Hot crenarchaeal viruses reveal deep evolutionary connections (original) (raw)

References

  1. Prangishvili, D. & Garrett, R. A. Viruses of hyperthermophilic Crenarchaea. Trends Microbiol. 13, 535–542 (2005). This recent review provides more in-depth coverage of the structure of crenarchaeal virus particles and their genome, including replication and transcription.
    CAS PubMed Google Scholar
  2. Arnold, H. P., Ziese, U. & Zillig, W. SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology 272, 409–416 (2000).
    CAS PubMed Google Scholar
  3. Häring, M., Rachel, R., Peng, X., Garrett, R. A. & Prangishvili, D. Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae. J. Virol. 79, 9904–9911 (2005).
    PubMed PubMed Central Google Scholar
  4. Bettstetter, M., Peng, X., Garrett, R. A. & Prangishvili, D. AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology 315, 68–79 (2003).
    CAS PubMed Google Scholar
  5. Vestergaard, G. et al. A novel rudivirus, ARV1, of the hyperthermophilic archaeal genus Acidianus. Virology 336, 83–92 (2005).
    CAS PubMed Google Scholar
  6. Häring, M. et al. Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virology 323, 233–242 (2004).
    PubMed Google Scholar
  7. Wiedenheft, B. et al. Comparative genomic analysis of hyperthermophilic archaeal Fuselloviridae viruses. J. Virol. 78, 1954–1961 (2004). This paper compares four complete genomes sequenced from archaeal viruses with identical morphologies and infecting similar hosts, but isolated from four different locations around the world.
    CAS PubMed PubMed Central Google Scholar
  8. Rice, G. et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc. Natl Acad. Sci. USA 101, 7716–7720 (2004).
    CAS PubMed PubMed Central Google Scholar
  9. Xiang, X. et al. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus–host interactions and genomic features. J. Virol. 79, 8677–8686 (2005).
    CAS PubMed PubMed Central Google Scholar
  10. Häring, M. et al. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures. J. Bacteriol. 187, 3855–3858 (2005).
    PubMed PubMed Central Google Scholar
  11. Arnold, H. P. et al. A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 267, 252–266 (2000).
    CAS PubMed Google Scholar
  12. Häring, M. et al. Independent virus development outside a host. Nature 436, 1101–1102 (2005). This paper, and the supplementary data, describe a virus that undergoes extracellular maturation and causes lysis of the host cell, two characteristics not seen in other crenarchaeal viruses.
    PubMed Google Scholar
  13. Prangishvili, D. & Garrett, R. A. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem. Soc. Trans. 32, 204–208 (2004).
    CAS PubMed Google Scholar
  14. Prangishvili, D., Stedman, K. & Zillig, W. Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol. 9, 39–43 (2001).
    CAS PubMed Google Scholar
  15. Prangishvili, D. Evolutionary insights from studies on viruses of hyperthermophilic archaea. Res. Microbiol. 154, 289–294 (2003).
    CAS PubMed Google Scholar
  16. Snyder, J. C. et al. Viruses of hyperthermophilic Archaea. Res. Microbiol. 154, 474–482 (2003).
    CAS PubMed Google Scholar
  17. Dyall-Smith, M., Tang, S. & Bath, C. Haloarchaeal viruses: how diverse are they? Res. Microbiol. 154, 309–313 (2003). This is a review of the diversity of viruses infecting the haloarchaea which describes the viruses infecting the other major group of Archaea, the Euryarchaeota.
    PubMed Google Scholar
  18. Takai, K. & Sako, Y. A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol. Ecol. 28, 177–188 (1999).
    CAS Google Scholar
  19. Takai, K. & Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072 (2000).
    CAS PubMed PubMed Central Google Scholar
  20. Spear, J. R., Walker, J. J., McCollom, T. M. & Pace, N. R. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl Acad. Sci. USA 102, 2555–2560 (2005).
    CAS PubMed PubMed Central Google Scholar
  21. Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: new genus of sulfur-oxidizing bacteria living at low pH and high-temperature. Archiv. Fur Mikrobiologie 84, 54–68 (1972).
    CAS PubMed Google Scholar
  22. Segerer, A., Neuner, A., Kristjansson, J. K. & Stetter, K. O. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi Comb. nov., facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing Archaebacteria. Int. J. System. Bacteriol. 36, 559–564 (1986).
    Google Scholar
  23. Itoh, T., Suzuki, K. & Nakase, T. Vulcanisaeta distributa gen. nov., sp nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic rod-shaped crenarchaeotes isolated from hot springs in Japan. Int. J. System. Evol. Microbiol. 52, 1097–1104 (2002).
    CAS Google Scholar
  24. Svetlichnyi, V. A., Slesarev, A. I., Svetlichnaya, T. P. & Zavarzin, G. A. Caldococcus litoralis gen. nov., sp. nov., a new marine, extremely thermophilic, sulfur-reducing Archaebacterium. Microbiology 56, 658–664 (1987).
    Google Scholar
  25. Segerer, A. H., Trincone, A., Gahrtz, M. & Stetter, K. O. Stygiolobus azoricus gen. nov., sp. nov., represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int. J. System. Bacteriol. 41, 495–501 (1991).
    Google Scholar
  26. Huber, G., Spinnler, C., Gambacorta, A. & Stetter, K. O. Metallosphaera sedula gen. nov. and sp. nov., represents a new genus of aerobic, metal-mobilizing, thermoacidophilic Archaebacteria. System. Appl. Microbiol. 12, 38–47 (1989).
    Google Scholar
  27. Zillig, W. et al. Desulfurococcaceae, the 2nd family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 3, 304–317 (1982).
    CAS Google Scholar
  28. Hensel, R. et al. Sulfophobococcus zilligii gen. nov., sp. nov., a novel hyperthermophilic archaeum isolated from hot alkaline springs of Iceland. System. Appl. Microbiol. 20, 102–110 (1997).
    Google Scholar
  29. Itoh, T., Suzuki, K. & Nakase, T. Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int. J. System. Bacteriol. 48, 879–887 (1998).
    Google Scholar
  30. Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T. Caldivirga maquilingensis gen. nov., sp nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int. J. System. Bacteriol. 49, 1157–1163 (1999).
    CAS Google Scholar
  31. Huber, R., Kristjansson, J. K. & Stetter, K. O. Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped Archaebacteria from continental solfataras growing optimally at 100°C. Archiv. Microbiol. 149, 95–101 (1987).
    CAS Google Scholar
  32. Zillig, W. et al. The Archaebacterium Thermofilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. System. Appl. Microbiol. 4, 79–87 (1983).
    CAS Google Scholar
  33. Zillig, W., Tu, J. & Holz, I. Thermoproteales — a 3rd order of thermoacidophilic Archaebacteria. Nature 293, 85–86 (1981).
    CAS PubMed Google Scholar
  34. Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T. Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt. Maquiling, Philippines. Int. J. System. Evol. Microbiol. 53, 1149–1154 (2003).
    CAS Google Scholar
  35. Snyder, J. C. Virus dynamics, archaeal populations, and water chemistry of three acidic hot springs in Yellowstone National Park. Ph.D. Thesis, Univ. Montana State. (2005).
  36. Breitbart, M., Wegley, L., Leeds, S., Schoenfeld, T. & Rohwer, F. Phage community dynamics in hot springs. Appl. Environ. Microbiol. 70, 1633–1640 (2004).
    CAS PubMed PubMed Central Google Scholar
  37. Karner, M. B., Delong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).
    CAS PubMed Google Scholar
  38. Simon, H. M. et al. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl. Environ. Microbiol. 71, 4751–4760 (2005).
    CAS PubMed PubMed Central Google Scholar
  39. Pinar, G., Gurtner, C., Lubitz, W. & Rolleke, S. Identification of archaea in objects of art by denaturing gradient gel electrophoresis analysis and shotgun cloning. Methods Enzymol. 336, 356–366 (2001).
    CAS PubMed Google Scholar
  40. Rieu-Lesme, F., Delbes, C. & Sollelis, L. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem. Curr. Microbiol. 51, 317–321 (2005).
    CAS PubMed Google Scholar
  41. Buckley, D. H., Graber, J. R. & Schmidt, T. M. Phylogenetic analysis of non-thermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol. 64, 4333–4339 (1998).
    CAS PubMed PubMed Central Google Scholar
  42. Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. & Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787–797 (2003).
    CAS PubMed Google Scholar
  43. Massana, R., Murray, A. E., Preston, C. M. & Delong, E. F. Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63, 50–56 (1997).
    CAS PubMed PubMed Central Google Scholar
  44. Murray, A. E. et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 64, 2585–2595 (1998).
    CAS PubMed PubMed Central Google Scholar
  45. Geslin, C. et al. PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, Pyrococcus abyssi. J. Bacteriol. 185, 3888–3894 (2003).
    CAS PubMed PubMed Central Google Scholar
  46. Maniloff, J. & Ackermann, H. W. Taxonomy of bacterial viruses: Establishment of tailed virus genera and the order Caudovirales. Archiv. Virol. 143, 2051–2063 (1998).
    CAS Google Scholar
  47. Rice, G. et al. Viruses from extreme thermal environments. Proc. Natl Acad. Sci. USA 98, 13341–13345 (2001). This paper describes the diversity of viruses detected from enrichment cultures from Yellowstone hot spring samples.
    CAS PubMed PubMed Central Google Scholar
  48. Rachel, R. et al. Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Archiv. Virol. 147, 2419–2429 (2002).
    CAS Google Scholar
  49. Snyder, J. C. et al. Effects of culturing on the population structure of a hyperthermophilic virus. Microb. Ecol. 48, 561–566 (2004).
    CAS PubMed Google Scholar
  50. Janekovic, D. et al. TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax. Mol. Gen. Genet. 192, 39–45 (1983).
    CAS Google Scholar
  51. Prangishvili, D. et al. A novel virus family, the Rudiviridae: structure, virus–host interactions and genome variability of the Sulfolobus viruses SIRV1 and SIRV2. Genetics 152, 1387–1396 (1999).
    CAS PubMed PubMed Central Google Scholar
  52. Martin, A. et al. SAV-1, a temperate UV-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius Isolate B-12. EMBO J. 3, 2165–2168 (1984).
    CAS PubMed PubMed Central Google Scholar
  53. Stedman, K. M. et al. Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Res. Microbiol. 154, 295–302 (2003).
    CAS PubMed Google Scholar
  54. Bath, C. & Dyall-Smith, M. L. His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica. J. Virol. 72, 9392–9395 (1998).
    CAS PubMed PubMed Central Google Scholar
  55. Wood, A. G., Whitman, W. B. & Konisky, J. Isolation and characterization of an archaebacterial virus-like particle from Methanococcus voltae A3. J. Bacteriol. 171, 93–98 (1989).
    CAS PubMed PubMed Central Google Scholar
  56. Khayat, R. et al. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc. Natl Acad. Sci. USA 102, 18944–18949 (2005). A recent paper describing the crystal structure of the major capsid protein from STIV which adds further support to the hypothesis that icosahedral dsDNA viruses share a common ancestry.
    CAS PubMed PubMed Central Google Scholar
  57. Maaty, W. S. A. et al. Characterization of the archaeal thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link among dsDNA viruses from all domains of life. J. Virol. (In the press).
  58. Porter, K. et al. SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335, 22–33 (2005).
    CAS PubMed Google Scholar
  59. Bamford, D. H. et al. Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J. Virol. 79, 9097–9107 (2005).
    CAS PubMed PubMed Central Google Scholar
  60. Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol. 79, 14967–14970 (2005).
    CAS PubMed PubMed Central Google Scholar
  61. Duda, R. L., Hendrix, R. W., Huang, W. M. & Conway, J. F. Shared architecture of bacteriophage SPO1 and herpesvirus capsids. Curr. Biol. 16, R11–R13 (2006).
    CAS PubMed Google Scholar
  62. Mallick, P., Boutz, D. R., Eisenberg, D. & Yeates, T. O. Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proc. Natl Acad. Sci. USA 99, 9679–9684 (2002).
    CAS PubMed PubMed Central Google Scholar
  63. Nadal, M., Mirambeau, G., Forterre, P., Reiter, W. & Duguet, M. Positively supercoiled DNA in a virus-like particle of an archaebacterium. Nature 321, 256–258 (1986).
    CAS Google Scholar
  64. Forterre, P. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet. 18, 236–237 (2002).
    CAS PubMed Google Scholar
  65. Peng, X. et al. Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses. Virology 291, 226–234 (2001).
    CAS PubMed Google Scholar
  66. Grogan, D. W. Hyperthermophiles and the problem of DNA instability. Mol. Microbiol. 28, 1043–1049 (1998).
    CAS PubMed Google Scholar
  67. Kraft, P. et al. Crystal structure of F-93 from Sulfolobus spindle-shaped virus 1, a winged-helix DNA binding protein. J. Virol. 78, 11544–11550 (2004).
    CAS PubMed PubMed Central Google Scholar
  68. Kraft, P. et al. Structure of D-63 from Sulfolobus spindle-shaped virus 1: surface properties of the dimeric four-helix bundle suggest an adaptor protein function. J. Virol. 78, 7438–7442 (2004).
    CAS PubMed PubMed Central Google Scholar
  69. Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages: all the world's a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).
    CAS PubMed PubMed Central Google Scholar
  70. del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M. & Diaz-Orejas, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 434–464 (1998).
    CAS PubMed PubMed Central Google Scholar
  71. She, Q., Shen, B. & Chen, L. Archaeal integrases and mechanisms of gene capture. Biochem. Soc. Trans. 32, 222–226 (2004).
    CAS PubMed Google Scholar
  72. Yeats, S., Mcwilliam, P. & Zillig, W. A Plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J. 1, 1035–1038 (1982).
    CAS PubMed PubMed Central Google Scholar
  73. Swalla, B. M., Gumport, R. I. & Gardner, J. F. Conservation of structure and function among tyrosine recombinases: homology-based modeling of the λ integrase core-binding domain. Nucleic Acids Res. 31, 805–818 (2003).
    CAS PubMed PubMed Central Google Scholar
  74. Reiter, W. D., Palm, P., Yeats, S. & Zillig, W. Gene expression in Archaebacteria: physical mapping of constitutive and UV-inducible transcripts from the Sulfolobus virus-like particle SSV1. Mol. Gen. Genet. 209, 270–275 (1987).
    CAS PubMed Google Scholar
  75. Kessler, A., Brinkman, A. B., van der Oost, J. & Prangishvili, D. Transcription of the rod-shaped viruses SIRV1 and SIRV2 of the hyperthermophilic archaeon Sulfolobus. J. Bacteriol. 186, 7745–7753 (2004).
    CAS PubMed PubMed Central Google Scholar
  76. Schleper, C., Kubo, K. & Zillig, W. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc. Natl Acad. Sci. USA 89, 7645–7649 (1992).
    CAS PubMed PubMed Central Google Scholar
  77. Liu, D. X. & Huang, L. Induction of the Sulfolobus shibatae virus SSV1 DNA replication by mitomycin C. Chinese Sci. Bull. 47, 923–927 (2002).
    CAS Google Scholar
  78. Zillig, W. et al. Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. System. Appl. Microbiol. 16, 609–628 (1994).
    CAS Google Scholar
  79. Palm, P. et al. Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae. Virology 185, 242–250 (1991).
    CAS PubMed Google Scholar
  80. Blum, H., Zillig, W., Mallok, S., Domdey, H. & Prangishvili, D. The genome of the archaeal virus SIRV1 has features in common with genomes of eukaryal viruses. Virology 281, 6–9 (2001).
    CAS PubMed Google Scholar
  81. Ackermann, H. W. Bacteriophage observations and evolution. Res. Microbiol. 154, 245–251 (2003).
    CAS PubMed Google Scholar
  82. Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978 (2003).
    CAS PubMed Google Scholar
  83. Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).
    CAS PubMed Google Scholar

Download references