Hot crenarchaeal viruses reveal deep evolutionary connections (original) (raw)
References
Prangishvili, D. & Garrett, R. A. Viruses of hyperthermophilic Crenarchaea. Trends Microbiol.13, 535–542 (2005). This recent review provides more in-depth coverage of the structure of crenarchaeal virus particles and their genome, including replication and transcription. CASPubMed Google Scholar
Arnold, H. P., Ziese, U. & Zillig, W. SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology272, 409–416 (2000). CASPubMed Google Scholar
Häring, M., Rachel, R., Peng, X., Garrett, R. A. & Prangishvili, D. Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae. J. Virol.79, 9904–9911 (2005). PubMedPubMed Central Google Scholar
Bettstetter, M., Peng, X., Garrett, R. A. & Prangishvili, D. AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology315, 68–79 (2003). CASPubMed Google Scholar
Vestergaard, G. et al. A novel rudivirus, ARV1, of the hyperthermophilic archaeal genus Acidianus. Virology336, 83–92 (2005). CASPubMed Google Scholar
Häring, M. et al. Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virology323, 233–242 (2004). PubMed Google Scholar
Wiedenheft, B. et al. Comparative genomic analysis of hyperthermophilic archaeal Fuselloviridae viruses. J. Virol.78, 1954–1961 (2004). This paper compares four complete genomes sequenced from archaeal viruses with identical morphologies and infecting similar hosts, but isolated from four different locations around the world. CASPubMedPubMed Central Google Scholar
Rice, G. et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc. Natl Acad. Sci. USA101, 7716–7720 (2004). CASPubMedPubMed Central Google Scholar
Xiang, X. et al. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus–host interactions and genomic features. J. Virol.79, 8677–8686 (2005). CASPubMedPubMed Central Google Scholar
Häring, M. et al. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures. J. Bacteriol.187, 3855–3858 (2005). PubMedPubMed Central Google Scholar
Arnold, H. P. et al. A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology267, 252–266 (2000). CASPubMed Google Scholar
Häring, M. et al. Independent virus development outside a host. Nature436, 1101–1102 (2005). This paper, and the supplementary data, describe a virus that undergoes extracellular maturation and causes lysis of the host cell, two characteristics not seen in other crenarchaeal viruses. PubMed Google Scholar
Prangishvili, D. & Garrett, R. A. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem. Soc. Trans.32, 204–208 (2004). CASPubMed Google Scholar
Prangishvili, D., Stedman, K. & Zillig, W. Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol.9, 39–43 (2001). CASPubMed Google Scholar
Prangishvili, D. Evolutionary insights from studies on viruses of hyperthermophilic archaea. Res. Microbiol.154, 289–294 (2003). CASPubMed Google Scholar
Snyder, J. C. et al. Viruses of hyperthermophilic Archaea. Res. Microbiol.154, 474–482 (2003). CASPubMed Google Scholar
Dyall-Smith, M., Tang, S. & Bath, C. Haloarchaeal viruses: how diverse are they? Res. Microbiol.154, 309–313 (2003). This is a review of the diversity of viruses infecting the haloarchaea which describes the viruses infecting the other major group of Archaea, the Euryarchaeota. PubMed Google Scholar
Takai, K. & Sako, Y. A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol. Ecol.28, 177–188 (1999). CAS Google Scholar
Takai, K. & Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol.66, 5066–5072 (2000). CASPubMedPubMed Central Google Scholar
Spear, J. R., Walker, J. J., McCollom, T. M. & Pace, N. R. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl Acad. Sci. USA102, 2555–2560 (2005). CASPubMedPubMed Central Google Scholar
Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: new genus of sulfur-oxidizing bacteria living at low pH and high-temperature. Archiv. Fur Mikrobiologie84, 54–68 (1972). CASPubMed Google Scholar
Segerer, A., Neuner, A., Kristjansson, J. K. & Stetter, K. O. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi Comb. nov., facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing Archaebacteria. Int. J. System. Bacteriol.36, 559–564 (1986). Google Scholar
Itoh, T., Suzuki, K. & Nakase, T. Vulcanisaeta distributa gen. nov., sp nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic rod-shaped crenarchaeotes isolated from hot springs in Japan. Int. J. System. Evol. Microbiol.52, 1097–1104 (2002). CAS Google Scholar
Svetlichnyi, V. A., Slesarev, A. I., Svetlichnaya, T. P. & Zavarzin, G. A. Caldococcus litoralis gen. nov., sp. nov., a new marine, extremely thermophilic, sulfur-reducing Archaebacterium. Microbiology56, 658–664 (1987). Google Scholar
Segerer, A. H., Trincone, A., Gahrtz, M. & Stetter, K. O. Stygiolobus azoricus gen. nov., sp. nov., represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int. J. System. Bacteriol.41, 495–501 (1991). Google Scholar
Huber, G., Spinnler, C., Gambacorta, A. & Stetter, K. O. Metallosphaera sedula gen. nov. and sp. nov., represents a new genus of aerobic, metal-mobilizing, thermoacidophilic Archaebacteria. System. Appl. Microbiol.12, 38–47 (1989). Google Scholar
Zillig, W. et al. Desulfurococcaceae, the 2nd family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A]3, 304–317 (1982). CAS Google Scholar
Hensel, R. et al. Sulfophobococcus zilligii gen. nov., sp. nov., a novel hyperthermophilic archaeum isolated from hot alkaline springs of Iceland. System. Appl. Microbiol.20, 102–110 (1997). Google Scholar
Itoh, T., Suzuki, K. & Nakase, T. Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int. J. System. Bacteriol.48, 879–887 (1998). Google Scholar
Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T. Caldivirga maquilingensis gen. nov., sp nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int. J. System. Bacteriol.49, 1157–1163 (1999). CAS Google Scholar
Huber, R., Kristjansson, J. K. & Stetter, K. O. Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped Archaebacteria from continental solfataras growing optimally at 100°C. Archiv. Microbiol.149, 95–101 (1987). CAS Google Scholar
Zillig, W. et al. The Archaebacterium Thermofilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. System. Appl. Microbiol.4, 79–87 (1983). CAS Google Scholar
Zillig, W., Tu, J. & Holz, I. Thermoproteales — a 3rd order of thermoacidophilic Archaebacteria. Nature293, 85–86 (1981). CASPubMed Google Scholar
Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T. Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt. Maquiling, Philippines. Int. J. System. Evol. Microbiol.53, 1149–1154 (2003). CAS Google Scholar
Snyder, J. C. Virus dynamics, archaeal populations, and water chemistry of three acidic hot springs in Yellowstone National Park. Ph.D. Thesis, Univ. Montana State. (2005).
Breitbart, M., Wegley, L., Leeds, S., Schoenfeld, T. & Rohwer, F. Phage community dynamics in hot springs. Appl. Environ. Microbiol.70, 1633–1640 (2004). CASPubMedPubMed Central Google Scholar
Karner, M. B., Delong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature409, 507–510 (2001). CASPubMed Google Scholar
Simon, H. M. et al. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl. Environ. Microbiol.71, 4751–4760 (2005). CASPubMedPubMed Central Google Scholar
Pinar, G., Gurtner, C., Lubitz, W. & Rolleke, S. Identification of archaea in objects of art by denaturing gradient gel electrophoresis analysis and shotgun cloning. Methods Enzymol.336, 356–366 (2001). CASPubMed Google Scholar
Rieu-Lesme, F., Delbes, C. & Sollelis, L. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem. Curr. Microbiol.51, 317–321 (2005). CASPubMed Google Scholar
Buckley, D. H., Graber, J. R. & Schmidt, T. M. Phylogenetic analysis of non-thermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol.64, 4333–4339 (1998). CASPubMedPubMed Central Google Scholar
Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. & Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol.5, 787–797 (2003). CASPubMed Google Scholar
Massana, R., Murray, A. E., Preston, C. M. & Delong, E. F. Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara Channel. Appl. Environ. Microbiol.63, 50–56 (1997). CASPubMedPubMed Central Google Scholar
Murray, A. E. et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol.64, 2585–2595 (1998). CASPubMedPubMed Central Google Scholar
Geslin, C. et al. PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, Pyrococcus abyssi. J. Bacteriol.185, 3888–3894 (2003). CASPubMedPubMed Central Google Scholar
Maniloff, J. & Ackermann, H. W. Taxonomy of bacterial viruses: Establishment of tailed virus genera and the order Caudovirales. Archiv. Virol.143, 2051–2063 (1998). CAS Google Scholar
Rice, G. et al. Viruses from extreme thermal environments. Proc. Natl Acad. Sci. USA98, 13341–13345 (2001). This paper describes the diversity of viruses detected from enrichment cultures from Yellowstone hot spring samples. CASPubMedPubMed Central Google Scholar
Rachel, R. et al. Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Archiv. Virol.147, 2419–2429 (2002). CAS Google Scholar
Snyder, J. C. et al. Effects of culturing on the population structure of a hyperthermophilic virus. Microb. Ecol.48, 561–566 (2004). CASPubMed Google Scholar
Janekovic, D. et al. TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax. Mol. Gen. Genet.192, 39–45 (1983). CAS Google Scholar
Prangishvili, D. et al. A novel virus family, the Rudiviridae: structure, virus–host interactions and genome variability of the Sulfolobus viruses SIRV1 and SIRV2. Genetics152, 1387–1396 (1999). CASPubMedPubMed Central Google Scholar
Martin, A. et al. SAV-1, a temperate UV-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius Isolate B-12. EMBO J.3, 2165–2168 (1984). CASPubMedPubMed Central Google Scholar
Stedman, K. M. et al. Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Res. Microbiol.154, 295–302 (2003). CASPubMed Google Scholar
Bath, C. & Dyall-Smith, M. L. His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica. J. Virol.72, 9392–9395 (1998). CASPubMedPubMed Central Google Scholar
Wood, A. G., Whitman, W. B. & Konisky, J. Isolation and characterization of an archaebacterial virus-like particle from Methanococcus voltae A3. J. Bacteriol.171, 93–98 (1989). CASPubMedPubMed Central Google Scholar
Khayat, R. et al. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc. Natl Acad. Sci. USA102, 18944–18949 (2005). A recent paper describing the crystal structure of the major capsid protein from STIV which adds further support to the hypothesis that icosahedral dsDNA viruses share a common ancestry. CASPubMedPubMed Central Google Scholar
Maaty, W. S. A. et al. Characterization of the archaeal thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link among dsDNA viruses from all domains of life. J. Virol. (In the press).
Porter, K. et al. SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology335, 22–33 (2005). CASPubMed Google Scholar
Bamford, D. H. et al. Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J. Virol.79, 9097–9107 (2005). CASPubMedPubMed Central Google Scholar
Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol.79, 14967–14970 (2005). CASPubMedPubMed Central Google Scholar
Duda, R. L., Hendrix, R. W., Huang, W. M. & Conway, J. F. Shared architecture of bacteriophage SPO1 and herpesvirus capsids. Curr. Biol.16, R11–R13 (2006). CASPubMed Google Scholar
Mallick, P., Boutz, D. R., Eisenberg, D. & Yeates, T. O. Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proc. Natl Acad. Sci. USA99, 9679–9684 (2002). CASPubMedPubMed Central Google Scholar
Nadal, M., Mirambeau, G., Forterre, P., Reiter, W. & Duguet, M. Positively supercoiled DNA in a virus-like particle of an archaebacterium. Nature321, 256–258 (1986). CAS Google Scholar
Forterre, P. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet.18, 236–237 (2002). CASPubMed Google Scholar
Peng, X. et al. Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses. Virology291, 226–234 (2001). CASPubMed Google Scholar
Grogan, D. W. Hyperthermophiles and the problem of DNA instability. Mol. Microbiol.28, 1043–1049 (1998). CASPubMed Google Scholar
Kraft, P. et al. Crystal structure of F-93 from Sulfolobus spindle-shaped virus 1, a winged-helix DNA binding protein. J. Virol.78, 11544–11550 (2004). CASPubMedPubMed Central Google Scholar
Kraft, P. et al. Structure of D-63 from Sulfolobus spindle-shaped virus 1: surface properties of the dimeric four-helix bundle suggest an adaptor protein function. J. Virol.78, 7438–7442 (2004). CASPubMedPubMed Central Google Scholar
Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages: all the world's a phage. Proc. Natl Acad. Sci. USA96, 2192–2197 (1999). CASPubMedPubMed Central Google Scholar
del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M. & Diaz-Orejas, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev.62, 434–464 (1998). CASPubMedPubMed Central Google Scholar
She, Q., Shen, B. & Chen, L. Archaeal integrases and mechanisms of gene capture. Biochem. Soc. Trans.32, 222–226 (2004). CASPubMed Google Scholar
Yeats, S., Mcwilliam, P. & Zillig, W. A Plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J.1, 1035–1038 (1982). CASPubMedPubMed Central Google Scholar
Swalla, B. M., Gumport, R. I. & Gardner, J. F. Conservation of structure and function among tyrosine recombinases: homology-based modeling of the λ integrase core-binding domain. Nucleic Acids Res.31, 805–818 (2003). CASPubMedPubMed Central Google Scholar
Reiter, W. D., Palm, P., Yeats, S. & Zillig, W. Gene expression in Archaebacteria: physical mapping of constitutive and UV-inducible transcripts from the Sulfolobus virus-like particle SSV1. Mol. Gen. Genet.209, 270–275 (1987). CASPubMed Google Scholar
Kessler, A., Brinkman, A. B., van der Oost, J. & Prangishvili, D. Transcription of the rod-shaped viruses SIRV1 and SIRV2 of the hyperthermophilic archaeon Sulfolobus. J. Bacteriol.186, 7745–7753 (2004). CASPubMedPubMed Central Google Scholar
Schleper, C., Kubo, K. & Zillig, W. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc. Natl Acad. Sci. USA89, 7645–7649 (1992). CASPubMedPubMed Central Google Scholar
Liu, D. X. & Huang, L. Induction of the Sulfolobus shibatae virus SSV1 DNA replication by mitomycin C. Chinese Sci. Bull.47, 923–927 (2002). CAS Google Scholar
Zillig, W. et al. Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. System. Appl. Microbiol.16, 609–628 (1994). CAS Google Scholar
Palm, P. et al. Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae. Virology185, 242–250 (1991). CASPubMed Google Scholar
Blum, H., Zillig, W., Mallok, S., Domdey, H. & Prangishvili, D. The genome of the archaeal virus SIRV1 has features in common with genomes of eukaryal viruses. Virology281, 6–9 (2001). CASPubMed Google Scholar
Ackermann, H. W. Bacteriophage observations and evolution. Res. Microbiol.154, 245–251 (2003). CASPubMed Google Scholar
Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science301, 976–978 (2003). CASPubMed Google Scholar