New roles for endosomes: from vesicular carriers to multi-purpose platforms (original) (raw)

References

  1. Seaman, M. N. Endosome protein sorting: motifs and machinery. Cell. Mol. Life Sci. 65, 2842–2858 (2008).
    Article CAS Google Scholar
  2. Lemmon, S. K. & Traub, L. M. Sorting in the endosomal system in yeast and animal cells. Curr. Opin. Cell Biol. 12, 457–466 (2000).
    Article CAS Google Scholar
  3. Sönnichsen, B., De Renzis, S., Neilsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000).
    Article Google Scholar
  4. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).
    Article CAS Google Scholar
  5. Gaullier, J.-M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).
    Article CAS Google Scholar
  6. Miaczynska, M. & Zerial, M. Mosaic organization of the endocytic pathway. Exp. Cell Res. 272, 8–14 (2002).
    Article CAS Google Scholar
  7. Emery, G. & Knoblich, J. A. Endosome dynamics during development. Curr. Opin. Cell Biol. 18, 407–415 (2006).
    Article CAS Google Scholar
  8. Miaczynska, M., Pelkmans, L. & Zerial, M. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol. 16, 400–406 (2004).
    Article CAS Google Scholar
  9. Sorkin, A. & von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nature Rev. Mol. Cell Biol. 3, 600–614 (2002).
    Article CAS Google Scholar
  10. Barr, F. A. & Gruneberg, U. Cytokinesis: placing and making the final cut. Cell 131, 847–860 (2007).
    Article CAS Google Scholar
  11. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).
    Article CAS Google Scholar
  12. Albertson, R., Riggs, B. & Sullivan, W. Membrane traffic: a driving force in cytokinesis. Trends Cell Biol. 15, 92–101 (2005).
    Article CAS Google Scholar
  13. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).
    Article CAS Google Scholar
  14. Goss, J. W. & Toomre, D. K. Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J. Cell Biol. 181, 1047–1054 (2008).
    Article CAS Google Scholar
  15. Fielding, A. B. et al. Rab11–FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 24, 3389–3399 (2005).
    Article CAS Google Scholar
  16. Kouranti, I., Sachse, M., Arouche, N., Goud, B. & Echard, A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr. Biol. 16, 1719–1725 (2006).
    Article CAS Google Scholar
  17. Desautels, M., Den Haese, J. P., Slupsky, C. M., McIntosh, L. P. & Hemmingsen, S. M. Cdc4p, a contractile ring protein essential for cytokinesis in Schizosaccharomyces pombe, interacts with a phosphatidylinositol 4-kinase. J. Biol. Chem. 276, 5932–5942 (2001).
    Article CAS Google Scholar
  18. Emoto, K., Inadome, H., Kanaho, Y., Narumiya, S. & Umeda, M. Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J. Biol. Chem. 280, 37901–37907 (2005).
    Article CAS Google Scholar
  19. Field, S. J. et al. PtdIns(4,5)P2 functions at the cleavage furrow during cytokinesis. Curr. Biol. 15, 1407–1412 (2005).
    Article CAS Google Scholar
  20. Janetpopoulos, C., Borleis, J., Vazquez, F., Iijima, M. & Devreotes, P. Temporal and spatial regulation of phosphoinositide signaling mediates cytokinesis. Dev. Cell 8, 467–477 (2005).
    Article Google Scholar
  21. Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132, 832–845 (2008).
    Article CAS Google Scholar
  22. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).
    Article CAS Google Scholar
  23. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).
    Article CAS Google Scholar
  24. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).
    Article CAS Google Scholar
  25. Dukes, J. D., Richardson, J. D., Simmons, R. & Whitley, P. A dominant-negative ESCRT-III protein perturbs cytokinesis and trafficking to lysosomes. Biochem. J. 411, 233–239 (2008).
    Article CAS Google Scholar
  26. Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322, 576–580 (2008).
    Article CAS Google Scholar
  27. Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Struct. Mol. Biol. 15, 1278–1286 (2008).
    Article CAS Google Scholar
  28. Boucrot, E. & Kirchhausen, T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl Acad. Sci. USA 104, 7939–7944 (2007).
    Article CAS Google Scholar
  29. Giansanti, M. G., Belloni, G. & Gatti, M. Rab11 is required for membrane trafficking and actomyosin ring constriction in meiotic cytokinesis of Drosophila males. Mol. Biol. Cell 18, 5034–5047 (2007).
    Article CAS Google Scholar
  30. Sommer, B., Oprins, A., Rabouille, C. & Munro, S. The exocyst component Sec5 is present on endocytic vesicles in the oocyte of Drosophila melanogaster. J. Cell Biol. 169, 953–963 (2005).
    Article CAS Google Scholar
  31. Langevin, J. et al. Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-cadherin trafficking from recycling endosomes to the plasma membrane. Dev. Cell 9, 365–376 (2005).
    Article CAS Google Scholar
  32. Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature 452, 719–725 (2008).
    Article CAS Google Scholar
  33. Nance, J. PAR proteins and the establishment of cell polarity during C. elegans development. Bioessays 27, 126–135 (2005).
    Article CAS Google Scholar
  34. Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol. 9, 1066–1073 (2007).
    Article CAS Google Scholar
  35. Moberg, K. H., Schelble, S., Burdick, S. K. & Hariharan, I. K. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell 9, 699–710 (2005).
    Article CAS Google Scholar
  36. Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).
    Article CAS Google Scholar
  37. Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687–698 (2005).
    Article CAS Google Scholar
  38. Gillette, J. M., Larochelle, A., Dunbar, C. E. & Lippincott-Schwartz, J. Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nature Cell Biol. 8 Feb 2009 (doi: 10.1038/ncb1838).
    Article CAS Google Scholar
  39. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002).
    Article CAS Google Scholar
  40. Sturge, J., Wienke, D. & Isacke, C. M. Endosomes generate localized Rho–ROCK–MLC2-based contractile signals via Endo180 to promote adhesion disassembly. J. Cell Biol. 175, 337–347 (2006).
    Article CAS Google Scholar
  41. Witze, E. S., Litman, E. S., Argast, G. M., Moon, R. T. & Ahn, N. G. Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 320, 365–369 (2008).
    Article CAS Google Scholar
  42. Machesky, L. M. Lamellipodia and filopodia in metastasis and invasion. FEBS Lett. 582, 2102–2011 (2008).
    Article CAS Google Scholar
  43. Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008).
    Article CAS Google Scholar
  44. Olivotto, M., Arcangeli, A., Carlà, M. & Wanke, E. Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. Bioessays 18, 495–504 (1996).
    Article CAS Google Scholar
  45. Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).
    Article CAS Google Scholar
  46. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).
    Article CAS Google Scholar
  47. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).
    Article CAS Google Scholar
  48. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nature Rev. Mol. Cell Biol. 8, 603–612 (2007).
    Article CAS Google Scholar
  49. Hurley, J. H. & Emr, S. D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct. 35, 277–298 (2006).
    Article CAS Google Scholar
  50. Schütze, S., Tchikov, V. & Schneider-Brachret, W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nature Rev. Mol. Cell Biol. 9, 655–662 (2008).
    Article Google Scholar

Download references