Protease degradomics: A new challenge for proteomics (original) (raw)
Barrett, A. J. et al. (eds) Handbook of Proteolytic Enzymes (Academic, London, 1998).A 'must-have' volume for any protease lab that comprehensively lists and describes numerous proteases. Google Scholar
Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol.17, 463–516 (2001). ArticleCAS Google Scholar
Urban, S., Lee, J. R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell107, 173–182 (2001). ArticleCAS Google Scholar
Balbin, M. et al. Identification and enzymatic characterization of two diverging counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J. Biol. Chem.276, 10253–10262 (2001). ArticleCAS Google Scholar
Deussing, J. et al. Identification and characterization of a dense cluster of placenta-specific cysteine and peptidase genes and related genes on mouse chromosome 13. Genomics79, 225–240 (2002). ArticleCAS Google Scholar
Yousef, G. M. & Diamandis, E. P. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocrine Rev.22, 184–204 (2001). CAS Google Scholar
Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science287, 2185–2195 (2000). Article Google Scholar
McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science289, 1202–1206 (2000).The first description of exosite scanning and the use of the yeast two-hybrid system to identify new extracellular protease substrates. ArticleCAS Google Scholar
MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science289, 1760–1763 (2000).This study shows the usefulness of protein-based microarray chips for functional analyses. | Article | CAS Google Scholar
De Wildt, R. M. T., Mundy, C. R., Gorick, B. D. & Tomlinson, I. M. Antibody arrays for high-throughput screening of antibody-antigen interactions. Nature Biotechnol.18, 989–994 (2000). ArticleCAS Google Scholar
Fung, E. T., Thulasiraman, V., Weinberger, S. R. & Dalmasso, E. A. Protein biochips for differential profiling. Curr. Opin. Biotechnol.12, 65–69 (2001). ArticleCAS Google Scholar
Overall, C. M. Matrix metalloproteinase substrate binding domains, modules and exosites: overview and experimental strategies. Methods Mol Biol151, 79–120 (2001). CAS Google Scholar
Cal, S. et al. Cloning, expression analysis and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene283, 49–62 (2002). ArticleCAS Google Scholar
Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA96, 14694–14699 (1999).Together with references15and16, this paper shows the feasibility of activity-based profiling of proteases that are present in complex mixtures. | Article | ArticleCAS Google Scholar
Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7, 569–581 (2000). ArticleCAS Google Scholar
Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics1, 60–68 (2002).A key paper in the development of active-site functional probes for cysteine proteases. This shows that BODIPY-dye-conjugated protease inhibitors can be used to specifically label and identify proteases in mixtures without prior separation. This also shows their use in histological localization, and in the identification of active-site peptide-bond specificity. ArticleCAS Google Scholar
Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infra-red florescent probes. Nature Biotechnol.17, 375–378 (1999). ArticleCAS Google Scholar
Bremer, C., Tung, C. H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Med.7, 743–748 (2001). ArticleCAS Google Scholar
Weissleder, R. Scaling down imaging: Molecular mapping of cancer in mice. Nature Rev. Cancer2, 11–18 (2002).A comprehensive review of the current status of various new and emerging techniques for intravital imaging of cancer proteases that use labelled substrate analogues or inhibitors. ArticleCAS Google Scholar
Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol.17, 994–999 (1999).One of several key papers from the Aebersold laboratory on a new mass-spectrometric proteomic technique that identifies and semiquantitatively measures differences in the abundance of the same protein in two samples. ArticleCAS Google Scholar
Williams, D. M. & Cole, P. A. Kinase chips hit the proteomic era. Trends Biochem. Sci.26, 271–273 (2001). ArticleCAS Google Scholar
Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nature Genet.26, 283–289 (2000). ArticleCAS Google Scholar
Fingleton, B., Vargo, T., Crawford, H. C. & Matrisian, L. M. Matrilysin expression selects for cells with reduced sensitivity to apoptosis. Neoplasia3, 459–468 (2001). ArticleCAS Google Scholar
Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science286, 113–117 (1999). ArticleCAS Google Scholar
McQuibban, G. A. et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem.47, 43503–43508 (2001). Article Google Scholar
Mitchell, P. A perspective on protein microarrays. Nature Biotechnol.20, 225–229 (2002).Together with references27and28, this paper presents the current status, recent developments and limitations of protein- and peptide-microarray protein chips. | Article | ArticleCAS Google Scholar
Heng, Z. et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001). Article Google Scholar
Houseman, B. T., Huh, J. H., Kron, S. J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnol.20, 270–274 (2002). ArticleCAS Google Scholar
Liu, Z. et al. The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell102, 647–655 (2000). ArticleCAS Google Scholar
Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nature Genet.31, 94–99 (2002). ArticleCAS Google Scholar
Zhao, W., Byrne, M. H., Wang, Y. & Krane, S. M. Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J. Clin. Invest.106, 941–949 (2000). ArticleCAS Google Scholar
Ranger, A. M., Malynn, B. A. & Korsmeyer, S. J. Mouse models of cell death. Nature Genet.28, 113–118 (2001). ArticleCAS Google Scholar
Earnshaw, W. C., Luis, M. M. & Kaufmann, S. H. Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu. Rev. Biochem.68, 383–424 (1999). ArticleCAS Google Scholar
Nakagawa, T. et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science280, 450–453 (1998). ArticleCAS Google Scholar
Nakagawa, T. Y. et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity10, 207–217 (1999). ArticleCAS Google Scholar
Turk, V., Turk, B. & Turk, D. Lysosomal cysteine proteases: facts and opportunities. EMBO J.20, 4629–4633 (2001). ArticleCAS Google Scholar
Roth, W. et al. Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and perturbation of hair follicle cycling. FASEB J.14, 2075–2086 (2000). ArticleCAS Google Scholar
Pam, C. T. N. & Ley, T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA96, 8627–8632 (1999). Article Google Scholar
Halangk, W. et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest.106, 773–781 (2000). ArticleCAS Google Scholar
Deng, S. J. et al. Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J. Biol. Chem.275, 31422–31427 (2000). Article Google Scholar
Harris, J. L. et al. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl Acad. Sci. USA97, 7754–7759 (2000).Together with reference43, this paper describes the identification of preferred protease scissile bonds in iterative peptide-library-based approaches. ArticleCAS Google Scholar
Nazif, T. & Bogyo, M. Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proc. Natl Acad. Sci. USA98, 2967–2972 (2001). ArticleCAS Google Scholar
Turk, B. E., Huang, L. L., Piro, E. T. & Cantley, L. C. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotechnol.19, 661–667 (2001). ArticleCAS Google Scholar
Hooper, J. D., Clements, J. A., Quigley, J. P. & Antalis, T. M. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J. Biol. Chem.276, 857–860 (2001). ArticleCAS Google Scholar
Nicholson, D. W. & Thornberry, N. A. Caspases: killer proteases. Trends Biochem. Sci.22, 299–306 (1997). ArticleCAS Google Scholar
Sodek, J. & Overall, C. M. in The Biological Mechanisms of Tooth Eruption and Root Resorption (ed. Davidovitch, Z.) 303–311 (EBSCO Media, Birmingham, Alabama, 1988). Google Scholar
Zhu, Y., Spitz, M. R., Lei, L., Mills, G. B. & Wu, X. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances lung cancer susceptibility. Cancer Res.61, 7825–7829 (2001). CAS Google Scholar
Thornton, J. Structural genomics takes off. Trends Biochem. Sci.26, 88–89 (2001). ArticleCAS Google Scholar
Bonneau, R. & Baker, D. Ab initio protein structure prediction: progress and prospects. Annu. Rev. Biophys. Biomol. Struct.30, 173–189 (2001). ArticleCAS Google Scholar
Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100, 391–398 (2000). ArticleCAS Google Scholar