Targeting Rab GTPases to distinct membrane compartments (original) (raw)
References
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001). ArticleCAS Google Scholar
Pfeffer, S. R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol.11, 487–491 (2001). ArticleCAS Google Scholar
Pereira-Leal, J. B. & Seabra, M. C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol.313, 889–901 (2001). ArticleCAS Google Scholar
Segev, N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol.13, 500–511 (2001). ArticleCAS Google Scholar
Alory, C. & Balch, W. E. Organization of the Rab-GDI/Chm superfamily: the functional basis for choroideremia disease. Traffic2, 532–543 (2001). ArticleCAS Google Scholar
Ullrich, O., Horiuchi, H., Bucci, C. & Zerial, M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature368, 157–160 (1994). Reports thein vitroreconstitution of specific, prenylated Rab delivery onto membranes using streptolysin-O-permeabilized cells. ArticleCAS Google Scholar
Soldati, T., Shapiro, A. D., Svejstrup, A. B. & Pfeffer, S. R. Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature369, 76–78 (1994). Describes thein vitroreconstitution of specific, prenylated Rab delivery onto membranes using purified components. ArticleCAS Google Scholar
Soldati, T., Rancano, C., Geissler, H. & Pfeffer, S. R. Rab7 and Rab9 are recruited onto late endosomes by biochemically distinguishable processes. J. Biol. Chem.270, 25541–25548 (1995). ArticleCAS Google Scholar
Schalk, I. et al. Structure and mutational analysis of Rab GDP-dissociation inhibitor. Nature381, 42–48 (1996). Describes the first three-dimensional structure of bovine GDI and a mutational analysis that identifies the residues that contribute to the Rab-binding site. ArticleCAS Google Scholar
Luan, P. et al. A new functional domain of guanine nucleotide dissociation inhibitor (αGDI) involved in Rab recycling. Traffic1, 270–281 (2000). ArticleCAS Google Scholar
An, Y. et al. Geranylgeranyl switching regulates GDI–Rab GTPase recycling. Structure11, 347–357 (2003). Presents the structure of bovine GDIα crystallized with a prenyl (geranylgeranyl) group bound. The authors detected the ordering of a so-called 'mobile effector loop' that is probably important for GDI function. ArticleCAS Google Scholar
Rak, A. et al. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science302, 646–650 (2003). This beautiful paper identifies a prenyl-binding site at the base of GDI that becomes exposed when prenylated Ypt1 binds to the yeast GDI. ArticleCAS Google Scholar
Sasaki, T. et al. Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP-binding protein. J. Biol. Chem.265, 2333–2337 (1990). Reports the discovery of Rab GDI. CASPubMed Google Scholar
Sasaki, T., Kaibuchi, K., Kabcenell, A. K., Novick, P. J. & Takai, Y. A mammalian inhibitory GDP/GTP exchange protein (GDP dissociation inhibitor) for smg p25A is active on the yeast SEC4 protein. Mol. Cell. Biol.11, 2909–2912 (1991). ArticleCAS Google Scholar
Regazzi, R., Kikuchi, A., Takai, Y. & Wollheim, C. B. The small GTP-binding proteins in the cytosol of insulin-secreting cells are complexed to GDP dissociation inhibitor proteins. J. Biol. Chem.267, 17512–17519 (1992). CASPubMed Google Scholar
Ullrich, O. et al. Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J. Biol. Chem.268, 18143–18150 (1993). CASPubMed Google Scholar
Nishimura, N., Nakamura, H., Takai, Y. & Sano, K. Molecular cloning and characterization of two rab GDI species from rat brain: brain-specific and ubiquitous types. J. Biol. Chem.269, 14191–14198 (1994). CASPubMed Google Scholar
Shisheva, A., Chinni, S. R. & DeMarco, C. General role of GDP dissociation inhibitor 2 in membrane release of Rab proteins: modulations of its functional interactions by in vitro and in vivo structural modifications. Biochemistry38, 11711–11721 (1999). ArticleCAS Google Scholar
Garrett, M. D., Zahner, J. E., Cheney, C. M. & Novick, P. J. GDI1 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway. EMBO J.13, 1718–1728 (1994). ArticleCAS Google Scholar
Luan, P., Balch, W. E., Emr, S. D. & Burd, C. G. Molecular dissection of guanine nucleotide dissociation inhibitor function in vivo. Rab-independent binding to membranes and role of Rab recycling factors. J. Biol. Chem.274, 14806–14817 (1999). ArticleCAS Google Scholar
Stroupe, C. & Brunger, A. T. Crystal structures of a Rab protein in its inactive and active conformations. J. Mol. Biol.304, 585–598 (2000). ArticleCAS Google Scholar
Chavrier, P., Gorvel, J. P., Stelzer, E., Simons, K., Gruenberg, J. & Zerial, M. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature353, 769–772 (1991). ArticleCAS Google Scholar
Shapiro, A. D. & Pfeffer, S. R. Quantitative analysis of the interactions between prenyl Rab9, GDP dissociation inhibitor-α, and guanine nucleotides. J. Biol. Chem.270, 11085–11090 (1995). ArticleCAS Google Scholar
Calero, M. et al. Dual prenylation is required for Rab protein localization and function. Mol. Biol. Cell14, 1852–1867 (2003). ArticleCAS Google Scholar
Calero, M., Whittaker, G. R. & Collins, R. N. Yop1p, the yeast homolog of the polyposis locus protein 1, interacts with Yip1p and negatively regulates cell growth. J. Biol. Chem.276, 12100–12112 (2001). ArticleCAS Google Scholar
Andres, D. A. et al. cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell73, 1091–1099 (1993). ArticleCAS Google Scholar
Pylypenko, O. et al. Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase. Mol. Cell11, 483–494 (2003). ArticleCAS Google Scholar
Rak, A. et al. Structure of the Rab7:REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease. Cell117, 749–760 (2004). ArticleCAS Google Scholar
Steele-Mortimer, O., Gruenberg, J. & Clague, M. J. Phosphorylation of GDI and membrane cycling of Rab proteins. FEBS Lett.329, 313–318 (1993). ArticleCAS Google Scholar
Cavalli, V. et al. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol. Cell7, 421–432 (2001). Indicates that phosphorylation of a key serine residue has a role in GDI function. ArticleCAS Google Scholar
Dirac-Svejstrup, A. B., Sumizawa, T. & Pfeffer, S. R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab–GDI. EMBO J.16, 465–472 (1997). Describes a novel assay that was designed to detect GDF activity, for the first time, on endosome membranes. The activity studied was specific for endosomal Rabs. ArticleCAS Google Scholar
Sivars, U., Aivazian, D. & Pfeffer, S. R. Yip3 catalyses the dissociation of endosomal Rab–GDI complexes. Nature425, 856–859 (2003). The first description of GDF identification using biochemical analysis. ArticleCAS Google Scholar
Yang, X., Matern, H. T. & Gallwitz, D. Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p. EMBO J.17, 4954–4963 (1998). The first report of Yip proteins as interactors with yeast Rab/Ypt GTPases. ArticleCAS Google Scholar
Calero, M. & Collins, R. N. S. cerevisiae Pra1p/Yip3 interacts with Yip1p and Rab proteins. Biochem. Biophys. Res. Comm.290, 676–681 (2002). ArticleCAS Google Scholar
Calero, M., Winand, N. J. & Collins, R. N. Identification of the novel proteins Yip4p and Yip5p as Rab GTPase interacting factors. FEBS Lett.515, 89–98 (2002). ArticleCAS Google Scholar
Matern, H. et al. A novel Golgi membrane protein is part of a GTPase-binding protein complex involved in vesicle targeting. EMBO J.19, 4485–4492 (2000). The first characterization of Yif1. ArticleCAS Google Scholar
Lin, J., Liang, Z., Zhang, Z. & Li, G. Membrane topography and topogenesis of prenylated Rab acceptor (PRA1). J. Biol. Chem.276, 41733–41741 (2001). ArticleCAS Google Scholar
Martincic, I., Peralta, M. E. & Ngsee, J. K. Isolation and characterization of a dual prenylated Rab and VAMP2 receptor. J. Biol. Chem.272, 26991–26998 (1997). Shows that PRA1 (human Yip3) can bind to certain v-SNAREs and to numerous prenylated Rab GTPases. ArticleCAS Google Scholar
Bucci, C., Chiariello, M., Lattero, D., Maiorano, M. & Bruni, C. B. Interaction cloning and characterization of the cDNA encoding the human prenylated Rab acceptor (PRA1). Biochem. Biophys. Res. Comm.258, 657–662 (1999). ArticleCAS Google Scholar
Hutt, D. M., Da-Silva, L. F., Chang, L. H., Prosser, D. C. & Ngsee, J. K. PRA1 inhibits the extraction of membrane-bound Rab GTPase by GDI1. J. Biol. Chem.275, 18511–18519 (2000). ArticleCAS Google Scholar
Abdul-Ghani, M., Gougeon, P. Y., Prosser, D. C., Da-Silva, L. F. & Ngsee, J. K. PRA isoforms are targeted to distinct membrane compartments. J. Biol. Chem.276, 6225–6233 (2001). ArticleCAS Google Scholar
Figueroa, C., Taylor, J. & Vojtek, A. B. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J. Biol. Chem.276, 28219–28225 (2001). ArticleCAS Google Scholar
Du, L. L. & Novick, P. Yeast rab GTPase-activating protein Gyp1p localizes to the Golgi apparatus and is a negative regulator of Ypt1p. Mol. Biol. Cell12, 1215–1226 (2001). Shows that a Rab-GTPase-activating protein, which can function on numerous Rabsin vitro, is highly specific in living cells. ArticleCAS Google Scholar
Heidtman, M., Chen, C. Z., Collins, R. N. & Barlowe, C. A role for Yip1p in COPII vesicle biogenesis. J. Cell Biol.163, 57–69 (2003). ArticleCAS Google Scholar
Barrowman, J., Wang, W., Zhang, Y. & Ferro-Novick, S. The Yip1p–Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J. Biol. Chem.278, 19878–19884 (2003). ArticleCAS Google Scholar
Tang, B. L. et al. Membrane protein enriched in ER exit sites interacts with COPII. J. Biol. Chem.276, 40008–40017 (2001). ArticleCAS Google Scholar
Otte, S., Belden, W. J., Heidtman, M., Liu, J., Jensen, O. N. & Barlowe, C. Erv41p and Erv46p: new components of COPII vesicles involved in transport between the ER and Golgi complex. J. Cell Biol.152, 503–518 (2001). ArticleCAS Google Scholar
Yamashita, T. & Tohyama, M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neurosci.6, 461–467 (2003). ArticleCAS Google Scholar
Robbe, K., Otto-Bruc, A., Chardin, P. & Antonny, B. Dissociation of GDP dissociation inhibitor and membrane translocation are required for efficient activation of Rac by the Dbl homology-pleckstrin homology region of Tiam. J. Biol. Chem.278, 4756–4762 (2003). ArticleCAS Google Scholar
Del Pozo, M. A. et al. Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nature Cell Biol.4, 232–239 (2002). ArticleCAS Google Scholar
Sakisaka, T., Meerlo, T., Matteson, J., Plutner, H. & Balch, W. E. Rabα-GDI activity is regulated by a Hsp90 chaperone complex. EMBO J.21, 6125–6135 (2002). ArticleCAS Google Scholar
Shakoori, A. et al. Identification of a five-pass transmembrane protein family localizing in the Golgi apparatus and the ER. Biochem. Biophys. Res. Comm.312, 850–857 (2003). ArticleCAS Google Scholar
Liang, Z., Veeraprame, H., Bayan, N. & Li, G. The C-terminus of prenylin is important in forming a dimer conformation necessary for endoplasmic-reticulum-to-Golgi transport. Biochem. J.380, 43–49 (2004). ArticleCAS Google Scholar
Janoueix-Lerosey, I., Jollivet, F., Camonis, J., Marche, P. N. & Goud, B. Two-hybrid system screen with the small GTP-binding protein Rab6. Identification of a novel mouse GDP dissociation inhibitor isoform and two other potential partners of Rab6. J. Biol. Chem.270, 14801–14808 (1995). ArticleCAS Google Scholar
Evans, D. T., Tillman, K. C. & Desrosiers, R. C. Envelope glycoprotein cytoplasmic domains from diverse lentiviruses interact with the prenylated Rab acceptor. J. Virol.76, 327–337 (2002). ArticleCAS Google Scholar
Fenster, S. D. et al. Piccolo, a presynaptic zinc finger protein structurally related to Bassoon. Neuron25, 203–214 (2000). ArticleCAS Google Scholar