- Spelsberg, T. C., Steggles, A. W. & O'Malley, B. W. Progesterone-binding components of chick oviduct. 3. Chromatin acceptor sites. J. Biol. Chem. 246, 4188–4197 (1971).
CAS PubMed Google Scholar
- O'Malley, B. W. Coregulators: from whence came these “master genes”. Mol. Endocrinol. 21, 1009–1013 (2007).
CAS PubMed Google Scholar
- Meyer, M. E. et al. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57, 433–442 (1989).
CAS PubMed Google Scholar
- Halachmi, S. et al. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264, 1455–1458 (1994).
CAS PubMed Google Scholar
- Klein-Hitpass, L. et al. The progesterone receptor stimulates cell-free transcription by enhancing the formation of a stable preinitiation complex. Cell 60, 247–257 (1990).
CAS PubMed Google Scholar
- Onate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995). This article identified SRC1 as the first steroid receptor co-activator.
CAS PubMed Google Scholar
- Voegel, J. J., Heine, M. J., Zechel, C., Chambon, P. & Gronemeyer, H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675 (1996).
CAS PubMed PubMed Central Google Scholar
- Hong, H., Kohli, K., Garabedian, M. J. & Stallcup, M. R. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17, 2735–2744 (1997).
CAS PubMed PubMed Central Google Scholar
- Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).
CAS PubMed Google Scholar
- Li, H., Gomes, P. J. & Chen, J. D. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc. Natl Acad. Sci. USA 94, 8479–8484 (1997).
CAS PubMed PubMed Central Google Scholar
- Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997). This article first reported that SRC3 was amplified and overexpressed in breast cancer.
CAS PubMed Google Scholar
- Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).
CAS PubMed Google Scholar
- Takeshita, A., Cardona, G. R., Koibuchi, N., Suen, C. S. & Chin, W. W. TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J. Biol. Chem. 272, 27629–27634 (1997).
CAS PubMed Google Scholar
- Chen, Y. H., Kim, J. H. & Stallcup, M. R. GAC63, a GRIP1-dependent nuclear receptor coactivator. Mol. Cell. Biol. 25, 5965–5972 (2005).
CAS PubMed PubMed Central Google Scholar
- Kim, J. H., Li, H. & Stallcup, M. R. CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol. Cell 12, 1537–1549 (2003).
CAS PubMed Google Scholar
- Lee, Y. H., Campbell, H. D. & Stallcup, M. R. Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol. Cell. Biol. 24, 2103–2117 (2004).
CAS PubMed PubMed Central Google Scholar
- Belandia, B. & Parker, M. G. Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J. Biol. Chem. 275, 30801–30805 (2000).
CAS PubMed Google Scholar
- Chen, S. L., Dowhan, D. H., Hosking, B. M. & Muscat, G. E. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev. 14, 1209–1228 (2000).
CAS PubMed PubMed Central Google Scholar
- Darimont, B. D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).
CAS PubMed PubMed Central Google Scholar
- Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).
CAS PubMed Google Scholar
- Voegel, J. J. et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17, 507–519 (1998).
CAS PubMed PubMed Central Google Scholar
- Anafi, M. et al. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol. Endocrinol. 14, 718–732 (2000).
CAS PubMed Google Scholar
- Brown, K., Chen, Y., Underhill, T. M., Mymryk, J. S. & Torchia, J. The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5. J. Biol. Chem. 278, 39402–39412 (2003).
CAS PubMed Google Scholar
- Huang, S. M. & Stallcup, M. R. Mouse Zac1, a transcriptional coactivator and repressor for nuclear receptors. Mol. Cell. Biol. 20, 1855–1867 (2000).
CAS PubMed PubMed Central Google Scholar
- Koh, S. S., Chen, D., Lee, Y. H. & Stallcup, M. R. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J. Biol. Chem. 276, 1089–1098 (2001).
CAS PubMed Google Scholar
- Liu, P. Y., Hsieh, T. Y., Chou, W. Y. & Huang, S. M. Modulation of glucocorticoid receptor-interacting protein 1 (GRIP1) transactivation and co-activation activities through its C-terminal repression and self-association domains. FEBSJ. 273, 2172–2183 (2006).
CAS Google Scholar
- Ma, H. et al. Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol. Cell. Biol. 19, 6164–6173 (1999).
CAS PubMed PubMed Central Google Scholar
- Surapureddi, S. et al. Identification of a transcriptionally active peroxisome proliferator-activated receptor α-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc. Natl Acad. Sci. USA 99, 11836–11841 (2002).
CAS PubMed PubMed Central Google Scholar
- Yao, T. P., Ku, G., Zhou, N., Scully, R. & Livingston, D. M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl Acad. Sci. USA 93, 10626–10631 (1996).
CAS PubMed PubMed Central Google Scholar
- Spencer, T. E. et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194–198 (1997).
CAS PubMed Google Scholar
- Xu, J. & Li, Q. Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol. Endocrinol. 17, 1681–1692 (2003).
CAS PubMed Google Scholar
- Zhang, H. et al. Differential gene regulation by the SRC family of coactivators. Genes Dev. 18, 1753–1765 (2004).
CAS PubMed PubMed Central Google Scholar
- Jeong, J. W. et al. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Mol. Endocrinol. 20, 1138–1152 (2006).
CAS PubMed Google Scholar
- Oh, A. et al. The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. Cancer Res. 64, 8299–8308 (2004).
CAS PubMed Google Scholar
- Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).
CAS PubMed Google Scholar
- Kalkhoven, E., Valentine, J. E., Heery, D. M. & Parker, M. G. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17, 232–243 (1998).
CAS PubMed PubMed Central Google Scholar
- Reiter, R., Wellstein, A. & Riegel, A. T. An isoform of the coactivator AIB1 that increases hormone and growth factor sensitivity is overexpressed in breast cancer. J. Biol. Chem. 276, 39736–39741 (2001).
CAS PubMed Google Scholar
- Lopez, G. N., Turck, C. W., Schaufele, F., Stallcup, M. R. & Kushner, P. J. Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. J. Biol. Chem. 276, 22177–22182 (2001).
CAS PubMed Google Scholar
- Rowan, B. G., Weigel, N. L. & O'Malley, B. W. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 275, 4475–4483 (2000).
CAS PubMed Google Scholar
- Wu, R. C. et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol. Cell 15, 937–949 (2004).
CAS PubMed Google Scholar
- Giamas, G. et al. CK1δ modulates the transcriptional activity of ERα via AIB1 in an estrogen-dependent manner and regulates ERα–AIB1 interactions. Nucleic Acids Res. 37, 3110–3123 (2009).
CAS PubMed PubMed Central Google Scholar
- Ueda, T., Mawji, N. R., Bruchovsky, N. & Sadar, M. D. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J. Biol. Chem. 277, 38087–38094 (2002).
CAS PubMed Google Scholar
- Rowan, B. G., Garrison, N., Weigel, N. L. & O'Malley, B. W. 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol. Cell. Biol. 20, 8720–8730 (2000).
CAS PubMed PubMed Central Google Scholar
- Gregory, C. W. et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J. Biol. Chem. 279, 7119–7130 (2004).
CAS PubMed Google Scholar
- Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).
CAS PubMed Google Scholar
- Shah, Y. M. & Rowan, B. G. The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor-αpromoter interaction and elevated steroid receptor coactivator 1 activity. Mol. Endocrinol. 19, 732–748 (2005).
CAS PubMed Google Scholar
- Frigo, D. E. et al. p38 mitogen-activated protein kinase stimulates estrogen-mediated transcription and proliferation through the phosphorylation and potentiation of the p160 coactivator glucocorticoid receptor-interacting protein 1. Mol. Endocrinol. 20, 971–983 (2006).
CAS PubMed Google Scholar
- Borud, B. et al. The nuclear receptor coactivators p300/CBP/cointegrator-associated protein (p/CIP) and transcription intermediary factor 2 (TIF2) differentially regulate PKA-stimulated transcriptional activity of steroidogenic factor 1. Mol. Endocrinol. 16, 757–773 (2002).
CAS PubMed Google Scholar
- Hoang, T. et al. cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1. J. Biol. Chem. 279, 49120–49130 (2004).
CAS PubMed Google Scholar
- Oh, A. S. et al. Tyrosine phosphorylation of the nuclear receptor coactivator AIB1/SRC-3 is enhanced by Abl kinase and is required for its activity in cancer cells. Mol. Cell. Biol. 28, 6580–6593 (2008).
CAS PubMed PubMed Central Google Scholar
- Bouras, T., Southey, M. C. & Venter, D. J. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res. 61, 903–907 (2001).
CAS PubMed Google Scholar
- Osborne, C. K. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95, 353–361 (2003).
CAS PubMed Google Scholar
- Schiff, R., Massarweh, S., Shou, J. & Osborne, C. K. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin. Cancer Res. 9, S447–S454 (2003).
Google Scholar
- Wu, R. C., Feng, Q., Lonard, D. M. & O'Malley, B. W. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129, 1125–1140 (2007).
CAS PubMed Google Scholar
- Li, C. et al. Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol. Cell 31, 835–849 (2008).
CAS PubMed PubMed Central Google Scholar
- Yi, P. et al. Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol. Cell 29, 465–476 (2008).
CAS PubMed PubMed Central Google Scholar
- Amazit, L. et al. Subcellular localization and mechanisms of nucleocytoplasmic trafficking of steroid receptor coactivator-1. J. Biol. Chem. 278, 32195–32203 (2003).
CAS PubMed Google Scholar
- Hermanson, O., Glass, C. K. & Rosenfeld, M. G. Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol. Metab. 13, 55–60 (2002).
CAS PubMed Google Scholar
- Qutob, M. S., Bhattacharjee, R. N., Pollari, E., Yee, S. P. & Torchia, J. Microtubule-dependent subcellular redistribution of the transcriptional coactivator p/CIP. Mol. Cell. Biol. 22, 6611–6626 (2002).
CAS PubMed PubMed Central Google Scholar
- Amazit, L. et al. Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol. Cell. Biol. 27, 6913–6932 (2007).
CAS PubMed PubMed Central Google Scholar
- Wu, R. C. et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by IκB kinase. Mol. Cell. Biol. 22, 3549–3561 (2002).
CAS PubMed PubMed Central Google Scholar
- Zheng, F. F., Wu, R. C., Smith, C. L. & O'Malley, B. W. Rapid estrogen-induced phosphorylation of the SRC-3 coactivator occurs in an extranuclear complex containing estrogen receptor. Mol. Cell. Biol. 25, 8273–8284 (2005).
CAS PubMed PubMed Central Google Scholar
- Yu, C. et al. An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol. Cell 25, 765–778 (2007).
CAS PubMed PubMed Central Google Scholar
- Baumann, C. T. et al. The glucocorticoid receptor interacting protein 1 (GRIP1) localizes in discrete nuclear foci that associate with ND10 bodies and are enriched in components of the 26S proteasome. Mol. Endocrinol. 15, 485–500 (2001).
CAS PubMed Google Scholar
- Shao, W., Keeton, E. K., McDonnell, D. P. & Brown, M. Coactivator AIB1 links estrogen receptor transcriptional activity and stability. Proc. Natl Acad. Sci. USA 101, 11599–11604 (2004).
CAS PubMed PubMed Central Google Scholar
- Yan, F., Gao, X., Lonard, D. M. & Nawaz, Z. Specific ubiquitin-conjugating enzymes promote degradation of specific nuclear receptor coactivators. Mol. Endocrinol. 17, 1315–1331 (2003).
CAS PubMed Google Scholar
- Imhof, M. O. & McDonnell, D. P. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol. Cell. Biol. 16, 2594–2605 (1996).
CAS PubMed PubMed Central Google Scholar
- Lonard, D. M., Nawaz, Z., Smith, C. L. & O'Malley, B. W. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation. Mol. Cell 5, 939–948 (2000).
CAS PubMed Google Scholar
- Gianni, M. et al. P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARα-mediated transcription. EMBO J. 25, 739–751 (2006).
CAS PubMed PubMed Central Google Scholar
- Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233–239 (1998).
CAS PubMed Google Scholar
- Kirsh, O. et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 21, 2682–2691 (2002).
CAS PubMed PubMed Central Google Scholar
- Chauchereau, A., Amazit, L., Quesne, M., Guiochon-Mantel, A. & Milgrom, E. Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J. Biol. Chem. 278, 12335–12343 (2003).
CAS PubMed Google Scholar
- Jimenez-Lara, A. M., Heine, M. J. & Gronemeyer, H. PIAS3 (protein inhibitor of activated STAT-3) modulates the transcriptional activation mediated by the nuclear receptor coactivator TIF2. FEBS Lett. 526, 142–146 (2002).
CAS PubMed Google Scholar
- Kotaja, N., Vihinen, M., Palvimo, J. J. & Janne, O. A. Androgen receptor-interacting protein 3 and other PIAS proteins cooperate with glucocorticoid receptor-interacting protein 1 in steroid receptor-dependent signaling. J. Biol. Chem. 277, 17781–17788 (2002).
CAS PubMed Google Scholar
- Kotaja, N., Karvonen, U., Janne, O. A. & Palvimo, J. J. The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J. Biol. Chem. 277, 30283–30288 (2002).
CAS PubMed Google Scholar
- Wu, H. et al. Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. J. Biol. Chem. 281, 21848–21856 (2006).
CAS PubMed Google Scholar
- Li, X. et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGγ proteasome. Cell 124, 381–392 (2006).
CAS PubMed Google Scholar
- Chen, H., Lin, R. J., Xie, W., Wilpitz, D. & Evans, R. M. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98, 675–686 (1999).
CAS PubMed Google Scholar
- Feng, Q., Yi, P., Wong, J. & O'Malley, B. W. Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol. Cell. Biol. 26, 7846–7857 (2006).
CAS PubMed PubMed Central Google Scholar
- Naeem, H. et al. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol. Cell. Biol. 27, 120–134 (2007).
CAS PubMed Google Scholar
- Mark, M. et al. Partially redundant functions of SRC-1 and TIF2 in postnatal survival and male reproduction. Proc. Natl Acad. Sci. USA 101, 4453–4458 (2004).
CAS PubMed PubMed Central Google Scholar
- Wang, Z. et al. Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell. Metab. 3, 111–122 (2006).
CAS PubMed Google Scholar
- Fleming, F. J., Hill, A. D., McDermott, E. W., O'Higgins, N. J. & Young, L. S. Differential recruitment of coregulator proteins steroid receptor coactivator-1 and silencing mediator for retinoid and thyroid receptors to the estrogen receptor-estrogen response element by β-estradiol and 4-hydroxytamoxifen in human breast cancer. J. Clin. Endocrinol. Metab. 89, 375–383 (2004).
CAS PubMed Google Scholar
- Fleming, F. J. et al. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J. Clin. Pathol. 57, 1069–1074 (2004). This article reported that SRC1 expression in breast cancer was correlated with ERBB2 positivity and worse DFS.
CAS PubMed PubMed Central Google Scholar
- Myers, E. et al. Inverse relationship between ER-β and SRC-1 predicts outcome in endocrine-resistant breast cancer. Br. J. Cancer 91, 1687–1693 (2004).
CAS PubMed PubMed Central Google Scholar
- Hudelist, G. et al. Expression of sex steroid receptors and their co-factors in normal and malignant breast tissue: AIB1 is a carcinoma-specific co-activator. Breast Cancer Res. Treat. 78, 193–204 (2003).
CAS PubMed Google Scholar
- List, H. J., Reiter, R., Singh, B., Wellstein, A. & Riegel, A. T. Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res. Treat. 68, 21–28 (2001).
CAS PubMed Google Scholar
- Qin, L. et al. The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol. Cell. Biol. 28, 5937–5950 (2008).
CAS PubMed PubMed Central Google Scholar
- Redmond, A. M. et al. Coassociation of estrogen receptor and p160 proteins predicts resistance to endocrine treatment; SRC-1 is an independent predictor of breast cancer recurrence. Clin. Cancer Res. 15, 2098–2106 (2009).
CAS PubMed Google Scholar
- Tai, H., Kubota, N. & Kato, S. Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. Biochem. Biophys. Res. Commun. 267, 311–316 (2000).
CAS PubMed Google Scholar
- Cavarretta, I. T. et al. Reduction of coactivator expression by antisense oligodeoxynucleotides inhibits ERα transcriptional activity and MCF-7 proliferation. Mol. Endocrinol. 16, 253–270 (2002).
CAS PubMed Google Scholar
- Wei, X., Xu, H. & Kufe, D. MUC1 oncoprotein stabilizes and activates estrogen receptor α. Mol. Cell 21, 295–305 (2006).
CAS PubMed Google Scholar
- Kishimoto, H. et al. The p160 family coactivators regulate breast cancer cell proliferation and invasion through autocrine/paracrine activity of SDF-1α/CXCL12. Carcinogenesis 26, 1706–1715 (2005).
CAS PubMed Google Scholar
- Wang, S. et al. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc. Natl Acad. Sci. USA 106, 151–156 (2009). This article first reported that SRC1 deficiency strongly suppressed breast cancer metastasis in MMTV-PyMT mice by inhibiting ERBB2 and CSF1 expression.
CAS PubMed Google Scholar
- Qin, L., Liu, Z., Chen, H. & Xu, J. The steroid receptor coactivator-1 (SRC-1) regulates Twist expression and promotes breast cancer metastasis. Cancer Res. 69, 3819–3827 (2009).
CAS PubMed PubMed Central Google Scholar
- Girault, I. et al. Expression analysis of estrogen receptor α coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin. Cancer Res. 9, 1259–1266 (2003).
CAS PubMed Google Scholar
- Bautista, S. et al. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin. Cancer Res. 4, 2925–2929 (1998).
CAS PubMed Google Scholar
- Zhao, C. et al. Elevated expression levels of NCOA3, TOP1, and TFAP2C in breast tumors as predictors of poor prognosis. Cancer 98, 18–23 (2003).
CAS PubMed Google Scholar
- Glaeser, M., Floetotto, T., Hanstein, B., Beckmann, M. W. & Niederacher, D. Gene amplification and expression of the steroid receptor coactivator SRC3 (AIB1) in sporadic breast and endometrial carcinomas. Horm. Metab. Res. 33, 121–126 (2001).
CAS PubMed Google Scholar
- Font de Mora, J. & Brown, M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol. Cell. Biol. 20, 5041–5047 (2000).
CAS PubMed PubMed Central Google Scholar
- Smith, C. L., Nawaz, Z. & O'Malley, B. W. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol. Endocrinol. 11, 657–666 (1997).
CAS PubMed Google Scholar
- Planas-Silva, M. D., Shang, Y., Donaher, J. L., Brown, M. & Weinberg, R. A. AIB1 enhances estrogen-dependent induction of cyclin D1 expression. Cancer Res. 61, 3858–3862 (2001).
CAS PubMed Google Scholar
- List, H. J. et al. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIB1 is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells. J. Biol. Chem. 276, 23763–23768 (2001).
CAS PubMed Google Scholar
- Kuang, S. Q. et al. AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res. 64, 1875–1885 (2004). This article first demonstrated that SRC3 deficiency suppressed oncogene-induced mammary tumour initiation, growth and metastasis and inhibited the IGF1 signalling pathways by downregulating IGF1, IRS1 and IRS2.
CAS PubMed Google Scholar
- Kuang, S. Q. et al. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis. Cancer Res. 65, 7993–8002 (2005). This article demonstrated that SRC3 deficiency specifically protected mouse mammary gland from chemical carcinogen-induced tumorigenesis.
CAS PubMed Google Scholar
- Fereshteh, M. P. et al. The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res. 68, 3697–3706 (2008).
CAS PubMed PubMed Central Google Scholar
- Torres-Arzayus, M. I. et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6, 263–274 (2004). This article demonstrated that overexpression of SRC3 in mouse mammary epithelial cells caused spontaneous mammary tumors, suggesting that overexpressed SRC3 is oncogenic.
CAS PubMed Google Scholar
- Maki, H. E. et al. Screening of genetic and expression alterations of SRC1 gene in prostate cancer. Prostate 66, 1391–1398 (2006).
CAS PubMed Google Scholar
- Agoulnik, I. U. et al. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res. 65, 7959–7967 (2005).
CAS PubMed Google Scholar
- Gregory, C. W. et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 61, 4315–4319 (2001).
CAS PubMed Google Scholar
- Fujimoto, N., Mizokami, A., Harada, S. & Matsumoto, T. Different expression of androgen receptor coactivators in human prostate. Urology 58, 289–294 (2001).
CAS PubMed Google Scholar
- Mori, R. et al. Prognostic value of the androgen receptor and its coactivators in patients with D1 prostate cancer. Anticancer Res. 28, 425–430 (2008).
CAS PubMed Google Scholar
- Tien, J. C.-Y., Zhou, S. & Xu, J. The role of SRC-1 in murine prostate carcinogenesis is nonessential due to a possible compensation of SRC-3/AIB1 overexpression. Int. J. Biol. Sci. 5, 256–264 (2009).
CAS PubMed PubMed Central Google Scholar
- Agoulnik, I. U. et al. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res. 66, 10594–10602 (2006).
CAS PubMed Google Scholar
- Gnanapragasam, V. J., Leung, H. Y., Pulimood, A. S., Neal, D. E. & Robson, C. N. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br. J. Cancer 85, 1928–1936 (2001).
CAS PubMed PubMed Central Google Scholar
- Zhou, H. J. et al. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res. 65, 7976–7983 (2005).
CAS PubMed Google Scholar
- Zhou, G., Hashimoto, Y., Kwak, I., Tsai, S. Y. & Tsai, M. J. Role of the steroid receptor coactivator SRC-3 in cell growth. Mol. Cell. Biol. 23, 7742–7755 (2003).
CAS PubMed PubMed Central Google Scholar
- Chung, A. C. et al. Genetic ablation of the amplified-in-breast cancer 1 inhibits spontaneous prostate cancer progression in mice. Cancer Res. 67, 5965–5975 (2007). This article first reported that SRC3 deficiency in mice arrested spontaneous prostate cancer progression at a well-differentiated stage.
CAS PubMed PubMed Central Google Scholar
- Xie, D. et al. Correlation of AIB1 overexpression with advanced clinical stage of human colorectal carcinoma. Hum. Pathol. 36, 777–783 (2005).
CAS PubMed Google Scholar
- Kershah, S. M., Desouki, M. M., Koterba, K. L. & Rowan, B. G. Expression of estrogen receptor coregulators in normal and malignant human endometrium. Gynecol. Oncol. 92, 304–313 (2004).
CAS PubMed Google Scholar
- Uchikawa, J. et al. Expression of steroid receptor coactivators and corepressors in human endometrial hyperplasia and carcinoma with relevance to steroid receptors and Ki-67 expression. Cancer 98, 2207–2213 (2003).
CAS PubMed Google Scholar
- Balmer, N. N. et al. Steroid receptor coactivator AIB1 in endometrial carcinoma, hyperplasia and normal endometrium: correlation with clinicopathologic parameters and biomarkers. Mod. Pathol. 19, 1593–1605 (2006).
CAS PubMed Google Scholar
- Xu, F. P. et al. SRC-3/AIB1 protein and gene amplification levels in human esophageal squamous cell carcinomas. Cancer Lett. 245, 69–74 (2007).
CAS PubMed Google Scholar
- Sakakura, C. et al. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int. J. Cancer 89, 217–223 (2000).
CAS PubMed Google Scholar
- Yoshida, H. et al. Steroid receptor coactivator-3, a homolog of Taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol. Cell. Endocrinol. 245, 77–85 (2005).
CAS PubMed Google Scholar
- Henke, R. T. et al. Overexpression of the nuclear receptor coactivator AIB1 (SRC-3) during progression of pancreatic adenocarcinoma. Clin. Cancer Res. 10, 6134–6142 (2004).
CAS PubMed Google Scholar
- Carapeti, M., Aguiar, R. C., Goldman, J. M. & Cross, N. C. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91, 3127–3133 (1998).
CAS PubMed Google Scholar
- Liang, J., Prouty, L., Williams, B. J., Dayton, M. A. & Blanchard, K. L. Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92, 2118–2122 (1998).
CAS PubMed Google Scholar
- Deguchi, K. et al. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3, 259–271 (2003).
CAS PubMed Google Scholar
- Huntly, B. J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).
CAS PubMed Google Scholar
- Coste, A. et al. Absence of the steroid receptor coactivator-3 induces B-cell lymphoma. EMBO J. 25, 2453–2464 (2006).
CAS PubMed PubMed Central Google Scholar
- Lahusen, T., Fereshteh, M., Oh, A., Wellstein, A. & Riegel, A. T. Epidermal growth factor receptor tyrosine phosphorylation and signaling controlled by a nuclear receptor coactivator, amplified in breast cancer 1. Cancer Res. 67, 7256–7265 (2007).
CAS PubMed PubMed Central Google Scholar
- Yan, J. et al. Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression. Cancer Res. 68, 5460–5468 (2008).
CAS PubMed PubMed Central Google Scholar
- Louie, M. C., Revenko, A. S., Zou, J. X., Yao, J. & Chen, H. W. Direct control of cell cycle gene expression by proto-oncogene product ACTR, and its autoregulation underlies its transforming activity. Mol. Cell. Biol. 26, 3810–3823 (2006).
CAS PubMed PubMed Central Google Scholar
- Louie, M. C., Zou, J. X., Rabinovich, A. & Chen, H. W. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol. Cell. Biol. 24, 5157–5171 (2004).
CAS PubMed PubMed Central Google Scholar
- Mussi, P., Yu, C., O'Malley, B. W. & Xu, J. Stimulation of steroid receptor coactivator-3 (SRC-3) gene overexpression by a positive regulatory loop of E2F1 and SRC-3. Mol. Endocrinol. 20, 3105–3119 (2006).
CAS PubMed Google Scholar
- Mukherjee, A. et al. Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol. Cell. Biol. 26, 6571–6583 (2006).
CAS PubMed PubMed Central Google Scholar
- Liu, Z., Liao, L., Zhou, S. & Xu, J. Generation and validation of a mouse line with a floxed SRC-3/AIB1 allele for conditional knockout. Int. J. Biol. Sci. 4, 202–207 (2008).
CAS PubMed PubMed Central Google Scholar
- Xu, J. et al. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279, 1922–1925 (1998). This article first reported the phenotype of SRC1-knockout mice and demonstrated an important physiological role of the co-activator in vivo .
CAS PubMed Google Scholar
- Weiss, R. E. et al. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J. 18, 1900–1904 (1999).
CAS PubMed PubMed Central Google Scholar
- Kamiya, Y. et al. Modulation by steroid receptor coactivator-1 of target-tissue responsiveness in resistance to thyroid hormone. Endocrinology 144, 4144–4153 (2003).
CAS PubMed Google Scholar
- Puigserver, P. et al. Activation of PPARγcoactivator-1 through transcription factor docking. Science 286, 1368–1371 (1999).
CAS PubMed Google Scholar
- Picard, F. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931–941 (2002).
CAS PubMed Google Scholar
- Gehin, M. et al. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol. Cell. Biol. 22, 5923–5937 (2002).
CAS PubMed PubMed Central Google Scholar
- Ye, X. et al. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Proc. Natl Acad. Sci. USA 102, 9487–9492 (2005).
CAS PubMed PubMed Central Google Scholar
- Chopra, A. R. et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 322, 1395–1399 (2008).
CAS PubMed PubMed Central Google Scholar
- Xu, J. et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl Acad. Sci. USA 97, 6379–6384 (2000). This article first reported the phenotype of SRC3-knockout mice and demonstrated that SRC3 has an important role in growth and mammary gland development.
CAS PubMed PubMed Central Google Scholar
- Wang, Z. et al. Regulation of somatic growth by the p160 coactivator p/CIP. Proc. Natl Acad. Sci. USA 97, 13549–13554 (2000).
CAS PubMed PubMed Central Google Scholar
- Liao, L., Chen, X., Wang, S., Parlow, A. F. & Xu, J. Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression. Mol. Cell. Biol. 28, 2460–2469 (2008).
CAS PubMed PubMed Central Google Scholar
- Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).
CAS PubMed Google Scholar
- Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).
CAS PubMed Google Scholar
- Beischlag, T. V. et al. Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol. Cell. Biol. 22, 4319–4333 (2002).
CAS PubMed PubMed Central Google Scholar
- Carlson, D. B. & Perdew, G. H. A dynamic role for the Ah receptor in cell signaling? Insights from a diverse group of Ah receptor interacting proteins. J. Biochem. Mol. Toxicol. 16, 317–325 (2002).
CAS PubMed Google Scholar
- Kumar, M. B. & Perdew, G. H. Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr. 8, 273–286 (1999).
CAS PubMed Google Scholar
- Lee, S. K. et al. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J. Biol. Chem. 273, 16651–16654 (1998).
CAS PubMed Google Scholar
- Dennis, J. H., Budhram-Mahadeo, V. & Latchman, D. S. Functional interaction between Brn-3a and Src-1 co-activates Brn-3a-mediated transactivation. Biochem. Biophys. Res. Commun. 294, 487–495 (2002).
CAS PubMed Google Scholar
- Song, L. N. & Gelmann, E. P. Interaction of β-catenin and TIF2/GRIP1 in transcriptional activation by the androgen receptor. J. Biol. Chem. 280, 37853–37867 (2005).
CAS PubMed Google Scholar
- Goel, A. & Janknecht, R. Concerted activation of ETS protein ER81 by p160 coactivators, the acetyltransferase p300 and the receptor tyrosine kinase HER2/Neu. J. Biol. Chem. 279, 14909–14916 (2004).
CAS PubMed Google Scholar
- Martinez-Jimenez, C. P., Castell, J. V., Gomez-Lechon, M. J. & Jover, R. Transcriptional activation of CYP2C9, CYP1A1, and CYP1A2 by hepatocyte nuclear factor 4α requires coactivators peroxisomal proliferator activated receptor-γ coactivator 1α and steroid receptor coactivator 1. Mol. Pharmacol. 70, 1681–1692 (2006).
CAS PubMed Google Scholar
- Wang, J. C., Stafford, J. M. & Granner, D. K. SRC-1 and GRIP1 coactivate transcription with hepatocyte nuclear factor 4. J. Biol. Chem. 273, 30847–30850 (1998).
CAS PubMed Google Scholar
- Reily, M. M., Pantoja, C., Hu, X., Chinenov, Y. & Rogatsky, I. The GRIP1:IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression. EMBO J. 25, 108–117 (2006).
CAS PubMed Google Scholar
- Gao, Z. et al. Coactivators and corepressors of NF-κB in IκB alpha gene promoter. J. Biol. Chem. 280, 21091–21098 (2005).
CAS PubMed Google Scholar
- Li, G., Heaton, J. H. & Gelehrter, T. D. Role of steroid receptor coactivators in glucocorticoid and transforming growth factor βregulation of plasminogen activator inhibitor gene expression. Mol. Endocrinol. 20, 1025–1034 (2006).
CAS PubMed Google Scholar
- Kino, T., Slobodskaya, O., Pavlakis, G. N. & Chrousos, G. P. Nuclear receptor coactivator p160 proteins enhance the HIV-1 long terminal repeat promoter by bridging promoter-bound factors and the Tat-P-TEFb complex. J. Biol. Chem. 277, 2396–2405 (2002).
CAS PubMed Google Scholar
- Yi, M., Tong, G. X., Murry, B. & Mendelson, C. R. Role of CBP/p300 and SRC-1 in transcriptional regulation of the pulmonary surfactant protein-A (SP-A) gene by thyroid transcription factor-1 (TTF-1). J. Biol. Chem. 277, 2997–3005 (2002).
CAS PubMed Google Scholar
- Baldwin, A., Huh, K. W. & Munger, K. Human papillomavirus E7 oncoprotein dysregulates steroid receptor coactivator 1 localization and function. J. Virol. 80, 6669–6677 (2006).
CAS PubMed PubMed Central Google Scholar
- Lee, S. K., Kim, H. J., Kim, J. W. & Lee, J. W. Steroid receptor coactivator-1 and its family members differentially regulate transactivation by the tumor suppressor protein p53. Mol. Endocrinol. 13, 1924–1933 (1999).
CAS PubMed Google Scholar
- Batsche, E., Desroches, J., Bilodeau, S., Gauthier, Y. & Drouin, J. Rb enhances p160/SRC coactivator-dependent activity of nuclear receptors and hormone responsiveness. J. Biol. Chem. 280, 19746–19756 (2005).
CAS PubMed Google Scholar
- Brosens, J. J., Hayashi, N. & White, J. O. Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cells. Endocrinology 140, 4809–4820 (1999).
CAS PubMed Google Scholar
- Mani, A. et al. E6AP mediates regulated proteasomal degradation of the nuclear receptor coactivator amplified in breast cancer 1 in immortalized cells. Cancer Res. 66, 8680–8686 (2006).
CAS PubMed Google Scholar
- Verma, S. et al. The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol. Cell. Biol. 24, 8716–8726 (2004).
CAS PubMed PubMed Central Google Scholar
- Zhang, A. et al. Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators. J. Biol. Chem. 279, 33799–33805 (2004).
CAS PubMed Google Scholar
- Lee, S. K. et al. A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo. J. Biol. Chem. 274, 34283–34293 (1999).
CAS PubMed Google Scholar
- Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).
CAS PubMed Google Scholar
- Wu, X., Li, H. & Chen, J. D. The human homologue of the yeast DNA repair and TFIIH regulator MMS19 is an AF-1-specific coactivator of estrogen receptor. J. Biol. Chem. 276, 23962–23968 (2001).
CAS PubMed Google Scholar
- Kino, T. & Chrousos, G. P. Tumor necrosis factor α receptor- and Fas-associated FLASH inhibit transcriptional activity of the glucocorticoid receptor by binding to and interfering with its interaction with p160 type nuclear receptor coactivators. J. Biol. Chem. 278, 3023–3029 (2003).
CAS PubMed Google Scholar
- Kino, T., Ichijo, T. & Chrousos, G. P. FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors. J. Steroid Biochem. Mol. Biol. 92, 357–363 (2004).
CAS PubMed Google Scholar
- Liang, J., Zhang, H., Zhang, Y., Zhang, Y. & Shang, Y. GAS, a new glutamate-rich protein, interacts differentially with SRCs and is involved in oestrogen receptor function. EMBO Rep. 10, 51–57 (2009).
CAS PubMed Google Scholar
- Chauchereau, A., Georgiakaki, M., Perrin-Wolff, M., Milgrom, E. & Loosfelt, H. JAB1 interacts with both the progesterone receptor and SRC-1. J. Biol. Chem. 275, 8540–8548 (2000).
CAS PubMed Google Scholar
- Yi, P. et al. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol. Cell. Biol. 25, 9687–9699 (2005).
CAS PubMed PubMed Central Google Scholar
- Lanz, R. B. et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 17–27 (1999).
CAS PubMed Google Scholar
- Berns, E. M., van Staveren, I. L., Klijn, J. G. & Foekens, J. A. Predictive value of SRC-1 for tamoxifen response of recurrent breast cancer. Breast Cancer Res. Treat. 48, 87–92 (1998).
CAS PubMed Google Scholar
- Carroll, R. S. et al. Expression of a subset of steroid receptor cofactors is associated with progesterone receptor expression in meningiomas. Clin. Cancer Res. 6, 3570–3575 (2000).
CAS PubMed Google Scholar
- Hussein-Fikret, S. & Fuller, P. J. Expression of nuclear receptor coregulators in ovarian stromal and epithelial tumours. Mol. Cell. Endocrinol. 229, 149–160 (2005).
CAS PubMed Google Scholar
- Lassmann, S. et al. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J. Mol. Med. 85, 293–304 (2007).
CAS PubMed Google Scholar
- Fujita, Y. et al. Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Hepatogastroenterology 50, 1857–1863 (2003).
CAS PubMed Google Scholar
- Wang, Y. et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer 95, 2346–2352 (2002).
CAS PubMed Google Scholar
- Chen, Y. J. et al. Genome-wide profiling of oral squamous cell carcinoma. J. Pathol. 204, 326–332 (2004).
CAS PubMed Google Scholar
- Tanner, M. M. et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin. Cancer Res. 6, 1833–1839 (2000).
CAS PubMed Google Scholar