J., Leung, E. & Phipps, R. P. Human B lymphocytes and B lymphomas express PPAR-γ and are killed by PPAR-γ agonists. Clin. Immunol.103, 22–33 (2002). ArticleCASPubMed Google Scholar
Yang, X. Y. et al. Interleukin (IL)-4 indirectly suppresses IL-2 production by human T lymphocytes via peroxisome proliferator-activated receptor-γ activated by macrophage-derived 12/15-lipoxygenase ligands. J. Biol. Chem.277, 3973–3978 (2002). ArticleCASPubMed Google Scholar
Huang, J. T. et al. Interleukin-4-dependent production of PPARγ ligands in macrophages by 12/15-lipoxygenase. Nature400, 378–382 (1999). ArticleCASPubMed Google Scholar
Chtanova, T., Kemp, R. A., Sutherland, A. P., Ronchese, F. & Mackay, C. R. Gene microarrays reveal extensive differential gene expression in both CD4+ and CD8+ type-1 and type-2 T cells. J. Immunol.167, 3057–3063 (2001). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell100, 655–669 (2000). ArticleCASPubMed Google Scholar
van Vollenhoven, R. F. Dehydroepiandrosterone in systemic lupus erythematosus. Rheum. Dis. Clin. North Am.26, 349–362 (2000). ArticleCASPubMed Google Scholar
Lucas, J. A., Ahmed, S. A., Casey, M. L. & MacDonald, P. C. Prevention of autoantibody formation and prolonged survival in New Zealand black/New Zealand white F1 mice fed dehydroisoandrosterone. J. Clin. Invest.75, 2091–2093 (1985). ArticleCASPubMedPubMed Central Google Scholar
Karmali, R. A., Hanrahan, R., Volkman, A. & Smith, N. Prostaglandins and essential fatty acids in regulation of autoimmunity and development of antibodies to DNA in NZB x NZW F1 mice. Prog Lipid Res.20, 655–661 (1981). ArticleCASPubMed Google Scholar
Ben-Nathan, D., Padgett, D. A. & Loria, R. M. Androstenediol and dehydroepiandrosterone protect mice against lethal bacterial infections and lipopolysaccharide toxicity. J. Med. Microbiol.48, 425–431 (1999). ArticleCASPubMed Google Scholar
Rasmussen, K. R., Healey, M. C., Cheng, L. & Yang, S. Effects of dehydroepiandrosterone in immunosuppressed adult mice infected with Cryptosporidium parvum. J. Parasitol.81, 429–433 (1995). ArticleCASPubMed Google Scholar
Danenberg, H. D., Ben-Yehuda, A., Zakay-Rones, Z. & Friedman, G. Dehydroepiandrosterone (DHEA) treatment reverses the impaired immune response of old mice to influenza vaccination and protects from influenza infection. Vaccine13, 1445–1448 (1995). ArticleCASPubMed Google Scholar
Loria, R. M. & Padgett, D. A. Androstenediol regulates systemic resistance against lethal infections in mice. Ann. N Y Acad. Sci.685, 293–295 (1993). ArticleCASPubMed Google Scholar
Loria, R. M. & Padgett, D. A. Androstenediol regulates systemic resistance against lethal infections in mice. Arch Virol.127, 103–115 (1992). ArticleCASPubMed Google Scholar
Kornbluth, A. What happened to drug trials in ulcerative colitis? Problems, PPARs, placebos and (possible) progress. Am. J. Gastroenterol.96, 3232–3234 (2001). ArticleCASPubMed Google Scholar
Lewis, J. D. et al. An open-label trial of the PPAR-γ ligand rosiglitazone for active ulcerative colitis. Am. J. Gastroenterol.96, 3323–3328 (2001). CASPubMed Google Scholar
Tan, M. H. Current treatment of insulin resistance in type 2 diabetes mellitus. Int J Clin Pract Suppl. 54–62 (2000).
Molavi, B., Rasouli, N. & Mehta, J. L. Peroxisome proliferator-activated receptor ligands as antiatherogenic agents: panacea or another Pandora's box? J. Cardiovasc. Pharmacol. Ther.7, 1–8 (2002). ArticleCASPubMed Google Scholar
Robins, S. J. PPARα ligands and clinical trials: cardiovascular risk reduction with fibrates. J. Cardiovasc. Risk8, 195–201 (2001). ArticleCASPubMed Google Scholar
Palakurthi, S. S., Aktas, H., Grubissich, L. M., Mortensen, R. M. & Halperin, J. A. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor-γ and mediated by inhibition of translation initiation. Cancer Res.61, 6213–6218 (2001). CASPubMed Google Scholar
Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science294, 1871–1875 (2001). ArticleCASPubMed Google Scholar
Tolon, R. M., Castillo, A. I., Jimenez-Lara, A. M. & Aranda, A. Association with Ets-1 causes ligand- and AF2-independent activation of nuclear receptors. Mol. Cell. Biol.20, 8793–8802 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yi, Y W. et al. Gadd45 family proteins are coactivators of nuclear hormone receptors. Biochem. Biophys. Res. Commun.272, 193–198 (2000). ArticleCASPubMed Google Scholar