Mannose 6-phosphate receptors: new twists in the tale (original) (raw)
References
Dahms, N. M. & Hancock, M. K. P-type lectins. Biochim. Biophys. Acta.1572, 317–340 (2002). CASPubMed Google Scholar
Kornfeld, S. Structure and function of the mannose 6-phosphate/insulin like growth factor II receptors. Annu. Rev. Biochem.61, 307–330 (1992). CASPubMed Google Scholar
Hille-Rehfeld, A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim. Biophys. Acta.1241, 177–194 (1995). PubMed Google Scholar
Le Borgne, R. & Hoflack, B. Protein transport from the secretory to the endocytic pathway in mammalian cells. Biochim. Biophys. Acta.1404, 195–209 (1998). CASPubMed Google Scholar
Lobel, P., Dahms, N. M. & Kornfeld, S. Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor. J. Biol. Chem.263, 2563–2570 (1988). CASPubMed Google Scholar
Hancock, M. K., Haskins, D. J., Sun, G. & Dahms, N. M. Identification of residues essential for carbohydrate recognition by the insulin-like growth factor II/mannose 6-phosphate receptor. J. Biol. Chem.277, 11255–11264 (2002). CASPubMed Google Scholar
Marron-Terada, P. G., Hancock, D. J., Haskins, D. J. & Dahms, N. M. Recognition of Dictyostelium discoideum lysosomal enzymes is conferred by the amino-terminal carbohydrate binding site of the insulin-like growth factor II/mannose 6-phosphate receptor. Biochemistry39, 2243–2253 (2000). CASPubMed Google Scholar
Schmidt, B., Kiecke-Siemsen, C., Waheed, A., Braulke, T. & von Figura, K. Localization of the insulin-like growth factor II binding site to amino acids 1508–1566 in repeat 11 of the mannose 6-phosphate/insulin-like growth factor II receptor. J. Biol. Chem.270, 14975–14982 (1995). CASPubMed Google Scholar
Garmroudi, F., Devi, G., Slentz, D. H., Schaffer, B. S. & MacDonald, R. G. Truncated forms of the insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor encompassing the IGF-II binding site: characterization of a point mutation that abolishes IGF-II binding. Mol. Endocrinol.10, 642–651 (1996). References 6–9 characterize the carbohydrate-binding domain and the IGF-II-binding site on the CI-MPR. CASPubMed Google Scholar
Meresse, S., Ludwig, T., Frank, R. & Hoflack, B. Phosphorylation of the cytoplasmic domain of the bovine cation-independent mannose 6-phosphate receptor. Serines 2421 and 2492 are the targets of a casein kinase II associated to the Golgi-derived HAI adaptor complex. J. Biol. Chem.265, 18833–18842 (1990). CASPubMed Google Scholar
Rosorius, O. et al. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose 6-phosphate receptor. Biochem. J.292, 833–838 (1993). CASPubMed CentralPubMed Google Scholar
Schweizer, A., Kornfeld, S. & Rohrer, J. Cysteine 34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting. J. Cell Biol.132, 577–584 (1996). CASPubMed Google Scholar
York, S. J., Arneson, L. S., Gregory, W. T., Dahms, N. M. & Kornfeld, S. The rate of internalization of the mannose 6-phosphate/insulin-like growth factor II receptor is enhanced by multivalent ligand binding. J. Biol. Chem.274, 1164–1171 (1999). CASPubMed Google Scholar
Byrd, J. C. & MacDonald, R. G. Mechanisms for high affinity mannose 6-phosphate ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor. Negative cooperativity and receptor oligomerization. J. Biol. Chem.275, 18638–18646 (2000). CASPubMed Google Scholar
Byrd, J. C., Park, J. H., Schaffer, B. S., Garmroudi, F. & MacDonald, R. G. Dimerization of the insulin-like growth factor II/mannose 6-phosphate receptor. J. Biol. Chem.275, 18647–18656 (2000). CASPubMed Google Scholar
Roberts, D. L., Weix, D. J., Dahms, N. M. & Kim, J. -J. P. Molecular basis of lysosomal enzyme recognition: three-dimensional structure of the cation-dependent mannose 6-phosphate receptor. Cell93, 639–648 (1998). CASPubMed Google Scholar
Olson, L. J., Zhang, J., Lee, Y. C., Dahms, N. M. & Kim, J. -J. P. Structural basis for recognition of phosphorylated high mannose oligosaccharides by the cation-dependent mannose 6-phosphate receptor. J. Biol. Chem.274, 29889–29896 (1999). CASPubMed Google Scholar
Olson, L. J., Zhang, J., Dahms, N. M. & Kim, J. -J. P. Twists and turns of the CD-MPR: ligand-bound versus ligand-free receptor. J. Biol. Chem.277, 10156–10161 (2002). References 16–18 provide useful insights into the structural basis for M6P-containing ligand recognition by the CD-MPR. CASPubMed Google Scholar
Brown, J. et al. Structure of a functional IGF2R fragment determined from the anomalous scattering of sulfur. EMBO J.21, 1054–1062 (2002). This work presents a high-resolution crystal structure of the eleventh domain of the CI-MPR that functions as the IGF-II-binding domain. CASPubMed CentralPubMed Google Scholar
Zeslawski, W. et al. The interaction of insulin-like growth factor-I with the N-terminal domain of IGFBP-5. EMBO J.20, 3638–3644 (2001). CASPubMed CentralPubMed Google Scholar
Devi, G. R., Byrd, J. C., Slentz, D. H. & MacDonald, R. G. An insulin-like growth factor II (IGF-II) affinity-enhancing domain localized within extracytoplasmic repeat 13 of the IGF-II/mannose 6-phosphate receptor. Mol. Endocrinol.12, 1661–1672 (1998). CASPubMed Google Scholar
Linnell, J., Groeger, G. & Hassan, A. B. Real time kinetics of insulin-like growth factor II (IGF-II) interaction with the IGF-II/mannose 6-phosphate receptor: the effects of domain 13 and pH. J. Biol. Chem.276, 23986–23991 (2001). CASPubMed Google Scholar
Rohrer, J. & Kornfeld, R. Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the _trans_-Golgi network. Mol. Biol. Cell12, 1623–1631 (2001). CASPubMed CentralPubMed Google Scholar
Klumperman, J. et al. Differences in the endosomal distributions of the two mannose 6-phosphate receptors. J. Cell Biol.121, 997–1010 (1993). This report established that the two receptors exit thetrans-Golgi network through AP1-positive clathrin-coated buds and vesicles. CASPubMed Google Scholar
Campbell, C. H. & Rome, L. H. Coated vesicles from rat liver and calf brain contain lysosomal enzymes bound to mannose 6-phosphate receptors. J. Biol. Chem.258, 13347–13352 (1983). CASPubMed Google Scholar
Schulze-Lohoff, E., Hasilik, A. & von Figura, K. Cathepsin D precursors in clathrin-coated organelles from human fibroblasts. J. Cell Biol.101, 824–829 (1985). References 25 and 26 showed that clathrin-coated vesicles function as transport carriers for lysosomal enzymesen routefrom the Golgi to the endosomal–lysosomal compartments. CASPubMed Google Scholar
Johnson, K. F. & Kornfeld, S. The cytoplasmic tail of the mannose 6-phosphate/insulin-like growth factor-II receptor has two signals for lysosomal enzyme sorting in the Golgi. J. Cell Biol.119, 249–257 (1992). CASPubMed Google Scholar
Johnson, K. F. & Kornfeld, S. A His–Leu–Leu sequence near the carboxyl terminus of the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor is necessary for the lysosomal enzyme sorting function. J. Biol. Chem.267, 17110–17115 (1992). CASPubMed Google Scholar
Chen, H. J., Remmler, J., Delaney, J. C., Messner, D. J. & Lobel, P. Mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor. A consensus casein kinase II site followed by 2 leucines near the carboxyl terminus is important for intracellular targeting of lysosomal enzymes. J. Biol. Chem.268, 22338–22346 (1993). CASPubMed Google Scholar
Chen, H. J., Yuan, J. & Lobel, P. Systematic mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor cytoplasmic domain. An acidic cluster containing a key aspartate is important for function in lysosomal enzyme sorting. J. Biol. Chem.272, 7003–7012 (1997). References 27–30 establish the role of the AC-LL signal in trafficking of the mannose 6-phosphate receptors from thetrans-Golgi network to endosomes. CASPubMed Google Scholar
Mauxion, F., Le Borgne, R., Munier-Lehmann, H. & Hoflack, B. A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J. Biol. Chem.271, 2171–2178 (1996). CASPubMed Google Scholar
Honing S., Sosa M., Hille-Rehfeld, A. & von Figura, K. The 46-kDa mannose 6-phosphate receptor contains multiple binding sites for clathrin adaptors. J. Biol. Chem.272, 19884–19890 (1997). CASPubMed Google Scholar
Poussu A., Lohi, O. & Lehto, V. P. Vear, a novel Golgi-associated protein with VHS and γ-adaptin 'ear' domains. J. Biol. Chem.275, 7176–7183 (2000). CASPubMed Google Scholar
Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the _trans_-Golgi network and the vacuole/lysosome. J. Cell Biol.149, 67–80 (2000). CASPubMed CentralPubMed Google Scholar
Dell'Angelica, E. C. et al. GGAs: A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol.149, 81–94 (2000). CASPubMed CentralPubMed Google Scholar
Boman, A. L., Zhang, C., Zhu, X. & Kahn, R. A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the _trans_-Golgi. Mol. Biol. Cell11, 1241–1255 (2000). CASPubMed CentralPubMed Google Scholar
Takatsu, H., Yoshino, K. & Nakayama, K. Adaptor γ ear homology domain conserved in γ-adaptin and GGA proteins that interact with γ-synergin. Biochem. Biophys. Res. Commun.271, 719–725 (2000). References 33–37 cite the five groups that simultaneously and independently discovered the GGA family of adaptors. CASPubMed Google Scholar
Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J. & Bonifacino, J. S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science292, 1712–1716 (2001). CASPubMed Google Scholar
Zhu, Y., Doray, B., Poussu, A., Lehto, V. P. & Kornfeld, S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science292, 1716–1718 (2001). CASPubMed Google Scholar
Takatsu, H., Katoh, Y., Shiba, Y. & Nakayama, K. Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J. Biol. Chem.276, 28541–28545 (2001). References 38–40 implicated the GGAs in sorting of mannose 6-phosphate receptors at thetrans-Golgi network. CASPubMed Google Scholar
Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S. & Hurley, J. H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature415, 933–937 (2002). CASPubMed Google Scholar
Shiba, T. et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature415, 937–941 (2002). References 41 and 42 demonstrate the structural basis for the recognition of the AC–LL signal in the cytoplasmic tail of the MPR by the VHS domain of the GGA protein. CASPubMed Google Scholar
Jacobsen, L. et al. The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding. FEBS Lett.511, 155–158 (2002). CASPubMed Google Scholar
Doray, B., Bruns, K., Ghosh, P. & Kornfeld, S. Interaction of the cation-dependent mannose 6-phosphate receptor with GGA proteins. J. Biol. Chem.277, 18477–18482 (2002). CASPubMed Google Scholar
Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M. & Bonifacino, J. S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell.105, 93–102 (2001). CASPubMed Google Scholar
Dittie, A. S., Thomas, L., Thomas, G. & Tooze, S. A. Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase II phosphorylation. EMBO J.16, 4859–4870 (1997). CASPubMed CentralPubMed Google Scholar
Le Borgne, R., Schmidt, A., Mauxion, F., Griffiths, G. & Hoflack B. Binding of AP-1 Golgi adaptors to membranes requires phosphorylated cytoplasmic domains of the mannose 6-phosphate/insulin-like growth factor II receptor. J. Biol. Chem.268, 22552–22556 (1993). CASPubMed Google Scholar
Ohno, H. et al. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J. Biol. Chem.273, 25915–25921 (1998). CASPubMed Google Scholar
Owen, D. J. & Evans, P. R. A structural explanation for the recognition of tyrosine-based endocytic signals. Science.282, 1327–1332 (1998). CASPubMed CentralPubMed Google Scholar
Bremnes, T., Lauvrak, V., Lindqvist, B. & Bakke, O. A region from the medium chain adaptor subunit (μ) recognizes leucine- and tyrosine-based sorting signals. J. Biol. Chem.273, 8638–8645 (1998). CASPubMed Google Scholar
Rapoport, I., Chen, Y. C., Cupers, P., Shoelson, S. E. & Kirchhausen, T. Dileucine-based sorting signals bind to the β chain of AP-1 at a site distinct and regulated differently from the tyrosine-based motif-binding site. EMBO J.17, 2148–2155 (1998). CASPubMed CentralPubMed Google Scholar
Black, M. W. & Pelham, H. R. A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. J. Cell Biol.151, 587–600 (2000). CASPubMed CentralPubMed Google Scholar
Costaguta, G., Stefan, C. J., Bensen, E. S., Emr S. D. & Payne, G. S. Yeast GGA coat proteins function with clathrin in Golgi to endosome transport. Mol. Biol. Cell12. 1885–1896 (2001). CASPubMed CentralPubMed Google Scholar
Hirst, J., Lindsay, M. R. & Robinson, M. S. GGAs: Roles of the different domains and comparison with AP-1 and clathrin. Mol. Biol. Cell12, 3573–3588 (2001). CASPubMed CentralPubMed Google Scholar
Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol.144, 1135–1149 (1999). CASPubMed CentralPubMed Google Scholar
Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic β-cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA98, 2399–2406 (2001). CASPubMedPubMed Central Google Scholar
Doray, B., Ghosh, P., Griffith, J., Geuze, H. & Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the _trans_-Golgi network. Science, 297, 1700–1703 (2002). This work showed that GGAs and AP1 colocalize within clathrin-coated buds and vesicles at thetrans-Golgi network (TGN) of mammalian cells, which indicates a cooperative model for AP1 and GGAs in trafficking of MPRs from the TGN to endosomes, as opposed to the independent pathways proposed in yeast. CASPubMed Google Scholar
Doray, B., Bruns, K., Ghosh, P. & Kornfeld, S. A. Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif. Proc. Natl Acad. Sci. USA99, 8072–8077 (2002). CASPubMedPubMed Central Google Scholar
Huang, F., Nesterov, A., Carter, R. E. & Sorkin, A. Trafficking of yellow-fluorescent-protein-tagged μ1 subunit of clathrin adaptor AP-1 complex in living cells. Traffic2, 345–357 (2001). The first evidence of AP1 in anterograde trafficking of MPRs using live-cell imaging techniques. CASPubMed Google Scholar
Waguri, S. et al. Visualization of TGN to endosomes trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol. Biol. Cell14, 142–155 (2003). CASPubMed CentralPubMed Google Scholar
Le Borgne, R. & Hoflack, B. Mannose 6-phosphate receptors regulate the formation of clathrin-coated vesicles in the TGN. J. Cell Biol.137, 335–345 (1997). CASPubMed Google Scholar
Umeda, A., Meyerholz, A. & Ungewickell, E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur. J. Cell Biol.79, 336–342 (2000). CASPubMed Google Scholar
Greener, T., Zhao, X., Nojima, H., Eisenberg, E. & Greene, L. E. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J. Biol. Chem.275, 1365–1370 (2000). CASPubMed Google Scholar
Hannan, L. A., Newmyer, S. L. & Schmid, S. L. ATP- and cytosol-dependent release of adaptor proteins from clathrin-coated vesicles: a dual role for Hsc70. Mol. Biol. Cell9, 2217–2229 (1998). CASPubMed CentralPubMed Google Scholar
Nakagawa, T. et al. A novel motor, KIF13A, transports mannose 6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell103, 569–581 (2000). CASPubMed Google Scholar
Ludwig, T., Griffiths, G. & Hoflack, B. Distribution of newly synthesized lysosomal enzymes in the endocytic pathway of normal rat kidney cells. J. Cell Biol.115, 1561–1572 (1991). CASPubMed Google Scholar
Press, B., Feng, Y., Hoflack, B. & Wandingerness, A. Mutant rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J. Cell Biol.140, 1075–1089 (1998). CASPubMed CentralPubMed Google Scholar
Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. & van Deurs, B. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell11, 467–480 (2000). CASPubMed CentralPubMed Google Scholar
Shiba, Y., Takatsu, H., Shin, H. W. & Nakayama, K. γ-adaptin interacts directly with rabaptin-5 through its ear domain. J. Biochem.131, 327–336 (2002). CASPubMed Google Scholar
Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell83, 423–432 (1995). CASPubMed Google Scholar
Bock, J. B., Klumperman, J., Davanger, S. & Scheller, R. H. Syntaxin 6 functions in _trans_-Golgi network vesicle trafficking. Mol. Biol. Cell8, 1261–1271 (1997). CASPubMed CentralPubMed Google Scholar
Prekeris, R., Klumperman, J., Chen, Y. A. & Scheller, R. H. Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell Biol.143, 957–971 (1998). CASPubMed CentralPubMed Google Scholar
Steegmaier, M., Klumperman, J., Foletti, D. L., Yoo, J. S. & Scheller, R. H. Vesicle-associated membrane protein 4 is implicated in _trans_-Golgi network vesicle trafficking. Mol. Biol. Cell10, 1957–1972 (1999). CASPubMed CentralPubMed Google Scholar
Klumperman, J., Kuliawat, R., Griffith, J. M., Geuze, H. J. & Arvan, P. Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J. Cell Biol.141, 359–371 (1998). CASPubMed CentralPubMed Google Scholar
Peden, A. A., Park, G. Y. & Scheller, R. H. The di-leucine motif of vesicle-associated membrane protein 4 is required for its localization and AP-1 binding. J. Biol. Chem.276, 49183–49187 (2001). CASPubMed Google Scholar
Simonsen, A., Gaullier, J. M., D'Arrigo, A. & Stenmark, H. The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem.274, 28857–28860 (1999). CASPubMed Google Scholar
Storrie, B. & Desjardins, M. The biogenesis of lysosomes: is it a kiss and run, continuous fusion and fission process? Bioessays18, 895–903 (1996). CASPubMed Google Scholar
Schweizer, A., Kornfeld, S. & Rohrer, J. Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail. Proc. Natl Acad. Sci. USA94, 14471–14476 (1997). This work established the importance of a di-aromatic sequence on the cytoplasmic tail of the CD-MPR in preventing it from entering lysosomes. CASPubMedPubMed Central Google Scholar
Diaz, E. & Pfeffer, S. R. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell93, 433–443 (1998). CASPubMed Google Scholar
Orsel, J. G., Sincock, P. M., Krise, J. P. & Pfeffer, S. R. Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein. Proc. Natl Acad. Sci. USA97, 9047–9051 (2000). CASPubMedPubMed Central Google Scholar
Carroll, K. S. et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science292, 1373–1376 (2001). CASPubMed Google Scholar
Barbero, P., Bittova, L. & Pfeffer, S. R. Visualization of Rab9-mediated vesicle transport from endosomes to the _trans_-Golgi in living cells. J. Cell Biol.156, 511–518 (2002). CASPubMed CentralPubMed Google Scholar
Riederer, M. A., Soldati, T., Shapiro, A. D., Lin, J. & Pfeffer, S. R. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the _trans_-Golgi network. J. Cell Biol.125, 573–582 (1994). References 79–83 provide evidence that TIP47/Rab9 mediates sorting of the MPRs at the late endosome and has a role in retrograde trafficking to the Golgi. CASPubMed Google Scholar
Meyer, C. et al. μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J.19, 2193–2203 (2000). CASPubMed CentralPubMed Google Scholar
Meyer, C., Eskelinen, E. L., Guruprasad, M. R., von Figura, K. & Schu, P. μ1A deficiency induces a profound increase in MPR300/IGF-II receptor internalization rate. J. Cell Sci.114, 4469–4476 (2001). References 84 and 85 were the first studies to implicate AP1 in retrograde trafficking of MPRs from endosomes to thetrans-Golgi network. CASPubMed Google Scholar
Wan, L. et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for _trans_-Golgi network localization. Cell94, 205–216 (1998). CASPubMed Google Scholar
Crump, C. M. et al. PACS-1 binding to adaptors is required for acidic cluster motif-mediated protein traffic. EMBO J.20, 2191–2201 (2001). This reference cites the first evidence in support of PACS-1/AP1-mediated retrograde transport of MPRs from early endosomes to thetrans-Golgi network. CASPubMed CentralPubMed Google Scholar
Tikkanen, R. et al. The dileucine motif within the tail of the MPR46 is required for sorting of the receptor in endosomes. Traffic1, 631–640 (2000). CASPubMed Google Scholar
Wasiak, S. et al. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J. Cell Biol.158, 855–862 (2002). CASPubMed CentralPubMed Google Scholar
Jadot, M., Canfield, W. M., Gregory, W. & Kornfeld, S. Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor. J. Biol. Chem.267, 11069–11077 (1992). CASPubMed Google Scholar
Johnson, K. F., Chan, W. & Kornfeld, S. Cation-dependent mannose 6-phosphate receptor contains two internalization signals in its cytoplasmic domain. Proc. Natl Acad. Sci. USA87, 10010–10014 (1990). CASPubMedPubMed Central Google Scholar
Denzer, K., Weber, B., Hille-Rehfeld, A., von Figura, K. & Pohlmann, R. Identification of three internalization sequences in the cytoplasmic tail of the 46 kDa mannose 6-phosphate receptor. Biochem. J.326, 497–505 (1997). CASPubMed CentralPubMed Google Scholar
Storch, S. & Braulke, T. Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3. J. Biol. Chem.276, 4298–4303 (2001). CASPubMed Google Scholar
Ludwig, T. et al. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in IGF2 and IGF1R null backgrounds. Dev. Biol.177, 517–535 (1996). CASPubMed Google Scholar
Wang, Z. Q., Fung, M. R., Barlow, D. P. & Wagner, E. F. Regulation of embryonic growth and lysosomal targeting by the imprinted IGF2/MPR gene. Nature372, 464–467 (1994). CASPubMed Google Scholar
Lau, M. M. et al. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev.8, 2953–2963 (1994). CASPubMed Google Scholar
Ikezu, T., Okamoto, T., Giambarella, U., Yokota, T. & Nishimoto, I. In vivo coupling of insulin-like growth factor II/mannose 6-phosphate receptor to heteromeric G proteins. Distinct roles of cytoplasmic domains and signal sequestration by the receptor. J. Biol. Chem.270, 29224–29228 (1995). CASPubMed Google Scholar
Zhang, Q. et al. Insulin-like growth factor II signaling through the insulin-like growth factor II/mannose 6-phosphate receptor promotes exocytosis in insulin-secreting cells. Proc. Natl Acad. Sci. USA94, 6232–6237 (1997). CASPubMedPubMed Central Google Scholar
McKinnon, T., Chakraborty, C., Gleeson, L. M., Chidiac, P. & Lala, P. K. Stimulation of human extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving inhibitory G protein(s) and phosphorylation of MAPK. J. Clin. Endocrinol. Metab.86, 3665–3674 (2001). CASPubMed Google Scholar
Groskopf, J. C., Syu, L. J., Saltiel, A. R. & Linzer, D. I. Proliferin induces endothelial cell chemotaxis through a G protein-coupled, mitogen-activated protein kinase-dependent pathway. Endocrinology138, 2835–2840 (1997). CASPubMed Google Scholar
Minniti, C. P. et al. The insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor mediates IGF-II-induced motility in human rhabdomyosarcoma cells. J. Biol. Chem.267, 9000–9004 (1992). CASPubMed Google Scholar
Tsuruta, J. K., Eddy, E. M. & O'Brien, D. A. Insulin-like growth factor-II/cation-independent mannose 6-phosphate receptor mediates paracrine interactions during spermatogonial development. Biol. Reprod.63, 1006–1013 (2000). CASPubMed Google Scholar
Ikushima, H. et al. Internalization of CD26 by mannose 6-phosphate/insulin-like growth factor II receptor contributes to T cell activation. Proc. Natl Acad. Sci. USA97, 8439–8444 (2000). CASPubMedPubMed Central Google Scholar
Nishimoto, I. The IGF-II receptor system: a G protein-linked mechanism. Mol. Reprod. Dev.35, 398–406 (1993). CASPubMed Google Scholar
Frasca, F. et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell. Biol.19, 3278–3288 (1999). CASPubMed CentralPubMed Google Scholar
Korner, C., Nurnberg, B., Uhde, M. & Braulke, T. Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. J. Biol. Chem.270, 287–295 (1995). CASPubMed Google Scholar
Ikushima, H. et al. Soluble CD26/dipeptidyl peptidase IV enhances transendothelial migration via its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cell. Immunol215, 106–110 (2002). CASPubMed Google Scholar
Purchio, A. F. et al. Identification of mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-β1 precursor. J. Biol. Chem.263, 14211–14215 (1988). CASPubMed Google Scholar
Crawford, S. E. et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell93, 1159–1170 (1998). CASPubMed Google Scholar
Dennis, P. A. & Rifkin, D. B. Cellular activation of latent transforming growth factor β requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc. Natl Acad. Sci. USA88, 580–584 (1991). This work showed for the first time that the CI-MPR plays a significant role in activation of the latent form of TGF-β1. CASPubMedPubMed Central Google Scholar
Nunes, I., Shapiro, R. L. & Rifkin, D. B. Characterization of latent TGF-β activation by murine peritoneal macrophages. J. Immunol.155, 1450–1459 (1995). CASPubMed Google Scholar
Godar, S. et al. M6P/IGFII-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-β1. Eur. J. Immunol.29, 1004–1013 (1999). CASPubMed Google Scholar
Ghahary, A. Tredget, E. E. & Shen, Q. Insulin-like growth factor-II/mannose 6 phosphate receptors facilitate the matrix effects of latent transforming growth factor-β1 released from genetically modified keratinocytes in a fibroblast/keratinocyte co-culture system. J. Cell Physiol.180, 61–70 (1999). CASPubMed Google Scholar
Chen, A., Davis, B. H., Sitrin, M. D., Brasitus, T. A. & Bissonnette, M. Transforming growth factor-β1 signaling contributes to Caco cell growth inhibition induced by 1,25(OH)2D3. Am. J. Physiol. Gastrointest. Liver Physiol.283, G864–G874 (2002). CASPubMed Google Scholar
Leksa, V. et al. The N-terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J. Biol. Chem.277, 40575–40582 (2002). CASPubMed Google Scholar
Nykjaer, A. et al. Mannose 6-phosphate /insulin-like growth factor–II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J. Cell Biol.141, 815–828 (1998). CASPubMed CentralPubMed Google Scholar
Kang, J. X., Bell, J., Beard, R. L. & Chandraratna, R. A. Mannose 6-phosphate/insulin-like growth factor II receptor mediates the growth-inhibitory effects of retinoids. Cell Growth Differ.10, 591–600 (1999). CASPubMed Google Scholar
Zaina, S. & Squire, S. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. J. Biol. Chem.273, 28610–28616 (1998). CASPubMed Google Scholar
O'Gorman, D. B., Weiss, J., Hettiaratchi, A., Firth, S. M. & Scott, C. D. Insulin-like growth factor-II/mannose 6-phosphate receptor overexpression reduces growth of choriocarcinoma cells in vitro and in vivo. Endocrinology143, 4287–4294 (2002). CASPubMed Google Scholar
DeSouza, A. T., Hankins, G. R., Washington, M. K., Orton, T. C. & Jirtle, R. L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nature Genet.11, 447–449 (1995). The first evidence that CI-MPR is mutated in human cancers. CAS Google Scholar
Yamada, T., DeSouza, A. T., Finkelstein, S. & Jirtle, R. L. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis. Proc. Natl Acad. Sci. USA94, 10351–10355 (1997). CASPubMedPubMed Central Google Scholar
Oka, Y. et al. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan. Hepatology35, 1153–1163 (2002). CASPubMed Google Scholar
Hankins, G. R. et al. M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene12, 2003–2009 (1996). CASPubMed Google Scholar
Chappell, S. A., Walsh, T., Walker, R. A. & Shaw, J. A. Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor gene correlates with poor differentiation in early breast carcinomas. Br. J. Cancer76, 1558–1561 (1997). CASPubMed CentralPubMed Google Scholar
Kong, F. M., Anscher, M. S., Washington, M. K., Killian, J. K. & Jirtle, R. L. M6P/IGF2R is mutated in squamous cell carcinoma of the lung. Oncogene19, 1572–1578 (2000). CASPubMed Google Scholar
Rey, J. M., Theillet, C., Brouillet, J. P. & Rochefort, H. Stable amino-acid sequence of the mannose-6-phosphate/insulin-like growth-factor-II receptor in ovarian carcinomas with loss of heterozygosity and in breast-cancer cell lines. Int. J. Cancer85, 466–473 (2000). CASPubMed Google Scholar
Leboulleux, S., Gaston, V., Boulle, N., LeBouc, Y. & Gicquel, C. Loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor receptor locus: a frequent but late event in adrenocortical tumorigenesis. Eur. J. Endocrinol.144, 163–168 (2001). CASPubMed Google Scholar
Gemma, A. et al. Mutation analysis of the gene encoding the human mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) in human cell lines resistant to growth inhibition by transforming growth factor β1 (TGF-β1). Lung Cancer30, 91–98 (2000). CASPubMed Google Scholar
Byrd, J. C., Devi, G. R., DeSouza, A. T., Jirtle, R. L. & MacDonald, R. G. Disruption of ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor by cancer-associated missense mutations. J. Biol. Chem.274, 24408–24416 (1999). CASPubMed Google Scholar
Devi, G. R., DeSouza, A. T., Byrd, J. C., Jirtle, R. L. & MacDonald, R. G. Altered ligand binding by insulin-like growth factor II/mannose 6-phosphate receptors bearing missense mutations in human cancers. Cancer Res.59, 4314–4319 (1999). References 128–130 show that cancer-associated mutations in the CI-MPR impair receptor function. CASPubMed Google Scholar
Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP 2 complex. Cell109, 523–535 (2002). CASPubMed Google Scholar
Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K. & Honing, S. Phosphorylation of the AP2 μ-subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol.156, 791–795 (2002). CASPubMed CentralPubMed Google Scholar
DaCosta, S. A., Schumaker, L. M. & Ellis, M. J. Mannose 6-phosphate/insulin-like growth factor 2 receptor, a bona fide tumor suppressor gene or just a promising candidate? J. Mammary Gland Biol. Neoplasia5, 85–94 (2000). CASPubMed Google Scholar
Motyka, B. et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell103, 491–500 (2000). CASPubMed Google Scholar