Targeting Rab GTPases to distinct membrane compartments (original) (raw)

References

  1. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).
    Article CAS Google Scholar
  2. Pfeffer, S. R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001).
    Article CAS Google Scholar
  3. Pereira-Leal, J. B. & Seabra, M. C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889–901 (2001).
    Article CAS Google Scholar
  4. Segev, N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol. 13, 500–511 (2001).
    Article CAS Google Scholar
  5. Alory, C. & Balch, W. E. Organization of the Rab-GDI/Chm superfamily: the functional basis for choroideremia disease. Traffic 2, 532–543 (2001).
    Article CAS Google Scholar
  6. Ullrich, O., Horiuchi, H., Bucci, C. & Zerial, M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 368, 157–160 (1994). Reports the in vitro reconstitution of specific, prenylated Rab delivery onto membranes using streptolysin-O-permeabilized cells.
    Article CAS Google Scholar
  7. Soldati, T., Shapiro, A. D., Svejstrup, A. B. & Pfeffer, S. R. Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature 369, 76–78 (1994). Describes the in vitro reconstitution of specific, prenylated Rab delivery onto membranes using purified components.
    Article CAS Google Scholar
  8. Soldati, T., Rancano, C., Geissler, H. & Pfeffer, S. R. Rab7 and Rab9 are recruited onto late endosomes by biochemically distinguishable processes. J. Biol. Chem. 270, 25541–25548 (1995).
    Article CAS Google Scholar
  9. Schalk, I. et al. Structure and mutational analysis of Rab GDP-dissociation inhibitor. Nature 381, 42–48 (1996). Describes the first three-dimensional structure of bovine GDI and a mutational analysis that identifies the residues that contribute to the Rab-binding site.
    Article CAS Google Scholar
  10. Luan, P. et al. A new functional domain of guanine nucleotide dissociation inhibitor (αGDI) involved in Rab recycling. Traffic 1, 270–281 (2000).
    Article CAS Google Scholar
  11. An, Y. et al. Geranylgeranyl switching regulates GDI–Rab GTPase recycling. Structure 11, 347–357 (2003). Presents the structure of bovine GDIα crystallized with a prenyl (geranylgeranyl) group bound. The authors detected the ordering of a so-called 'mobile effector loop' that is probably important for GDI function.
    Article CAS Google Scholar
  12. Rak, A. et al. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302, 646–650 (2003). This beautiful paper identifies a prenyl-binding site at the base of GDI that becomes exposed when prenylated Ypt1 binds to the yeast GDI.
    Article CAS Google Scholar
  13. Sasaki, T. et al. Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP-binding protein. J. Biol. Chem. 265, 2333–2337 (1990). Reports the discovery of Rab GDI.
    CAS PubMed Google Scholar
  14. Sasaki, T., Kaibuchi, K., Kabcenell, A. K., Novick, P. J. & Takai, Y. A mammalian inhibitory GDP/GTP exchange protein (GDP dissociation inhibitor) for smg p25A is active on the yeast SEC4 protein. Mol. Cell. Biol. 11, 2909–2912 (1991).
    Article CAS Google Scholar
  15. Regazzi, R., Kikuchi, A., Takai, Y. & Wollheim, C. B. The small GTP-binding proteins in the cytosol of insulin-secreting cells are complexed to GDP dissociation inhibitor proteins. J. Biol. Chem. 267, 17512–17519 (1992).
    CAS PubMed Google Scholar
  16. Ullrich, O. et al. Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J. Biol. Chem. 268, 18143–18150 (1993).
    CAS PubMed Google Scholar
  17. Nishimura, N., Nakamura, H., Takai, Y. & Sano, K. Molecular cloning and characterization of two rab GDI species from rat brain: brain-specific and ubiquitous types. J. Biol. Chem. 269, 14191–14198 (1994).
    CAS PubMed Google Scholar
  18. Shisheva, A., Chinni, S. R. & DeMarco, C. General role of GDP dissociation inhibitor 2 in membrane release of Rab proteins: modulations of its functional interactions by in vitro and in vivo structural modifications. Biochemistry 38, 11711–11721 (1999).
    Article CAS Google Scholar
  19. Garrett, M. D., Zahner, J. E., Cheney, C. M. & Novick, P. J. GDI1 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway. EMBO J. 13, 1718–1728 (1994).
    Article CAS Google Scholar
  20. Luan, P., Balch, W. E., Emr, S. D. & Burd, C. G. Molecular dissection of guanine nucleotide dissociation inhibitor function in vivo. Rab-independent binding to membranes and role of Rab recycling factors. J. Biol. Chem. 274, 14806–14817 (1999).
    Article CAS Google Scholar
  21. Stroupe, C. & Brunger, A. T. Crystal structures of a Rab protein in its inactive and active conformations. J. Mol. Biol. 304, 585–598 (2000).
    Article CAS Google Scholar
  22. Chavrier, P., Gorvel, J. P., Stelzer, E., Simons, K., Gruenberg, J. & Zerial, M. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature 353, 769–772 (1991).
    Article CAS Google Scholar
  23. Shapiro, A. D. & Pfeffer, S. R. Quantitative analysis of the interactions between prenyl Rab9, GDP dissociation inhibitor-α, and guanine nucleotides. J. Biol. Chem. 270, 11085–11090 (1995).
    Article CAS Google Scholar
  24. Calero, M. et al. Dual prenylation is required for Rab protein localization and function. Mol. Biol. Cell 14, 1852–1867 (2003).
    Article CAS Google Scholar
  25. Calero, M., Whittaker, G. R. & Collins, R. N. Yop1p, the yeast homolog of the polyposis locus protein 1, interacts with Yip1p and negatively regulates cell growth. J. Biol. Chem. 276, 12100–12112 (2001).
    Article CAS Google Scholar
  26. Andres, D. A. et al. cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell 73, 1091–1099 (1993).
    Article CAS Google Scholar
  27. Pylypenko, O. et al. Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase. Mol. Cell 11, 483–494 (2003).
    Article CAS Google Scholar
  28. Rak, A. et al. Structure of the Rab7:REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease. Cell 117, 749–760 (2004).
    Article CAS Google Scholar
  29. Steele-Mortimer, O., Gruenberg, J. & Clague, M. J. Phosphorylation of GDI and membrane cycling of Rab proteins. FEBS Lett. 329, 313–318 (1993).
    Article CAS Google Scholar
  30. Cavalli, V. et al. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol. Cell 7, 421–432 (2001). Indicates that phosphorylation of a key serine residue has a role in GDI function.
    Article CAS Google Scholar
  31. Dirac-Svejstrup, A. B., Sumizawa, T. & Pfeffer, S. R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab–GDI. EMBO J. 16, 465–472 (1997). Describes a novel assay that was designed to detect GDF activity, for the first time, on endosome membranes. The activity studied was specific for endosomal Rabs.
    Article CAS Google Scholar
  32. Sivars, U., Aivazian, D. & Pfeffer, S. R. Yip3 catalyses the dissociation of endosomal Rab–GDI complexes. Nature 425, 856–859 (2003). The first description of GDF identification using biochemical analysis.
    Article CAS Google Scholar
  33. Yang, X., Matern, H. T. & Gallwitz, D. Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p. EMBO J. 17, 4954–4963 (1998). The first report of Yip proteins as interactors with yeast Rab/Ypt GTPases.
    Article CAS Google Scholar
  34. Calero, M. & Collins, R. N. S. cerevisiae Pra1p/Yip3 interacts with Yip1p and Rab proteins. Biochem. Biophys. Res. Comm. 290, 676–681 (2002).
    Article CAS Google Scholar
  35. Calero, M., Winand, N. J. & Collins, R. N. Identification of the novel proteins Yip4p and Yip5p as Rab GTPase interacting factors. FEBS Lett. 515, 89–98 (2002).
    Article CAS Google Scholar
  36. Matern, H. et al. A novel Golgi membrane protein is part of a GTPase-binding protein complex involved in vesicle targeting. EMBO J. 19, 4485–4492 (2000). The first characterization of Yif1.
    Article CAS Google Scholar
  37. Lin, J., Liang, Z., Zhang, Z. & Li, G. Membrane topography and topogenesis of prenylated Rab acceptor (PRA1). J. Biol. Chem. 276, 41733–41741 (2001).
    Article CAS Google Scholar
  38. Martincic, I., Peralta, M. E. & Ngsee, J. K. Isolation and characterization of a dual prenylated Rab and VAMP2 receptor. J. Biol. Chem. 272, 26991–26998 (1997). Shows that PRA1 (human Yip3) can bind to certain v-SNAREs and to numerous prenylated Rab GTPases.
    Article CAS Google Scholar
  39. Bucci, C., Chiariello, M., Lattero, D., Maiorano, M. & Bruni, C. B. Interaction cloning and characterization of the cDNA encoding the human prenylated Rab acceptor (PRA1). Biochem. Biophys. Res. Comm. 258, 657–662 (1999).
    Article CAS Google Scholar
  40. Hutt, D. M., Da-Silva, L. F., Chang, L. H., Prosser, D. C. & Ngsee, J. K. PRA1 inhibits the extraction of membrane-bound Rab GTPase by GDI1. J. Biol. Chem. 275, 18511–18519 (2000).
    Article CAS Google Scholar
  41. Abdul-Ghani, M., Gougeon, P. Y., Prosser, D. C., Da-Silva, L. F. & Ngsee, J. K. PRA isoforms are targeted to distinct membrane compartments. J. Biol. Chem. 276, 6225–6233 (2001).
    Article CAS Google Scholar
  42. Figueroa, C., Taylor, J. & Vojtek, A. B. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J. Biol. Chem. 276, 28219–28225 (2001).
    Article CAS Google Scholar
  43. Du, L. L. & Novick, P. Yeast rab GTPase-activating protein Gyp1p localizes to the Golgi apparatus and is a negative regulator of Ypt1p. Mol. Biol. Cell 12, 1215–1226 (2001). Shows that a Rab-GTPase-activating protein, which can function on numerous Rabs in vitro , is highly specific in living cells.
    Article CAS Google Scholar
  44. Heidtman, M., Chen, C. Z., Collins, R. N. & Barlowe, C. A role for Yip1p in COPII vesicle biogenesis. J. Cell Biol. 163, 57–69 (2003).
    Article CAS Google Scholar
  45. Barrowman, J., Wang, W., Zhang, Y. & Ferro-Novick, S. The Yip1p–Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J. Biol. Chem. 278, 19878–19884 (2003).
    Article CAS Google Scholar
  46. Tang, B. L. et al. Membrane protein enriched in ER exit sites interacts with COPII. J. Biol. Chem. 276, 40008–40017 (2001).
    Article CAS Google Scholar
  47. Otte, S., Belden, W. J., Heidtman, M., Liu, J., Jensen, O. N. & Barlowe, C. Erv41p and Erv46p: new components of COPII vesicles involved in transport between the ER and Golgi complex. J. Cell Biol. 152, 503–518 (2001).
    Article CAS Google Scholar
  48. Yamashita, T. & Tohyama, M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neurosci. 6, 461–467 (2003).
    Article CAS Google Scholar
  49. Robbe, K., Otto-Bruc, A., Chardin, P. & Antonny, B. Dissociation of GDP dissociation inhibitor and membrane translocation are required for efficient activation of Rac by the Dbl homology-pleckstrin homology region of Tiam. J. Biol. Chem. 278, 4756–4762 (2003).
    Article CAS Google Scholar
  50. Del Pozo, M. A. et al. Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nature Cell Biol. 4, 232–239 (2002).
    Article CAS Google Scholar
  51. Sakisaka, T., Meerlo, T., Matteson, J., Plutner, H. & Balch, W. E. Rabα-GDI activity is regulated by a Hsp90 chaperone complex. EMBO J. 21, 6125–6135 (2002).
    Article CAS Google Scholar
  52. Shakoori, A. et al. Identification of a five-pass transmembrane protein family localizing in the Golgi apparatus and the ER. Biochem. Biophys. Res. Comm. 312, 850–857 (2003).
    Article CAS Google Scholar
  53. Liang, Z., Veeraprame, H., Bayan, N. & Li, G. The C-terminus of prenylin is important in forming a dimer conformation necessary for endoplasmic-reticulum-to-Golgi transport. Biochem. J. 380, 43–49 (2004).
    Article CAS Google Scholar
  54. Janoueix-Lerosey, I., Jollivet, F., Camonis, J., Marche, P. N. & Goud, B. Two-hybrid system screen with the small GTP-binding protein Rab6. Identification of a novel mouse GDP dissociation inhibitor isoform and two other potential partners of Rab6. J. Biol. Chem. 270, 14801–14808 (1995).
    Article CAS Google Scholar
  55. Evans, D. T., Tillman, K. C. & Desrosiers, R. C. Envelope glycoprotein cytoplasmic domains from diverse lentiviruses interact with the prenylated Rab acceptor. J. Virol. 76, 327–337 (2002).
    Article CAS Google Scholar
  56. Fenster, S. D. et al. Piccolo, a presynaptic zinc finger protein structurally related to Bassoon. Neuron 25, 203–214 (2000).
    Article CAS Google Scholar

Download references