Norman, J. M., Handley, S. A. & Virgin, H. W. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology146, 1459–1469 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature474, 327–336 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sommer, F. & Bäckhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol.11, 227–238 (2013). ArticleCASPubMed Google Scholar
Nicholson, J. K. et al. Host–gut microbiota metabolic interactions. Science336, 1262–1267 (2012). ArticleCASPubMed Google Scholar
Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature489, 242–249 (2012). ArticleCASPubMed Google Scholar
Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science336, 1268–1273 (2012). ArticleCASPubMedPubMed Central Google Scholar
Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA107, 12204–12209 (2010). ArticleCASPubMed Google Scholar
Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science334, 255–258 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol.4, 269–273 (2003). ArticleCASPubMed Google Scholar
Tate, J. E. et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect. Dis.12, 136–141 (2012). ArticlePubMed Google Scholar
Lanata, C. F. et al. Global causes of diarrheal disease mortality in children<5 years of age: a systematic review. PLoS ONE8, e72788 (2013). ArticleCASPubMedPubMed Central Google Scholar
Koo, H. L. et al. Noroviruses: the most common pediatric viral enteric pathogen at a large university hospital after introduction of rotavirus vaccination. J. Pediatr. Infect. Dis. Soc.2, 57–60 (2013). Article Google Scholar
Koo, H. L., Ajami, N., Atmar, R. L. & DuPont, H. L. Noroviruses: the leading cause of foodborne disease worldwide. Discov. Med.10, 61–70 (2010). PubMedPubMed Central Google Scholar
Ahmed, S. M. et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect. Dis.14, 725–730 (2014). ArticlePubMed Google Scholar
Uchiyama, R., Chassaing, B., Zhang, B. & Gewirtz, A. T. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J. Infect. Dis.210, 171–182 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature516, 94–98 (2014). ArticleCASPubMedPubMed Central Google Scholar
Baldridge, M. T. et al. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science347, 266–269 (2015). ArticleCASPubMed Google Scholar
Robinson, C. M., Jesudhasan, P. R. & Pfeiffer, J. K. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe15, 36–46 (2014). ArticleCASPubMedPubMed Central Google Scholar
Tan, M. & Jiang, X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol.13, 285–293 (2005). ArticleCASPubMed Google Scholar
Miura, T. et al. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J. Virol.87, 9441–9451 (2013). ArticleCASPubMedPubMed Central Google Scholar
Karst, S. M. Identification of a novel cellular target and a co-factor for norovirus infection – B cells and commensal bacteria. Gut Microbes6, 266–271 (2015). ArticleCASPubMedPubMed Central Google Scholar
Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol.10, 131–144 (2010). ArticleCASPubMed Google Scholar
Mukherji, A., Kobiita, A., Ye, T. & Chambon, P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell153, 812–827 (2013). ArticleCASPubMed Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10, 1969–1980 (1998). ArticleCASPubMed Google Scholar
Thornton, A. M. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol.164, 183–190 (2000). ArticleCASPubMed Google Scholar
Sakaguchi, S., Wing, K., Onishi, Y., Prieto-Martin, P. & Yamaguchi, T. Regulatory T cells: how do they suppress immune responses? Int. Immunol.21, 1105–1111 (2009). ArticleCASPubMed Google Scholar
Caridade, M., Graca, L. & Ribeiro, R. M. Mechanisms underlying CD4+ Treg immune regulation in the adult: from experiments to models. Front. Immunol.4, 378 (2013). ArticlePubMedPubMed Central Google Scholar
Jude, B. A. et al. Subversion of the innate immune system by a retrovirus. Nat. Immunol.4, 573–578 (2003). ArticleCASPubMed Google Scholar
Wilks, J. et al. Mammalian lipopolysaccharide receptors incorporated into the retroviral envelope augment virus transmission. Cell Host Microbe18, 456–462 (2015). ArticleCASPubMedPubMed Central Google Scholar
Blacklow, N. R. et al. Acute infectious nonbacterial gastroenteritis: etiology and pathogenesis. Ann. Intern. Med.76, 993–1008 (1972). Article Google Scholar
Dolin, R., Levy, A. G., Wyatt, R. G., Thornhill, T. S. & Gardner, J. D. Viral gastroenteritis induced by the Hawaii agent. Jejunal histopathology and serologic response. Am. J. Med.59, 761–768 (1975). ArticleCASPubMed Google Scholar
Schreiber, D. S., Blacklow, N. R. & Trier, J. S. The mucosal lesion of the proximal small intestine in acute infectious nonbacterial gastroenteritis. N. Engl. J. Med.288, 1318–1323 (1973). ArticleCASPubMed Google Scholar
Mumphrey, S. M. et al. Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J. Virol.81, 3251–3263 (2007). ArticleCASPubMedPubMed Central Google Scholar
Souza, M., Azevedo, M. S. P., Jung, K., Cheetham, S. & Saif, L. J. Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J. Virol.82, 1777–1786 (2008). ArticleCASPubMed Google Scholar
Troeger, H. et al. Structural and functional changes of the duodenum in human norovirus infection. Gut58, 1070–1077 (2009). ArticleCASPubMed Google Scholar
Kahan, S. M. et al. Comparative murine norovirus studies reveal a lack of correlation between intestinal virus titers and enteric pathology. Virology421, 202–210 (2011). ArticleCASPubMedPubMed Central Google Scholar
Basic, M. et al. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm. Bowel Dis.20, 431–443 (2014). ArticlePubMed Google Scholar
Nice, T. J. et al. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science347, 269–273 (2015). ArticleCASPubMed Google Scholar
Wobus, C. E. et al. Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol.2, e432 (2004). ArticlePubMedPubMed Central Google Scholar
Bok, K. et al. Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc. Natl Acad. Sci. USA108, 325–330 (2011). ArticleCASPubMed Google Scholar
Duizer, E. et al. Laboratory efforts to cultivate noroviruses. J. Gen. Virol.85, 79–87 (2004). ArticleCASPubMed Google Scholar
Pott, J. et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc. Natl Acad. Sci. USA108, 7944–7949 (2011). ArticleCASPubMed Google Scholar
Zhang, B. et al. Prevention and cure of rotavirus infection via TLR5/NLRC4–mediated production of IL-22 and IL-18. Science346, 861–865 (2014). ArticleCASPubMedPubMed Central Google Scholar
Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA105, 15064–15069 (2008). ArticleCASPubMed Google Scholar
Blumershine, R. V. & Savage, D. C. Filamentous microbes indigenous to the murine small bowel: a scanning electron microscopic study of their morphology and attachment to the epithelium. Microb. Ecol.4, 95–103 (1977). ArticleCASPubMed Google Scholar
Klaasen, H. L. B. M., Koopman, J. P., Poelma, F. G. J. & Beynen, A. C. Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev.8, 165–179 (1992). ArticleCASPubMed Google Scholar
Kaparakis-Liaskos, M. & Ferrero, R. L. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol.15, 375–387 (2015). ArticleCASPubMed Google Scholar
Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol.13, 605–619 (2015). ArticleCASPubMedPubMed Central Google Scholar
Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol.6, 666–677 (2013). ArticleCASPubMedPubMed Central Google Scholar
Golovkina, T. V., Shlomchik, M., Hannum, L. & Chervonsky, A. Organogenic role of B lymphocytes in mucosal immunity. Science286, 1965–1968 (1999). ArticleCASPubMed Google Scholar
Gonzalez-Hernandez, M. B. et al. Murine norovirus transcytosis across an in vitro polarized murine intestinal epithelial monolayer is mediated by M-like cells. J. Virol.87, 12685–12693 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez-Hernandez, M. B. et al. Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells. J. Virol.88, 6934–6943 (2014). ArticlePubMedPubMed Central Google Scholar
Sicin´ski, P. et al. Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology98, 56–58 (1990). Article Google Scholar
Wolf, J. L. et al. Intestinal M cells: a pathway for entry of reovirus into the host. Science212, 471–472 (1981). ArticleCASPubMed Google Scholar
Marionneau, S. et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology122, 1967–1977 (2002). ArticleCASPubMed Google Scholar
Tamura, M., Natori, K., Kobayashi, M., Miyamura, T. & Takeda, N. Interaction of recombinant norwalk virus particles with the 105-kilodalton cellular binding protein, a candidate receptor molecule for virus attachment. J. Virol.74, 11589–11597 (2000). ArticleCASPubMedPubMed Central Google Scholar
White, L. J. et al. Attachment and entry of recombinant norwalk virus capsids to cultured human and animal cell lines. J. Virol.70, 6589–6597 (1996). CASPubMedPubMed Central Google Scholar