Mannose 6-phosphate receptors: new twists in the tale (original) (raw)

References

  1. Dahms, N. M. & Hancock, M. K. P-type lectins. Biochim. Biophys. Acta. 1572, 317–340 (2002).
    CAS PubMed Google Scholar
  2. Kornfeld, S. Structure and function of the mannose 6-phosphate/insulin like growth factor II receptors. Annu. Rev. Biochem. 61, 307–330 (1992).
    CAS PubMed Google Scholar
  3. Hille-Rehfeld, A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim. Biophys. Acta. 1241, 177–194 (1995).
    PubMed Google Scholar
  4. Le Borgne, R. & Hoflack, B. Protein transport from the secretory to the endocytic pathway in mammalian cells. Biochim. Biophys. Acta. 1404, 195–209 (1998).
    CAS PubMed Google Scholar
  5. Lobel, P., Dahms, N. M. & Kornfeld, S. Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor. J. Biol. Chem. 263, 2563–2570 (1988).
    CAS PubMed Google Scholar
  6. Hancock, M. K., Haskins, D. J., Sun, G. & Dahms, N. M. Identification of residues essential for carbohydrate recognition by the insulin-like growth factor II/mannose 6-phosphate receptor. J. Biol. Chem. 277, 11255–11264 (2002).
    CAS PubMed Google Scholar
  7. Marron-Terada, P. G., Hancock, D. J., Haskins, D. J. & Dahms, N. M. Recognition of Dictyostelium discoideum lysosomal enzymes is conferred by the amino-terminal carbohydrate binding site of the insulin-like growth factor II/mannose 6-phosphate receptor. Biochemistry 39, 2243–2253 (2000).
    CAS PubMed Google Scholar
  8. Schmidt, B., Kiecke-Siemsen, C., Waheed, A., Braulke, T. & von Figura, K. Localization of the insulin-like growth factor II binding site to amino acids 1508–1566 in repeat 11 of the mannose 6-phosphate/insulin-like growth factor II receptor. J. Biol. Chem. 270, 14975–14982 (1995).
    CAS PubMed Google Scholar
  9. Garmroudi, F., Devi, G., Slentz, D. H., Schaffer, B. S. & MacDonald, R. G. Truncated forms of the insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor encompassing the IGF-II binding site: characterization of a point mutation that abolishes IGF-II binding. Mol. Endocrinol. 10, 642–651 (1996). References 6–9 characterize the carbohydrate-binding domain and the IGF-II-binding site on the CI-MPR.
    CAS PubMed Google Scholar
  10. Meresse, S., Ludwig, T., Frank, R. & Hoflack, B. Phosphorylation of the cytoplasmic domain of the bovine cation-independent mannose 6-phosphate receptor. Serines 2421 and 2492 are the targets of a casein kinase II associated to the Golgi-derived HAI adaptor complex. J. Biol. Chem. 265, 18833–18842 (1990).
    CAS PubMed Google Scholar
  11. Rosorius, O. et al. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose 6-phosphate receptor. Biochem. J. 292, 833–838 (1993).
    CAS PubMed Central PubMed Google Scholar
  12. Schweizer, A., Kornfeld, S. & Rohrer, J. Cysteine 34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting. J. Cell Biol. 132, 577–584 (1996).
    CAS PubMed Google Scholar
  13. York, S. J., Arneson, L. S., Gregory, W. T., Dahms, N. M. & Kornfeld, S. The rate of internalization of the mannose 6-phosphate/insulin-like growth factor II receptor is enhanced by multivalent ligand binding. J. Biol. Chem. 274, 1164–1171 (1999).
    CAS PubMed Google Scholar
  14. Byrd, J. C. & MacDonald, R. G. Mechanisms for high affinity mannose 6-phosphate ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor. Negative cooperativity and receptor oligomerization. J. Biol. Chem. 275, 18638–18646 (2000).
    CAS PubMed Google Scholar
  15. Byrd, J. C., Park, J. H., Schaffer, B. S., Garmroudi, F. & MacDonald, R. G. Dimerization of the insulin-like growth factor II/mannose 6-phosphate receptor. J. Biol. Chem. 275, 18647–18656 (2000).
    CAS PubMed Google Scholar
  16. Roberts, D. L., Weix, D. J., Dahms, N. M. & Kim, J. -J. P. Molecular basis of lysosomal enzyme recognition: three-dimensional structure of the cation-dependent mannose 6-phosphate receptor. Cell 93, 639–648 (1998).
    CAS PubMed Google Scholar
  17. Olson, L. J., Zhang, J., Lee, Y. C., Dahms, N. M. & Kim, J. -J. P. Structural basis for recognition of phosphorylated high mannose oligosaccharides by the cation-dependent mannose 6-phosphate receptor. J. Biol. Chem. 274, 29889–29896 (1999).
    CAS PubMed Google Scholar
  18. Olson, L. J., Zhang, J., Dahms, N. M. & Kim, J. -J. P. Twists and turns of the CD-MPR: ligand-bound versus ligand-free receptor. J. Biol. Chem. 277, 10156–10161 (2002). References 16–18 provide useful insights into the structural basis for M6P-containing ligand recognition by the CD-MPR.
    CAS PubMed Google Scholar
  19. Brown, J. et al. Structure of a functional IGF2R fragment determined from the anomalous scattering of sulfur. EMBO J. 21, 1054–1062 (2002). This work presents a high-resolution crystal structure of the eleventh domain of the CI-MPR that functions as the IGF-II-binding domain.
    CAS PubMed Central PubMed Google Scholar
  20. Zeslawski, W. et al. The interaction of insulin-like growth factor-I with the N-terminal domain of IGFBP-5. EMBO J. 20, 3638–3644 (2001).
    CAS PubMed Central PubMed Google Scholar
  21. Devi, G. R., Byrd, J. C., Slentz, D. H. & MacDonald, R. G. An insulin-like growth factor II (IGF-II) affinity-enhancing domain localized within extracytoplasmic repeat 13 of the IGF-II/mannose 6-phosphate receptor. Mol. Endocrinol. 12, 1661–1672 (1998).
    CAS PubMed Google Scholar
  22. Linnell, J., Groeger, G. & Hassan, A. B. Real time kinetics of insulin-like growth factor II (IGF-II) interaction with the IGF-II/mannose 6-phosphate receptor: the effects of domain 13 and pH. J. Biol. Chem. 276, 23986–23991 (2001).
    CAS PubMed Google Scholar
  23. Rohrer, J. & Kornfeld, R. Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the _trans_-Golgi network. Mol. Biol. Cell 12, 1623–1631 (2001).
    CAS PubMed Central PubMed Google Scholar
  24. Klumperman, J. et al. Differences in the endosomal distributions of the two mannose 6-phosphate receptors. J. Cell Biol. 121, 997–1010 (1993). This report established that the two receptors exit the trans -Golgi network through AP1-positive clathrin-coated buds and vesicles.
    CAS PubMed Google Scholar
  25. Campbell, C. H. & Rome, L. H. Coated vesicles from rat liver and calf brain contain lysosomal enzymes bound to mannose 6-phosphate receptors. J. Biol. Chem. 258, 13347–13352 (1983).
    CAS PubMed Google Scholar
  26. Schulze-Lohoff, E., Hasilik, A. & von Figura, K. Cathepsin D precursors in clathrin-coated organelles from human fibroblasts. J. Cell Biol. 101, 824–829 (1985). References 25 and 26 showed that clathrin-coated vesicles function as transport carriers for lysosomal enzymes en route from the Golgi to the endosomal–lysosomal compartments.
    CAS PubMed Google Scholar
  27. Johnson, K. F. & Kornfeld, S. The cytoplasmic tail of the mannose 6-phosphate/insulin-like growth factor-II receptor has two signals for lysosomal enzyme sorting in the Golgi. J. Cell Biol. 119, 249–257 (1992).
    CAS PubMed Google Scholar
  28. Johnson, K. F. & Kornfeld, S. A His–Leu–Leu sequence near the carboxyl terminus of the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor is necessary for the lysosomal enzyme sorting function. J. Biol. Chem. 267, 17110–17115 (1992).
    CAS PubMed Google Scholar
  29. Chen, H. J., Remmler, J., Delaney, J. C., Messner, D. J. & Lobel, P. Mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor. A consensus casein kinase II site followed by 2 leucines near the carboxyl terminus is important for intracellular targeting of lysosomal enzymes. J. Biol. Chem. 268, 22338–22346 (1993).
    CAS PubMed Google Scholar
  30. Chen, H. J., Yuan, J. & Lobel, P. Systematic mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor cytoplasmic domain. An acidic cluster containing a key aspartate is important for function in lysosomal enzyme sorting. J. Biol. Chem. 272, 7003–7012 (1997). References 27–30 establish the role of the AC-LL signal in trafficking of the mannose 6-phosphate receptors from the trans -Golgi network to endosomes.
    CAS PubMed Google Scholar
  31. Mauxion, F., Le Borgne, R., Munier-Lehmann, H. & Hoflack, B. A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J. Biol. Chem. 271, 2171–2178 (1996).
    CAS PubMed Google Scholar
  32. Honing S., Sosa M., Hille-Rehfeld, A. & von Figura, K. The 46-kDa mannose 6-phosphate receptor contains multiple binding sites for clathrin adaptors. J. Biol. Chem. 272, 19884–19890 (1997).
    CAS PubMed Google Scholar
  33. Poussu A., Lohi, O. & Lehto, V. P. Vear, a novel Golgi-associated protein with VHS and γ-adaptin 'ear' domains. J. Biol. Chem. 275, 7176–7183 (2000).
    CAS PubMed Google Scholar
  34. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the _trans_-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67–80 (2000).
    CAS PubMed Central PubMed Google Scholar
  35. Dell'Angelica, E. C. et al. GGAs: A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–94 (2000).
    CAS PubMed Central PubMed Google Scholar
  36. Boman, A. L., Zhang, C., Zhu, X. & Kahn, R. A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the _trans_-Golgi. Mol. Biol. Cell 11, 1241–1255 (2000).
    CAS PubMed Central PubMed Google Scholar
  37. Takatsu, H., Yoshino, K. & Nakayama, K. Adaptor γ ear homology domain conserved in γ-adaptin and GGA proteins that interact with γ-synergin. Biochem. Biophys. Res. Commun. 271, 719–725 (2000). References 33–37 cite the five groups that simultaneously and independently discovered the GGA family of adaptors.
    CAS PubMed Google Scholar
  38. Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J. & Bonifacino, J. S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).
    CAS PubMed Google Scholar
  39. Zhu, Y., Doray, B., Poussu, A., Lehto, V. P. & Kornfeld, S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292, 1716–1718 (2001).
    CAS PubMed Google Scholar
  40. Takatsu, H., Katoh, Y., Shiba, Y. & Nakayama, K. Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J. Biol. Chem. 276, 28541–28545 (2001). References 38–40 implicated the GGAs in sorting of mannose 6-phosphate receptors at the trans -Golgi network.
    CAS PubMed Google Scholar
  41. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S. & Hurley, J. H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002).
    CAS PubMed Google Scholar
  42. Shiba, T. et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415, 937–941 (2002). References 41 and 42 demonstrate the structural basis for the recognition of the AC–LL signal in the cytoplasmic tail of the MPR by the VHS domain of the GGA protein.
    CAS PubMed Google Scholar
  43. Jacobsen, L. et al. The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding. FEBS Lett. 511, 155–158 (2002).
    CAS PubMed Google Scholar
  44. Doray, B., Bruns, K., Ghosh, P. & Kornfeld, S. Interaction of the cation-dependent mannose 6-phosphate receptor with GGA proteins. J. Biol. Chem. 277, 18477–18482 (2002).
    CAS PubMed Google Scholar
  45. Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M. & Bonifacino, J. S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell. 105, 93–102 (2001).
    CAS PubMed Google Scholar
  46. Dittie, A. S., Thomas, L., Thomas, G. & Tooze, S. A. Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase II phosphorylation. EMBO J. 16, 4859–4870 (1997).
    CAS PubMed Central PubMed Google Scholar
  47. Le Borgne, R., Schmidt, A., Mauxion, F., Griffiths, G. & Hoflack B. Binding of AP-1 Golgi adaptors to membranes requires phosphorylated cytoplasmic domains of the mannose 6-phosphate/insulin-like growth factor II receptor. J. Biol. Chem. 268, 22552–22556 (1993).
    CAS PubMed Google Scholar
  48. Ohno, H. et al. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J. Biol. Chem. 273, 25915–25921 (1998).
    CAS PubMed Google Scholar
  49. Owen, D. J. & Evans, P. R. A structural explanation for the recognition of tyrosine-based endocytic signals. Science. 282, 1327–1332 (1998).
    CAS PubMed Central PubMed Google Scholar
  50. Bremnes, T., Lauvrak, V., Lindqvist, B. & Bakke, O. A region from the medium chain adaptor subunit (μ) recognizes leucine- and tyrosine-based sorting signals. J. Biol. Chem. 273, 8638–8645 (1998).
    CAS PubMed Google Scholar
  51. Rapoport, I., Chen, Y. C., Cupers, P., Shoelson, S. E. & Kirchhausen, T. Dileucine-based sorting signals bind to the β chain of AP-1 at a site distinct and regulated differently from the tyrosine-based motif-binding site. EMBO J. 17, 2148–2155 (1998).
    CAS PubMed Central PubMed Google Scholar
  52. Black, M. W. & Pelham, H. R. A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. J. Cell Biol. 151, 587–600 (2000).
    CAS PubMed Central PubMed Google Scholar
  53. Costaguta, G., Stefan, C. J., Bensen, E. S., Emr S. D. & Payne, G. S. Yeast GGA coat proteins function with clathrin in Golgi to endosome transport. Mol. Biol. Cell 12. 1885–1896 (2001).
    CAS PubMed Central PubMed Google Scholar
  54. Hirst, J., Lindsay, M. R. & Robinson, M. S. GGAs: Roles of the different domains and comparison with AP-1 and clathrin. Mol. Biol. Cell 12, 3573–3588 (2001).
    CAS PubMed Central PubMed Google Scholar
  55. Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999).
    CAS PubMed Central PubMed Google Scholar
  56. Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic β-cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA 98, 2399–2406 (2001).
    CAS PubMed PubMed Central Google Scholar
  57. Doray, B., Ghosh, P., Griffith, J., Geuze, H. & Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the _trans_-Golgi network. Science, 297, 1700–1703 (2002). This work showed that GGAs and AP1 colocalize within clathrin-coated buds and vesicles at the trans -Golgi network (TGN) of mammalian cells, which indicates a cooperative model for AP1 and GGAs in trafficking of MPRs from the TGN to endosomes, as opposed to the independent pathways proposed in yeast.
    CAS PubMed Google Scholar
  58. Doray, B., Bruns, K., Ghosh, P. & Kornfeld, S. A. Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif. Proc. Natl Acad. Sci. USA 99, 8072–8077 (2002).
    CAS PubMed PubMed Central Google Scholar
  59. Huang, F., Nesterov, A., Carter, R. E. & Sorkin, A. Trafficking of yellow-fluorescent-protein-tagged μ1 subunit of clathrin adaptor AP-1 complex in living cells. Traffic 2, 345–357 (2001). The first evidence of AP1 in anterograde trafficking of MPRs using live-cell imaging techniques.
    CAS PubMed Google Scholar
  60. Waguri, S. et al. Visualization of TGN to endosomes trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol. Biol. Cell 14, 142–155 (2003).
    CAS PubMed Central PubMed Google Scholar
  61. Le Borgne, R. & Hoflack, B. Mannose 6-phosphate receptors regulate the formation of clathrin-coated vesicles in the TGN. J. Cell Biol. 137, 335–345 (1997).
    CAS PubMed Google Scholar
  62. Umeda, A., Meyerholz, A. & Ungewickell, E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur. J. Cell Biol. 79, 336–342 (2000).
    CAS PubMed Google Scholar
  63. Greener, T., Zhao, X., Nojima, H., Eisenberg, E. & Greene, L. E. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J. Biol. Chem. 275, 1365–1370 (2000).
    CAS PubMed Google Scholar
  64. Hannan, L. A., Newmyer, S. L. & Schmid, S. L. ATP- and cytosol-dependent release of adaptor proteins from clathrin-coated vesicles: a dual role for Hsc70. Mol. Biol. Cell 9, 2217–2229 (1998).
    CAS PubMed Central PubMed Google Scholar
  65. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose 6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).
    CAS PubMed Google Scholar
  66. Ludwig, T., Griffiths, G. & Hoflack, B. Distribution of newly synthesized lysosomal enzymes in the endocytic pathway of normal rat kidney cells. J. Cell Biol. 115, 1561–1572 (1991).
    CAS PubMed Google Scholar
  67. Press, B., Feng, Y., Hoflack, B. & Wandingerness, A. Mutant rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J. Cell Biol. 140, 1075–1089 (1998).
    CAS PubMed Central PubMed Google Scholar
  68. Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. & van Deurs, B. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell 11, 467–480 (2000).
    CAS PubMed Central PubMed Google Scholar
  69. Shiba, Y., Takatsu, H., Shin, H. W. & Nakayama, K. γ-adaptin interacts directly with rabaptin-5 through its ear domain. J. Biochem. 131, 327–336 (2002).
    CAS PubMed Google Scholar
  70. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432 (1995).
    CAS PubMed Google Scholar
  71. Bock, J. B., Klumperman, J., Davanger, S. & Scheller, R. H. Syntaxin 6 functions in _trans_-Golgi network vesicle trafficking. Mol. Biol. Cell 8, 1261–1271 (1997).
    CAS PubMed Central PubMed Google Scholar
  72. Prekeris, R., Klumperman, J., Chen, Y. A. & Scheller, R. H. Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell Biol. 143, 957–971 (1998).
    CAS PubMed Central PubMed Google Scholar
  73. Steegmaier, M., Klumperman, J., Foletti, D. L., Yoo, J. S. & Scheller, R. H. Vesicle-associated membrane protein 4 is implicated in _trans_-Golgi network vesicle trafficking. Mol. Biol. Cell 10, 1957–1972 (1999).
    CAS PubMed Central PubMed Google Scholar
  74. Klumperman, J., Kuliawat, R., Griffith, J. M., Geuze, H. J. & Arvan, P. Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J. Cell Biol. 141, 359–371 (1998).
    CAS PubMed Central PubMed Google Scholar
  75. Peden, A. A., Park, G. Y. & Scheller, R. H. The di-leucine motif of vesicle-associated membrane protein 4 is required for its localization and AP-1 binding. J. Biol. Chem. 276, 49183–49187 (2001).
    CAS PubMed Google Scholar
  76. Simonsen, A., Gaullier, J. M., D'Arrigo, A. & Stenmark, H. The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem. 274, 28857–28860 (1999).
    CAS PubMed Google Scholar
  77. Storrie, B. & Desjardins, M. The biogenesis of lysosomes: is it a kiss and run, continuous fusion and fission process? Bioessays 18, 895–903 (1996).
    CAS PubMed Google Scholar
  78. Schweizer, A., Kornfeld, S. & Rohrer, J. Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail. Proc. Natl Acad. Sci. USA 94, 14471–14476 (1997). This work established the importance of a di-aromatic sequence on the cytoplasmic tail of the CD-MPR in preventing it from entering lysosomes.
    CAS PubMed PubMed Central Google Scholar
  79. Diaz, E. & Pfeffer, S. R. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93, 433–443 (1998).
    CAS PubMed Google Scholar
  80. Orsel, J. G., Sincock, P. M., Krise, J. P. & Pfeffer, S. R. Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein. Proc. Natl Acad. Sci. USA 97, 9047–9051 (2000).
    CAS PubMed PubMed Central Google Scholar
  81. Carroll, K. S. et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 292, 1373–1376 (2001).
    CAS PubMed Google Scholar
  82. Barbero, P., Bittova, L. & Pfeffer, S. R. Visualization of Rab9-mediated vesicle transport from endosomes to the _trans_-Golgi in living cells. J. Cell Biol. 156, 511–518 (2002).
    CAS PubMed Central PubMed Google Scholar
  83. Riederer, M. A., Soldati, T., Shapiro, A. D., Lin, J. & Pfeffer, S. R. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the _trans_-Golgi network. J. Cell Biol. 125, 573–582 (1994). References 79–83 provide evidence that TIP47/Rab9 mediates sorting of the MPRs at the late endosome and has a role in retrograde trafficking to the Golgi.
    CAS PubMed Google Scholar
  84. Meyer, C. et al. μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).
    CAS PubMed Central PubMed Google Scholar
  85. Meyer, C., Eskelinen, E. L., Guruprasad, M. R., von Figura, K. & Schu, P. μ1A deficiency induces a profound increase in MPR300/IGF-II receptor internalization rate. J. Cell Sci. 114, 4469–4476 (2001). References 84 and 85 were the first studies to implicate AP1 in retrograde trafficking of MPRs from endosomes to the trans -Golgi network.
    CAS PubMed Google Scholar
  86. Wan, L. et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for _trans_-Golgi network localization. Cell 94, 205–216 (1998).
    CAS PubMed Google Scholar
  87. Crump, C. M. et al. PACS-1 binding to adaptors is required for acidic cluster motif-mediated protein traffic. EMBO J. 20, 2191–2201 (2001). This reference cites the first evidence in support of PACS-1/AP1-mediated retrograde transport of MPRs from early endosomes to the trans -Golgi network.
    CAS PubMed Central PubMed Google Scholar
  88. Tikkanen, R. et al. The dileucine motif within the tail of the MPR46 is required for sorting of the receptor in endosomes. Traffic 1, 631–640 (2000).
    CAS PubMed Google Scholar
  89. Wasiak, S. et al. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J. Cell Biol. 158, 855–862 (2002).
    CAS PubMed Central PubMed Google Scholar
  90. Jadot, M., Canfield, W. M., Gregory, W. & Kornfeld, S. Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor. J. Biol. Chem. 267, 11069–11077 (1992).
    CAS PubMed Google Scholar
  91. Johnson, K. F., Chan, W. & Kornfeld, S. Cation-dependent mannose 6-phosphate receptor contains two internalization signals in its cytoplasmic domain. Proc. Natl Acad. Sci. USA 87, 10010–10014 (1990).
    CAS PubMed PubMed Central Google Scholar
  92. Denzer, K., Weber, B., Hille-Rehfeld, A., von Figura, K. & Pohlmann, R. Identification of three internalization sequences in the cytoplasmic tail of the 46 kDa mannose 6-phosphate receptor. Biochem. J. 326, 497–505 (1997).
    CAS PubMed Central PubMed Google Scholar
  93. Storch, S. & Braulke, T. Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3. J. Biol. Chem. 276, 4298–4303 (2001).
    CAS PubMed Google Scholar
  94. Ludwig, T. et al. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in IGF2 and IGF1R null backgrounds. Dev. Biol. 177, 517–535 (1996).
    CAS PubMed Google Scholar
  95. Wang, Z. Q., Fung, M. R., Barlow, D. P. & Wagner, E. F. Regulation of embryonic growth and lysosomal targeting by the imprinted IGF2/MPR gene. Nature 372, 464–467 (1994).
    CAS PubMed Google Scholar
  96. Lau, M. M. et al. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 8, 2953–2963 (1994).
    CAS PubMed Google Scholar
  97. Ikezu, T., Okamoto, T., Giambarella, U., Yokota, T. & Nishimoto, I. In vivo coupling of insulin-like growth factor II/mannose 6-phosphate receptor to heteromeric G proteins. Distinct roles of cytoplasmic domains and signal sequestration by the receptor. J. Biol. Chem. 270, 29224–29228 (1995).
    CAS PubMed Google Scholar
  98. Zhang, Q. et al. Insulin-like growth factor II signaling through the insulin-like growth factor II/mannose 6-phosphate receptor promotes exocytosis in insulin-secreting cells. Proc. Natl Acad. Sci. USA 94, 6232–6237 (1997).
    CAS PubMed PubMed Central Google Scholar
  99. McKinnon, T., Chakraborty, C., Gleeson, L. M., Chidiac, P. & Lala, P. K. Stimulation of human extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving inhibitory G protein(s) and phosphorylation of MAPK. J. Clin. Endocrinol. Metab. 86, 3665–3674 (2001).
    CAS PubMed Google Scholar
  100. Groskopf, J. C., Syu, L. J., Saltiel, A. R. & Linzer, D. I. Proliferin induces endothelial cell chemotaxis through a G protein-coupled, mitogen-activated protein kinase-dependent pathway. Endocrinology 138, 2835–2840 (1997).
    CAS PubMed Google Scholar
  101. Minniti, C. P. et al. The insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor mediates IGF-II-induced motility in human rhabdomyosarcoma cells. J. Biol. Chem. 267, 9000–9004 (1992).
    CAS PubMed Google Scholar
  102. Tsuruta, J. K., Eddy, E. M. & O'Brien, D. A. Insulin-like growth factor-II/cation-independent mannose 6-phosphate receptor mediates paracrine interactions during spermatogonial development. Biol. Reprod. 63, 1006–1013 (2000).
    CAS PubMed Google Scholar
  103. Ikushima, H. et al. Internalization of CD26 by mannose 6-phosphate/insulin-like growth factor II receptor contributes to T cell activation. Proc. Natl Acad. Sci. USA 97, 8439–8444 (2000).
    CAS PubMed PubMed Central Google Scholar
  104. Nishimoto, I. The IGF-II receptor system: a G protein-linked mechanism. Mol. Reprod. Dev. 35, 398–406 (1993).
    CAS PubMed Google Scholar
  105. Frasca, F. et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell. Biol. 19, 3278–3288 (1999).
    CAS PubMed Central PubMed Google Scholar
  106. Korner, C., Nurnberg, B., Uhde, M. & Braulke, T. Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. J. Biol. Chem. 270, 287–295 (1995).
    CAS PubMed Google Scholar
  107. Ikushima, H. et al. Soluble CD26/dipeptidyl peptidase IV enhances transendothelial migration via its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cell. Immunol 215, 106–110 (2002).
    CAS PubMed Google Scholar
  108. Purchio, A. F. et al. Identification of mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-β1 precursor. J. Biol. Chem. 263, 14211–14215 (1988).
    CAS PubMed Google Scholar
  109. Crawford, S. E. et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159–1170 (1998).
    CAS PubMed Google Scholar
  110. Dennis, P. A. & Rifkin, D. B. Cellular activation of latent transforming growth factor β requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc. Natl Acad. Sci. USA 88, 580–584 (1991). This work showed for the first time that the CI-MPR plays a significant role in activation of the latent form of TGF-β1.
    CAS PubMed PubMed Central Google Scholar
  111. Nunes, I., Shapiro, R. L. & Rifkin, D. B. Characterization of latent TGF-β activation by murine peritoneal macrophages. J. Immunol. 155, 1450–1459 (1995).
    CAS PubMed Google Scholar
  112. Godar, S. et al. M6P/IGFII-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-β1. Eur. J. Immunol. 29, 1004–1013 (1999).
    CAS PubMed Google Scholar
  113. Ghahary, A. Tredget, E. E. & Shen, Q. Insulin-like growth factor-II/mannose 6 phosphate receptors facilitate the matrix effects of latent transforming growth factor-β1 released from genetically modified keratinocytes in a fibroblast/keratinocyte co-culture system. J. Cell Physiol. 180, 61–70 (1999).
    CAS PubMed Google Scholar
  114. Chen, A., Davis, B. H., Sitrin, M. D., Brasitus, T. A. & Bissonnette, M. Transforming growth factor-β1 signaling contributes to Caco cell growth inhibition induced by 1,25(OH)2D3. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G864–G874 (2002).
    CAS PubMed Google Scholar
  115. Leksa, V. et al. The N-terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J. Biol. Chem. 277, 40575–40582 (2002).
    CAS PubMed Google Scholar
  116. Nykjaer, A. et al. Mannose 6-phosphate /insulin-like growth factor–II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J. Cell Biol. 141, 815–828 (1998).
    CAS PubMed Central PubMed Google Scholar
  117. Kang, J. X., Bell, J., Beard, R. L. & Chandraratna, R. A. Mannose 6-phosphate/insulin-like growth factor II receptor mediates the growth-inhibitory effects of retinoids. Cell Growth Differ. 10, 591–600 (1999).
    CAS PubMed Google Scholar
  118. Zaina, S. & Squire, S. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. J. Biol. Chem. 273, 28610–28616 (1998).
    CAS PubMed Google Scholar
  119. O'Gorman, D. B., Weiss, J., Hettiaratchi, A., Firth, S. M. & Scott, C. D. Insulin-like growth factor-II/mannose 6-phosphate receptor overexpression reduces growth of choriocarcinoma cells in vitro and in vivo. Endocrinology 143, 4287–4294 (2002).
    CAS PubMed Google Scholar
  120. DeSouza, A. T., Hankins, G. R., Washington, M. K., Orton, T. C. & Jirtle, R. L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nature Genet. 11, 447–449 (1995). The first evidence that CI-MPR is mutated in human cancers.
    CAS Google Scholar
  121. Yamada, T., DeSouza, A. T., Finkelstein, S. & Jirtle, R. L. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis. Proc. Natl Acad. Sci. USA 94, 10351–10355 (1997).
    CAS PubMed PubMed Central Google Scholar
  122. Oka, Y. et al. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan. Hepatology 35, 1153–1163 (2002).
    CAS PubMed Google Scholar
  123. Hankins, G. R. et al. M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene 12, 2003–2009 (1996).
    CAS PubMed Google Scholar
  124. Chappell, S. A., Walsh, T., Walker, R. A. & Shaw, J. A. Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor gene correlates with poor differentiation in early breast carcinomas. Br. J. Cancer 76, 1558–1561 (1997).
    CAS PubMed Central PubMed Google Scholar
  125. Kong, F. M., Anscher, M. S., Washington, M. K., Killian, J. K. & Jirtle, R. L. M6P/IGF2R is mutated in squamous cell carcinoma of the lung. Oncogene 19, 1572–1578 (2000).
    CAS PubMed Google Scholar
  126. Rey, J. M., Theillet, C., Brouillet, J. P. & Rochefort, H. Stable amino-acid sequence of the mannose-6-phosphate/insulin-like growth-factor-II receptor in ovarian carcinomas with loss of heterozygosity and in breast-cancer cell lines. Int. J. Cancer 85, 466–473 (2000).
    CAS PubMed Google Scholar
  127. Leboulleux, S., Gaston, V., Boulle, N., LeBouc, Y. & Gicquel, C. Loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor receptor locus: a frequent but late event in adrenocortical tumorigenesis. Eur. J. Endocrinol. 144, 163–168 (2001).
    CAS PubMed Google Scholar
  128. Gemma, A. et al. Mutation analysis of the gene encoding the human mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) in human cell lines resistant to growth inhibition by transforming growth factor β1 (TGF-β1). Lung Cancer 30, 91–98 (2000).
    CAS PubMed Google Scholar
  129. Byrd, J. C., Devi, G. R., DeSouza, A. T., Jirtle, R. L. & MacDonald, R. G. Disruption of ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor by cancer-associated missense mutations. J. Biol. Chem. 274, 24408–24416 (1999).
    CAS PubMed Google Scholar
  130. Devi, G. R., DeSouza, A. T., Byrd, J. C., Jirtle, R. L. & MacDonald, R. G. Altered ligand binding by insulin-like growth factor II/mannose 6-phosphate receptors bearing missense mutations in human cancers. Cancer Res. 59, 4314–4319 (1999). References 128–130 show that cancer-associated mutations in the CI-MPR impair receptor function.
    CAS PubMed Google Scholar
  131. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP 2 complex. Cell 109, 523–535 (2002).
    CAS PubMed Google Scholar
  132. Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K. & Honing, S. Phosphorylation of the AP2 μ-subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 156, 791–795 (2002).
    CAS PubMed Central PubMed Google Scholar
  133. DaCosta, S. A., Schumaker, L. M. & Ellis, M. J. Mannose 6-phosphate/insulin-like growth factor 2 receptor, a bona fide tumor suppressor gene or just a promising candidate? J. Mammary Gland Biol. Neoplasia 5, 85–94 (2000).
    CAS PubMed Google Scholar
  134. Motyka, B. et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103, 491–500 (2000).
    CAS PubMed Google Scholar

Download references