Glucocorticoid receptor control of transcription: precision and plasticity via allostery (original) (raw)
Bridgham, J. T. et al. Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol.8, e1000497 (2010). ArticlePubMedCASPubMed Central Google Scholar
Revollo, J. R. & Cidlowski, J. A. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann. NY Acad. Sci.1179, 167–178 (2009). ArticleCASPubMed Google Scholar
Lewis-Tuffin, L. J., Jewell, C. M., Bienstock, R. J., Collins, J. B. & Cidlowski, J. A. Human glucocorticoid receptor binds RU-486 and is transcriptionally active. Mol. Cell. Biol.27, 2266–2282 (2007). ArticleCASPubMedPubMed Central Google Scholar
Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature348, 166–168 (1990). ArticleCASPubMed Google Scholar
Chandler, V. L., Maler, B. A. & Yamamoto, K. R. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell33, 489–499 (1983). ArticleCASPubMed Google Scholar
Yamamoto, K. R. Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet.19, 209–252 (1985). ArticleCASPubMed Google Scholar
Yamamoto, K. R., Darimont, B. D., Wagner, R. L. & Iñiguez-Lluhí, J. A. Building transcriptional regulatory complexes: signals and surfaces. Cold Spring Harb. Symp. Quant. Biol.63, 587–598 (1998). Presents the idea that TRFs nucleate different multi-subunit regulatory complexes on chromatin that drive alternative transcriptional outcomes. ArticleCASPubMed Google Scholar
McNally, J. G. The glucocorticoid receptor: Rapid exchange with regulatory sites in living cells. Science287, 1262–1265 (2000). ArticleCASPubMed Google Scholar
Stavreva, D. A., Muller, W. G., Hager, G. L., Smith, C. L. & McNally, J. G. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell. Biol.24, 2682–2697 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meijsing, S. H., Elbi, C., Luecke, H. F., Hager, G. L. & Yamamoto, K. R. The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release. Mol. Cell. Biol.27, 2442–2451 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sacta, M. A., Chinenov, Y. & Rogatsky, I. Glucocorticoid signaling: An update from a genomic perspective. Annu. Rev. Physiol.78, 155–180 (2016). This review presents new insights into GR biology that have emerged with the development and refinement of systems approaches. ArticleCASPubMed Google Scholar
Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature284, 555–556 (1980). ArticleCASPubMed Google Scholar
Patel, R., Williams-Dautovich, J. & Cummins, C. L. Minireview: New molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol. Endocrinol.28, 999–1011 (2014). ArticlePubMedCASPubMed Central Google Scholar
Kumar, R. & Thompson, E. B. The structure of the nuclear hormone receptors. Steroids64, 310–319 (1999). ArticleCASPubMed Google Scholar
Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature352, 497–505 (1991). Provides the first crystallographic analysis of the GR DBD–GBS complex and details how two GR DBDs dimerize on a canonical DNA-binding element. ArticleCASPubMed Google Scholar
Meijsing, S. H. et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science324, 407–410 (2009). Uses crystallographic analysis and functional assays done on multiple different GR DBD–GBS complexes to demonstrate that DNA binding acts as an allosteric effector of GR. ArticleCASPubMedPubMed Central Google Scholar
Watson, L. C. et al. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat. Struct. Mol. Biol.20, 876–883 (2013). Uses biophysical analysis and NMR chemical-shift difference mapping to measure cooperative dimerization and to probe a potential allosteric pathway that extends from a GR DBD bound to one GBS half site, through specific regions within the bound GR DBD and the DBD dimerization domain, to the partner GR DBD bound to the other GBS half site. ArticleCASPubMedPubMed Central Google Scholar
Heck, S. et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J.13, 4087–4095 (1994). ArticleCASPubMedPubMed Central Google Scholar
Schiller, B. J., Chodankar, R., Watson, L. C., Stallcup, M. R. & Yamamoto, K. R. Glucocorticoid receptor binds half sites as a monomer and regulates specific target genes. Genome Biol.15, 418 (2014). ArticlePubMedCASPubMed Central Google Scholar
Reichardt, H. M. et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell93, 531–541 (1998). ArticleCASPubMed Google Scholar
Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell110, 93–105 (2002). Provides the first crystal structure of ligand-bound GR LBD, which reveals the intricate network of protein–ligand interactions that define GR ligand selectivity. ArticleCASPubMed Google Scholar
Surjit, M. et al. Widespread negative response elements mediate direct repression by agonist–liganded glucocorticoid receptor. Cell145, 224–241 (2011). ArticleCASPubMed Google Scholar
Hudson, W. H., Youn, C. & Ortlund, E. A. The structural basis of direct glucocorticoid-mediated transrepression. Nat. Struct. Mol. Biol.20, 53–58 (2013). Uses crystallographic analysis of the GR DBD–IR-GBS complex to reveal a new mode of GR–DNA recognition, in which two GR monomers bind opposite sides of the DNA. ArticleCASPubMed Google Scholar
Hudson, W. H. et al. Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc. Natl Acad. Sci. USA113, 326–331 (2016). ArticleCASPubMed Google Scholar
Lim, H. et al. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res.25, 836–844 (2015). ArticleCASPubMedPubMed Central Google Scholar
Miner, J. N. & Yamamoto, K. R. The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element. Genes Dev.6, 2491–2501 (1992). ArticleCASPubMed Google Scholar
De Bosscher, K., Vanden Berghe, W. & Haegeman, G. Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Mol. Endocrinol.15, 219–227 (2001). ArticleCASPubMed Google Scholar
Luecke, H. F. & Yamamoto, K. R. The glucocorticoid receptor blocks P-TEFb recruitment by NFκB to effect promoter-specific transcriptional repression. Genes Dev.19, 1116–1127 (2005). ArticleCASPubMedPubMed Central Google Scholar
De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: Molecular mechanisms for gene repression. Endocr. Rev.24, 488–522 (2003). ArticleCASPubMed Google Scholar
Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res.22, 1813–1831 (2012). Highlights the differences in experimental methodology and analysis of ChIP-Seq, which has become a mainstream method of analysing TRF–DNA interactions on a genome-wide scale. ArticleCASPubMedPubMed Central Google Scholar
Grøntved, L. et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J.32, 1568–1583 (2013). ArticlePubMedCASPubMed Central Google Scholar
So, A. Y. L., Chaivorapol, C., Bolton, E. C., Li, H. & Yamamoto, K. R. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet.3, e94 (2007). Examines cell-type-specific GR occupancy on chromatin. ArticlePubMedCASPubMed Central Google Scholar
Reddy, T. E. et al. Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res.19, 2163–2171 (2009). ArticleCASPubMedPubMed Central Google Scholar
Merkenschlager, M. & Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genomics Hum. Genet.17, 17–43 (2016). ArticleCASPubMed Google Scholar
Telorac, J. et al. Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements. Nucleic Acids Res.44, 6142–6156 (2016). ArticleCASPubMedPubMed Central Google Scholar
Uhlenhaut, N. H. et al. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol. Cell49, 158–171 (2013). ArticleCASPubMed Google Scholar
Presman, D. M. et al. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor. PLoS Biol.12, e1001813 (2014). ArticlePubMedCASPubMed Central Google Scholar
Starick, S. R. et al. ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors. Genome Res.25, 825–835 (2015). ArticleCASPubMedPubMed Central Google Scholar
So, A. Y. L., Bernal, T. U., Pillsbury, M. L., Yamamoto, K. R. & Feldman, B. J. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc. Natl Acad. Sci. USA106, 17582–17587 (2009). Identifies and characterizes the only gene–GRE pair confirmed to date, at its endogenous locusin vivo. ArticleCASPubMedPubMed Central Google Scholar
Rogatsky, I. et al. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc. Natl Acad. Sci. USA100, 13845–13850 (2003). ArticleCASPubMedPubMed Central Google Scholar
Thomas-Chollier, M. et al. A naturally occuring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms. Proc. Natl Acad. Sci. USA110, 17826–17831 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chen, S. H., Masuno, K., Cooper, S. B. & Yamamoto, K. R. Incoherent feed-forward regulatory logic underpinning glucocorticoid receptor action. Proc. Natl Acad. Sci. USA110, 1964–1969 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA100, 11980–11985 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chinenov, Y., Coppo, M., Gupte, R., Sacta, M. A. & Rogatsky, I. Glucocorticoid receptor coordinates transcription factor-dominated regulatory network in macrophages. BMC Genomics15, 656 (2014). ArticlePubMedPubMed Central Google Scholar
Hudson, W. H. & Ortlund, E. A. The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol.15, 749–760 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lefstin, J. A. & Yamamoto, K. R. Allosteric effects of DNA on transcriptional regulators. Nature392, 885–888 (1998). Introduces the concept of DNA as an allosteric regulator of DNA-binding proteins. ArticleCASPubMed Google Scholar
Presman, D. M. et al. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc. Natl Acad. Sci. USA113, 8236–8241 (2016). ArticleCASPubMedPubMed Central Google Scholar
Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods10, 421–426 (2013). ArticleCASPubMedPubMed Central Google Scholar
Robblee, J. P., Miura, M. T. & Bain, D. L. Glucocorticoid receptor–promoter interactions: Energetic dissection suggests a framework for the specificity of steroid receptor-mediated gene regulation. Biochemistry51, 4463–4472 (2012). ArticleCASPubMed Google Scholar
Bain, D. L. et al. Glucocorticoid receptor–DNA interactions: Binding energetics are the primary determinant of sequence-specific transcriptional activity. J. Mol. Biol.422, 18–32 (2012). ArticleCASPubMed Google Scholar
Schöne, S. et al. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity. Nat. Commun.7, 12621 (2016). ArticlePubMedCASPubMed Central Google Scholar
Zhang, J. et al. DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex. Nat. Struct. Mol. Biol.18, 556–563 (2011). ArticlePubMedCASPubMed Central Google Scholar
Thornton, J. W. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc. Natl Acad. Sci. USA98, 5671–5676 (2001). ArticleCASPubMedPubMed Central Google Scholar
Eick, G. N., Colucci, J. K., Harms, M. J., Ortlund, E. A. & Thornton, J. W. Evolution of minimal specificity and promiscuity in steroid hormone receptors. PLoS Genet.8, e1003072 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kauppi, B. et al. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J. Biol. Chem.278, 22748–22754 (2003). Describes crystallographic analysis of the GR LBD bound to the non-standard ligand RU-486, which highlights the conformational malleability within GR to accommodate binding to ligands with disparate structures. ArticleCASPubMed Google Scholar
Wang, J.-C. et al. Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activity. Genes Dev.20, 689–699 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ricketson, D., Hostick, U., Fang, L., Yamamoto, K. R. & Darimont, B. D. A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90. J. Mol. Biol.368, 729–741 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ismaili, N. & Garabedian, M. J. Modulation of glucocorticoid receptor function via phosphorylation. Ann. NY Acad. Sci.1024, 86–101 (2004). ArticleCASPubMed Google Scholar
Tian, S., Poukka, H., Palvimo, J. J. & Jänne, O. A. Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem. J.367, 907–911 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wallace, A. D. & Cidlowski, J. A. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem.276, 42714–42721 (2001). ArticleCASPubMed Google Scholar
Itoh, M. et al. Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol. Endocrinol.16, 2382–2392 (2002). ArticleCASPubMed Google Scholar
Galigniana, M. D., Piwien-Pilipuk, G. & Assreuy, J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol. Pharmacol.55, 317–323 (1999). ArticleCASPubMed Google Scholar
Ward, R. D. & Weigel, N. L. Steroid receptor phosphorylation: Assigning function to site-specific phosphorylation. BioFactors35, 528–536 (2009). ArticleCASPubMedPubMed Central Google Scholar
Housley, P. R. & Pratt, W. B. Direct demonstration of glucocorticoid receptor phosphorylation by intact L-cells. J. Biol. Chem.258, 4630–4635 (1983). CASPubMed Google Scholar
Wang, Z., Chen, W., Kono, E., Dang, T. & Garabedian, M. J. Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by a C-terminal-associated protein phosphatase. Mol. Endocrinol.21, 625–634 (2007). ArticleCASPubMed Google Scholar
Bodwell, J. E. et al. Glucocorticoid receptor phosphorylation: Overview, function and cell cycle-dependence. J. Steroid Biochem. Mol. Biol.65, 91–99 (1998). ArticleCASPubMed Google Scholar
Krstic, M. D., Rogatsky, I., Yamamoto, K. R. & Garabedian, M. J. Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol. Cell. Biol.17, 3947–3954 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mason, S. A. & Housley, P. R. Site-directed mutagenesis of the phosphorylation sites in the mouse glucocorticoid receptor. J. Biol. Chem.268, 21501–21504 (1993). CASPubMed Google Scholar
Jewell, C. M. Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J. Biol. Chem.272, 9287–9293 (1997). ArticlePubMed Google Scholar
Chen, W. et al. Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol. Endocrinol.22, 1754–1766 (2008). ArticleCASPubMedPubMed Central Google Scholar
Garza, A. M. S., Khan, S. H. & Kumar, R. Site-specific phosphorylation induces functionally active conformation in the intrinsically disordered N-terminal activation function (AF1) domain of the glucocorticoid receptor. Mol. Cell. Biol.30, 220–230 (2010). ArticleCASPubMed Google Scholar
Miller, A. L. et al. p38 mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: Correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol. Endocrinol.19, 1569–1583 (2005). ArticleCASPubMed Google Scholar
Wang, Z., Frederick, J. & Garabedian, M. J. Deciphering the phosphorylation 'code' of the glucocorticoid receptor in vivo. J. Biol. Chem.277, 26573–26580 (2002). ArticleCASPubMed Google Scholar
King, K. L. & Cidlowski, J. A. Cell cycle regulation and apoptosis. Annu. Rev. Physiol.60, 601–617 (1998). ArticleCASPubMed Google Scholar
Galliher-Beckley, A. J., Williams, J. G., Collins, J. B. & Cidlowski, J. A. Glycogen synthase kinase 3-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol. Cell. Biol.28, 7309–7322 (2008). ArticleCASPubMedPubMed Central Google Scholar
Galliher-Beckley, A. J. & Cidlowski, J. A. Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life61, 979–986 (2009). ArticleCASPubMed Google Scholar
Deroo, B. J. et al. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol. Cell. Biol.22, 4113–4123 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wallace, A. D., Cao, Y., Chandramouleeswaran, S. & Cidlowski, J. A. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation. Steroids75, 1016–1023 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kino, T., Liou, S. H., Charmandari, E. & Chrousos, G. P. Glucocorticoid receptor mutants demonstrate increased motility inside the nucleus of living cells: Time of fluorescence recovery after photobleaching (FRAP) is an integrated measure of receptor function. Mol. Med.10, 80–88 (2006). ArticleCAS Google Scholar
Gill, G. Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev.15, 536–541 (2005). ArticleCASPubMed Google Scholar
Le Drean, Y., Mincheneau, N., Le Goff, P. & Michel, D. Potentiation of glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology143, 3482–3489 (2002). ArticleCASPubMed Google Scholar
Paakinaho, V., Kaikkonen, S., Makkonen, H., Benes, V. & Palvimo, J. J. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res.42, 1575–1592 (2014). ArticleCASPubMed Google Scholar
Treuter, E. & Venteclef, N. Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim. Biophys. Acta1812, 909–918 (2011). ArticleCASPubMed Google Scholar
Flotho, A. & Melchior, F. Sumoylation: A regulatory protein modification in health and disease. Annu. Rev. Biochem.82, 357–385 (2013). ArticleCASPubMed Google Scholar
Hua, G., Paulen, L. & Chambon, P. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc. Natl Acad. Sci. USA113, E626–E634 (2016). ArticleCASPubMed Google Scholar
Hua, G., Ganti, K. P. & Chambon, P. Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc. Natl Acad. Sci. USA113, E635–E643 (2016). ArticleCASPubMed Google Scholar
Nader, N., Chrousos, G. P. & Kino, T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J.23, 1572–1583 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kino, T. & Chrousos, G. P. Acetylation-mediated epigenetic regulation of glucocorticoid receptor activity: Circadian rhythm-associated alterations of glucocorticoid actions in target tissues. Mol. Cell. Endocrinol.336, 23–30 (2011). ArticleCASPubMed Google Scholar
Ito, K. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med.203, 7–13 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kröncke, K. D. & Carlberg, C. Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J.14, 166–173 (2000). ArticlePubMed Google Scholar
Diamond, M., Miner, J., Yoshinaga, S. & Yamamoto, K. Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science249, 1266–1272 (1990). Introduces differential context-specific regulation through the alternative interactions of GR with non-GR TRFs at composite elements. ArticleCASPubMed Google Scholar
Miner, J. N., Diamond, M. I. & Yamamoto, K. R. Joints in the regulatory lattice: Composite regulation by steroid receptor–AP1 complexes. Cell Growth Differ.2, 525–530 (1991). CASPubMed Google Scholar
Jenkins, B. D., Pullen, C. B. & Darimont, B. D. Novel glucocorticoid receptor coactivator effector mechanisms. Trends Endocrinol. Metab.12, 122–126 (2001). ArticleCASPubMed Google Scholar
Millard, C. J., Watson, P. J., Fairall, L. & Schwabe, J. W. R. An evolving understanding of nuclear receptor coregulator proteins. J. Mol. Endocrinol.51, T23–T36 (2013). Provides a review of nuclear receptor co-regulator proteins, with a focus on the structural analysis of nuclear receptor–co-regulator interactions. ArticleCASPubMedPubMed Central Google Scholar
Vandevyver, S., Dejager, L. & Libert, C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr. Rev.35, 671–693 (2014). ArticleCASPubMed Google Scholar
Parker, M. G. & White, R. Nuclear receptors spring into action. Nat. Struct. Biol.3, 113–115 (1996). ArticleCASPubMed Google Scholar
Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature423, 555–560 (2003). ArticleCASPubMed Google Scholar
Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature387, 677–684 (1997). ArticleCASPubMed Google Scholar
Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature387, 733–736 (1997). ArticleCASPubMed Google Scholar
Hu, X. & Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature402, 93–96 (1999). ArticleCASPubMed Google Scholar
Khan, S. H. et al. Binding of the N-terminal region of coactivator TIF2 to the intrinsically disordered AF1 domain of the glucocorticoid receptor is accompanied by conformational reorganizations. J. Biol. Chem.287, 44546–44560 (2012). ArticleCASPubMedPubMed Central Google Scholar
Khan, S. H., Ling, J. & Kumar, R. TBP binding-induced folding of the glucocorticoid receptor AF1 domain facilitates its interaction with steroid receptor coactivator-1. PLoS ONE6, e21939 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dahlman-Wright, K., Almlöf, T., McEwan, I. J., Gustafsson, J. A. & Wright, A. P. Delineation of a small region within the major transactivation domain of the human glucocorticoid receptor that mediates transactivation of gene expression. Proc. Natl Acad. Sci. USA91, 1619–1623 (1994). ArticleCASPubMedPubMed Central Google Scholar
Yang, L., Guerrero, J., Hong, H., DeFranco, D. B. & Stallcup, M. R. Interaction of the τ2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol. Biol. Cell11, 2007–2018 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chodankar, R., Wu, D. Y., Schiller, B. J., Yamamoto, K. R. & Stallcup, M. R. Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proc. Natl Acad. Sci. USA111, 4007–4012 (2014). ArticleCASPubMedPubMed Central Google Scholar
Dasgupta, S., Lonard, D. M. & O'Malley, B. W. Nuclear receptor coactivators: Master regulators of human health and disease. Annu. Rev. Med.65, 279–292 (2014). ArticleCASPubMed Google Scholar
Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: The circular logic of cofactor cycles. Nat. Rev. Mol. Cell Biol.6, 542–554 (2005). ArticleCASPubMed Google Scholar
Lonard, D. M. & O'Malley, B. W. Nuclear receptor coregulators: Judges, juries, and executioners of cellular regulation. Mol. Cell27, 691–700 (2007). ArticleCASPubMed Google Scholar
Fonte, C. et al. Involvement of β-catenin and unusual behavior of CBP and p300 in glucocorticosteroid signaling in Schwann cells. Proc. Natl Acad. Sci. USA102, 14260–14265 (2005). ArticleCASPubMedPubMed Central Google Scholar
Xu, J., Wu, R. C. & O'Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer9, 615–630 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. H., Li, H. & Stallcup, M. R. CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol. Cell12, 1537–1549 (2003). ArticleCASPubMed Google Scholar
Stallcup, M. R. et al. The roles of protein–protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators. J. Steroid Biochem. Mol. Biol.85, 139–145 (2003). ArticleCASPubMed Google Scholar
Kim, J. H. et al. CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol. Cell31, 510–519 (2008). ArticleCASPubMedPubMed Central Google Scholar
Szapary, D., Huang, Y. & Simons, S. S. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol. Endocrinol.13, 2108–2121 (1999). ArticleCASPubMed Google Scholar
Trousson, A. et al. Recruitment of the p160 coactivators by the glucocorticoid receptor: Dependence on the promoter context and cell type but not hypoxic conditions. J. Steroid Biochem. Mol. Biol.104, 305–311 (2007). ArticleCASPubMed Google Scholar
Voegel, J. J. et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J.17, 507–519 (1998). ArticleCASPubMedPubMed Central Google Scholar
Li, X., Wong, J., Tsai, S. Y., Tsai, M. & O'Malley, B. W. Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification. Mol. Cell. Biol.23, 3763–3773 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kurihara, I. et al. Expression and regulation of nuclear receptor coactivators in glucocorticoid action. Mol. Cell. Endocrinol.189, 181–189 (2002). ArticleCASPubMed Google Scholar
Ronacher, K. et al. Ligand-selective transactivation and transrepression via the glucocorticoid receptor: role of cofactor interaction. Mol. Cell. Endocrinol.299, 219–231 (2009). ArticleCASPubMed Google Scholar
Ogawa, H. et al. Nuclear structure-associated TIF2 recruits glucocorticoid receptor and its target DNA. Biochem. Biophys. Res. Commun.320, 218–225 (2004). ArticleCASPubMed Google Scholar
Dobrovolna, J., Chinenov, Y., Kennedy, M. A., Liu, B. & Rogatsky, I. Glucocorticoid-dependent phosphorylation of the transcriptional coregulator GRIP1. Mol. Cell. Biol.32, 730–739 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rogatsky, I., Luecke, H. F., Leitman, D. C. & Yamamoto, K. R. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc. Natl Acad. Sci. USA99, 16701–16706 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell85, 403–414 (1996). ArticleCASPubMed Google Scholar
Sheppard, K.-A. et al. Nuclear integration of glucocorticoid receptor and nuclear factor-κB signaling by CREB-binding protein and steroid receptor coactivator-1. J. Biol. Chem.273, 29291–29294 (1998). ArticleCASPubMed Google Scholar
De Bosscher, K. et al. Glucocorticoids repress NF-κB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc. Natl Acad. Sci. USA97, 3919–3924 (2000). ArticleCASPubMedPubMed Central Google Scholar
Allen, B. L. & Taatjes, D. J. The Mediator complex: A central integrator of transcription. Nat. Rev. Mol. Cell Biol.16, 155–166 (2015). ArticleCASPubMedPubMed Central Google Scholar
Knuesel, M. T. & Taatjes, D. J. Mediator and post-recruitment regulation of RNA polymerase II. Transcription2, 28–31 (2011). ArticlePubMed Google Scholar
Meyer, K. D., Lin, S. C., Bernecky, C., Gao, Y. & Taatjes, D. J. p53 activates transcription by directing structural shifts in Mediator. Nat. Struct. Mol. Biol.17, 753–760 (2010). ArticleCASPubMedPubMed Central Google Scholar
Taatjes, D. J., Näär, A. M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science295, 1058–1062 (2002). ArticleCASPubMed Google Scholar
Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev.23, 439–451 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bernecky, C., Grob, P., Ebmeier, C. C., Nogales, E. & Taatjes, D. J. Molecular architecture of the human Mediator–RNA polymerase II–TFIIF assembly. PLoS Biol.9, e1000603 (2011). ArticleCASPubMedPubMed Central Google Scholar
Meyer, K. D. et al. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J.27, 1447–1457 (2008). CASPubMedPubMed Central Google Scholar
Hittelman, A. B., Burakov, D., Iñiguez-Lluhí, J. A., Freedman, L. P. & Garabedian, M. J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J.18, 5380–5388 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chen, W., Rogatsky, I. & Garabedian, M. J. MED14 and MED1 differentially regulate target-specific gene activation by the glucocorticoid receptor. Mol. Endocrinol.20, 560–572 (2006). ArticleCASPubMed Google Scholar
Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell154, 490–503 (2013). ArticleCASPubMedPubMed Central Google Scholar
Pazin, M. J. & Kadonaga, J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein–DNA interactions? Cell88, 737–740 (1997). ArticleCASPubMed Google Scholar
Fryer, C. J. & Archer, T. K. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature393, 88–91 (1998). ArticleCASPubMed Google Scholar
Engel, K. B. & Yamamoto, K. R. The glucocorticoid receptor and the coregulator Brm selectively modulate each other's occupancy and activity in a gene-specific manner. Mol. Cell. Biol.31, 3267–3276 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ostlund Farrants, A. K., Blomquist, P., Kwon, H. & Wrange, O. Glucocorticoid receptor–glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol. Cell. Biol.17, 895–905 (1997). ArticleCASPubMedPubMed Central Google Scholar
Collingwood, T. N., Urnov, F. D. & Wolffe, A. P. Nuclear receptors: Coactivators, corepressors and chromatin remodeling in the control of transcription. J. Mol. Endocrinol.23, 255–275 (1999). ArticleCASPubMed Google Scholar
King, H. A., Trotter, K. W. & Archer, T. K. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim. Biophys. Acta1819, 716–726 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yoshinaga, S., Peterson, C., Herskowitz, I. & Yamamoto, K. R. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science258, 1598–1604 (1992). ArticleCASPubMed Google Scholar
Wallberg, A. E. et al. Recruitment of the SWI–SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor τ1 activation domain. Mol. Cell. Biol.20, 2004–2013 (2000). ArticleCASPubMedPubMed Central Google Scholar
Muratcioglu, S. et al. Structural modeling of GR interactions with the SWI/SNF chromatin remodeling complex and C/EBP. Biophys. J.109, 1227–1239 (2015). ArticleCASPubMedPubMed Central Google Scholar
Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science284, 2174–2177 (1999). ArticleCASPubMed Google Scholar
Bittencourt, D. et al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc. Natl Acad. Sci. USA109, 19673–19678 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lee, K. K. & Workman, J. L. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol.8, 284–295 (2007). ArticleCASPubMed Google Scholar
Almlöf, T., Wallberg, A. E., Gustafsson, J. Å. & Wright, A. P. H. Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor τ1-core activation domain and target factors. Biochemistry37, 9586–9594 (1998). ArticlePubMed Google Scholar
Yao, T. P., Ku, G., Zhou, N., Scully, R. & Livingston, D. M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl Acad. Sci. USA93, 10626–10631 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wallberg, A. E. et al. Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol. Cell. Biol.19, 5952–5959 (1999). ArticleCASPubMedPubMed Central Google Scholar
Fonte, C., Trousson, A., Grenier, J., Schumacher, M. & Massaad, C. Opposite effects of CBP and p300 in glucocorticoid signaling in astrocytes. J. Steroid Biochem. Mol. Biol.104, 220–227 (2007). ArticleCASPubMed Google Scholar
Verdin, E. & Ott, M. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol.16, 258–264 (2015). ArticleCASPubMed Google Scholar
Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem.76, 75–100 (2007). ArticleCASPubMed Google Scholar
Stewart, M. D. & Wong, J. Nuclear receptor repression: Regulatory mechanisms and physiological implications. Prog. Mol. Biol. Transl Sci.87, 235–259 (2009). ArticleCASPubMed Google Scholar
Schoch, G. A. et al. Molecular switch in the glucocorticoid receptor: Active and passive antagonist conformations. J. Mol. Biol.395, 568–577 (2010). ArticleCASPubMed Google Scholar
Kuznetsova, T. et al. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization. Genome Biol.16, 264 (2015). ArticlePubMedCASPubMed Central Google Scholar
Ogryzko, V. V. et al. Histone-like TAFs within the PCAF histone acetylase complex. Cell94, 35–44 (1998). ArticleCASPubMed Google Scholar
Guenther, M. G., Barak, O. & Lazar, M. A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol.21, 6091–6101 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature377, 454–457 (1995). ArticleCASPubMed Google Scholar