Can landscape ecology untangle the complexity of antibiotic resistance? (original) (raw)

References

  1. Salyers, A. A. & Amabile-Cuevas, C. F. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41, 2321–2325 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  2. Salyers, A. A., Shoemaker, N. B. & Bonheyo, G. T. in Bacterial Resistance to Antimicrobials (eds Lewis, K., Salyers, A. A., Taber, H. W. & Wax, R. G.) 1–18 (Marcel Dekker, New York, 2002).
    Google Scholar
  3. Summers, A. O. Generally overlooked fundamentals of bacterial genetics and ecology. Clin. Infect. Dis. 34, (Suppl. 3), S85–S92 (2002).
    Article CAS PubMed Google Scholar
  4. Aarestrup, F. M., Kruse, H., Tast, E., Hammerum, A. M. & Jensen, L. B. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb. Drug Resist. 6, 63–70 (2000).
    Article CAS PubMed Google Scholar
  5. Aarestrup, F. M. et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45, 2054–2059 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  6. Casewell, M., Friis, C., Marco, E., McMullin, P. & Phillips, I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52, 159–161 (2003).
    Article CAS PubMed Google Scholar
  7. Heuer, O. E., Pedersen, K., Andersen, J. S. & Madsen, M. Vancomycin-resistant enterococci (VRE) in broiler flocks 5 years after the avoparcin ban. Microb. Drug Resist. 8, 133–138 (2002).
    Article CAS PubMed Google Scholar
  8. Heuer, O. E., Pedersen, K., Jensen, L. B., Madsen, M. & Olsen, J. E. Persistence of vancomycin-resistant enterococci (VRE) in broiler houses after the avoparcin ban. Microb. Drug Resist. 8, 355–361 (2002).
    Article CAS PubMed Google Scholar
  9. Phillips, I. et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 53, 28–52 (2004).
    Article CAS PubMed Google Scholar
  10. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Centre, Norwich, UK, 2000).
    Google Scholar
  11. Waksman, S. The role of antibiotics in nature. Perspect. Biol. Med. 4, 271–287 (1961).
    Article Google Scholar
  12. Yim, G., Wang, H. H. & Davies, J. The truth about antibiotics. Int. J. Med. Microbiol. 296, 163–170 (2006).
    Article CAS PubMed Google Scholar
  13. D'Costa, V. M., McGrann, K. M., Hughes, D. W. & Wright, G. D. Sampling the antibiotic resistome. Science 311, 374–377 (2006).
    Article CAS PubMed Google Scholar
  14. Davies, J. Are antibiotics naturally antibiotics? J. Ind. Microbiol. Biotechnol. 33, 496–499 (2006).
    Article CAS PubMed Google Scholar
  15. Schmitt, H., Stoob, K., Hamscher, G., Smit, E. & Seinen, W. Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb. Ecol. 51, 267–276 (2006).
    Article PubMed Google Scholar
  16. Kummerer, K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources — a review. Chemosphere 45, 957–969 (2001).
    Article CAS PubMed Google Scholar
  17. Kummerer, K. & Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 9, 1203–1214 (2003).
    Article CAS PubMed Google Scholar
  18. Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).
    Article CAS PubMed Google Scholar
  19. Schrag, S. J., Perrot, V. & Levin, B. R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. Biol. Sci. 264, 1287–1291 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  20. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).
    Article CAS PubMed Google Scholar
  21. Lenski, R. E. Bacterial evolution and the cost of antibiotic resistance. Int. Microbiol. 1, 265–270 (1998).
    CAS PubMed Google Scholar
  22. Sorum, M. et al. Prevalence, persistence, and molecular characterization of glycopeptide-resistant enterococci in Norwegian poultry and poultry farmers 3 to 8 years after the ban on avoparcin. Appl. Environ. Microbiol. 72, 516–521 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  23. Khachatryan, A. R., Hancock, D. D., Besser, T. E. & Call, D. R. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Appl. Environ. Microbiol. 70, 752–757 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  24. Khachatryan, A. R., Hancock, D. D., Besser, T. E. & Call, D. R. Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Appl. Environ. Microbiol. 72, 443–448 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  25. Luo, N., Sahin, O., Lin, J., Michel, L. O. & Zhang, Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother. 47, 390–394 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  26. Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46, 1204–1211 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  27. Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154, 985–997 (2000).
    CAS PubMed PubMed Central Google Scholar
  28. Forman, R. T. T. Land Mosaics: The Ecology of Landscapes and Regions (Cambridge University Press, Cambridge UK, 1995).
    Book Google Scholar
  29. Martiny, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol. 4, 102–112 (2006).
    Article CAS Google Scholar
  30. Pavlovsky, E. N. Natural Nidality of Transmissible Diseases: With Special Reference to the Landscape Ecology of Zooanthroponoses. (University of Illinois Press, Urbana Illinois, 1966).
    Book Google Scholar
  31. Kitron, U. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J. Med. Entomol. 35, 435–445 (1998).
    Article CAS PubMed Google Scholar
  32. Reisen, W. K., Lothrop, H. D., Presser, S. B., Hardy, J. L. & Gordon, E. W. Landscape ecology of arboviruses in southeastern California: temporal and spatial patterns of enzootic activity in Imperial Valley, 1991–1994. J. Med. Entomol. 34, 179–188 (1997).
    Article CAS PubMed Google Scholar
  33. Guerra, M. et al. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis. 8, 289–297 (2002).
    Article PubMed PubMed Central Google Scholar
  34. Pei, R., Kim, S. C., Carlson, K. H. & Pruden, A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 40, 2427–2435 (2006).
    Article CAS PubMed Google Scholar
  35. Unicomb, L. E. et al. Low-level fluoroquinolone resistance among Campylobacter jejuni isolates in Australia. Clin. Infect. Dis. 42, 1368–1374 (2006).
    Article CAS PubMed Google Scholar
  36. Davelos, A. L., Kinkel, L. L. & Samac, D. A. Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl. Environ. Microbiol. 70, 1051–1058 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  37. Swaminathan, B., Barrett, T. J. & Fields, P. Surveillance for human Salmonella infections in the United States. J. AOAC Int. 89, 553–559 (2006).
    CAS PubMed Google Scholar
  38. Zhao, S. et al. Antimicrobial resistance and genetic relatedness among Salmonella from retail foods of animal origin: NARMS retail meat surveillance. Foodborne. Pathog. Dis. 3, 106–117 (2006).
    Article CAS PubMed Google Scholar
  39. Lipsitch, M. & Samore, M. H. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg. Infect. Dis. 8, 347–354 (2002).
    Article PubMed PubMed Central Google Scholar
  40. Harris, A. D. et al. Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, Enterococci, and Escherichia coli. Clin. Infect. Dis. 34, 1558–1563 (2002).
    Article PubMed Google Scholar
  41. Lipsitch, M. Measuring and interpreting associations between antibiotic use and penicillin resistance in Streptococcus pneumoniae. Clin. Infect. Dis. 32, 1044–1054 (2001).
    Article CAS PubMed Google Scholar
  42. Rubin, D. B. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688–701 (1974).
    Article Google Scholar
  43. Hofler, M. Causal inference based on counterfactuals. BMC. Med. Res. Methodol. 5, 28 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  44. Maldonado, G. & Greenland, S. Estimating causal effects. Int. J. Epidemiol. 31, 422–429 (2002).
    Article PubMed Google Scholar
  45. McGowan, J. E. Jr. Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev. Infect. Dis. 5, 1033–1048 (1983).
    Article PubMed Google Scholar
  46. Alonso, A., Sanchez, P. & Martinez, J. L. Environmental selection of antibiotic resistance genes. Environ. Microbiol. 3, 1–9 (2001).
    Article CAS PubMed Google Scholar
  47. Borgen, K., Sorum, M., Wasteson, Y., Kruse, H. & Oppegaard, H. Genetic linkage between erm(B) and vanA in Enterococcus hirae of poultry origin. Microb. Drug Resist. 8, 363–368 (2002).
    Article CAS PubMed Google Scholar
  48. Sander, J. E., Hofacre, C. L., Cheng, I. H. & Wyatt, R. D. Investigation of resistance of bacteria from commercial poultry sources to commercial disinfectants. Avian Dis. 46, 997–1000 (2002).
    Article PubMed Google Scholar
  49. Sidhu, M. S., Sorum, H. & Holck, A. Resistance to quaternary ammonium compounds in food-related bacteria. Microb. Drug Resist. 8, 393–399 (2002).
    Article CAS PubMed Google Scholar
  50. Sidhu, M. S., Heir, E., Leegaard, T., Wiger, K. & Holck, A. Frequency of disinfectant resistance genes and genetic linkage with β-lactamase transposon Tn_552_ among clinical staphylococci. Antimicrob. Agents Chemother. 46, 2797–2803 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  51. Sidhu, M. S., Heir, E., Sorum, H. & Holck, A. Genetic linkage between resistance to quaternary ammonium compounds and β-lactam antibiotics in food-related Staphylococcus spp. Microb. Drug Resist. 7, 363–371 (2001).
    Article CAS PubMed Google Scholar
  52. Guerra, B., Soto, S., Helmuth, R. & Mendoza, M. C. Characterization of a self-transferable plasmid from Salmonella enterica serotype typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob. Agents Chemother. 46, 2977–2981 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  53. Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182 (2006).
    Article CAS PubMed Google Scholar
  54. Stepanauskas, R. et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ. Microbiol. 8, 1510–1514 (2006).
    Article CAS PubMed Google Scholar
  55. Barkay, T., Miller, S. M. & Summers, A. O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27, 355–384 (2003).
    Article CAS PubMed Google Scholar
  56. Wireman, J., Liebert, C. A., Smith, T. & Summers, A. O. Association of mercury resistance with antibiotic resistance in the Gram-negative fecal bacteria of primates. Appl. Environ. Microbiol. 63, 4494–4503 (1997).
    CAS PubMed PubMed Central Google Scholar
  57. Liebert, C. A., Hall, R. M. & Summers, A. O. Transposon Tn_21_, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63, 507–522 (1999).
    CAS PubMed PubMed Central Google Scholar
  58. Bass, L. et al. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob. Agents Chemother. 43, 2925–2929 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  59. Berg, J., Tom-Petersen, A. & Nybroe, O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol. 40, 146–151 (2005).
    Article CAS PubMed Google Scholar
  60. Hasman, H. & Aarestrup, F. M. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother. 46, 1410–1416 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  61. Hasman, H. & Aarestrup, F. M. Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob. Agents Chemother. 49, 454–456 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  62. Sarmah, A. K., Meyer, M. T. & Boxall, A. B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65, 725–759 (2006).
    Article CAS PubMed Google Scholar
  63. Rooklidge, S. J. Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways. Sci. Total Environ. 325, 1–13 (2004).
    Article CAS PubMed Google Scholar
  64. Chander, Y., Kumar, K., Goyal, S. M. & Gupta, S. C. Antibacterial activity of soil-bound antibiotics. J. Environ. Qual. 34, 1952–1957 (2005).
    Article CAS PubMed Google Scholar
  65. Clay, S. A., Liu, Z., Thaler, R. & Kennouche, H. Tylosin sorption to silty clay loam soils, swine manure, and sand. J. Environ. Sci. Health B 40, 841–850 (2005).
    Article CAS PubMed Google Scholar
  66. Aga, D. S. et al. Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J. Agric. Food Chem. 53, 7165–7171 (2005).
    Article CAS PubMed Google Scholar
  67. Kumar, K., Gupta, S. C., Baidoo, S. K., Chander, Y. & Rosen, C. J. Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual. 34, 2082–2085 (2005).
    Article CAS PubMed Google Scholar
  68. Kummerer, K. Resistance in the environment. J. Antimicrob. Chemother. 54, 311–320 (2004).
    Article CAS PubMed Google Scholar
  69. Novais, C., Coque, T. M., Ferreira, H., Sousa, J. C. & Peixe, L. Environmental contamination with vancomycin-resistant enterococci from hospital sewage in Portugal. Appl. Environ. Microbiol. 71, 3364–3368 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  70. Lewis, D. J. et al. Linking on-farm dairy management practices to storm-flow fecal coliform loading for California coastal watersheds. Environ. Monit. Assess. 107, 407–425 (2005).
    Article CAS PubMed Google Scholar
  71. Rodgers, P., Soulsby, C., Hunter, C. & Petry, J. Spatial and temporal bacterial quality of a lowland agricultural stream in northeast Scotland. Sci. Total Environ. 314–316, 289–302 (2003).
    Article PubMed CAS Google Scholar
  72. Moore, J. A. Surface transport of microorganisms by water. Biotechnology 15, 41–55 (1991).
    CAS PubMed Google Scholar
  73. Gibbs, S. G., Green, C. F., Tarwater, P. M. & Scarpino, P. V. Airborne antibiotic resistant and nonresistant bacteria and fungi recovered from two swine herd confined animal feeding operations. J. Occup. Environ. Hyg. 1, 699–706 (2004).
    Article PubMed Google Scholar
  74. Chapin, A., Rule, A., Gibson, K., Buckley, T. & Schwab, K. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environ. Health Perspect. 113, 137–142 (2005).
    Article PubMed Google Scholar
  75. Elliott, P., Wakefield, J., Best, N. & Briggs, D. Spatial epidemiology: Methods and Applications. (Oxford University Press, Oxford, 2000).
    Google Scholar
  76. Lawson, A. B. Statistical Methods in Spatial Epidemiology. (John Wiley, Chichester 2001).
    Google Scholar
  77. Hendrickx, G. et al. The spatial pattern of trypanosomosis prevalence predicted with the aid of satellite imagery. Parasitology 120, 121–134 (2000).
    Article PubMed Google Scholar
  78. Kitron, U. & Kazmierczak, J. J. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am. J. Epidemiol. 145, 558–566 (1997).
    Article CAS PubMed Google Scholar
  79. Chadee, D. D. & Kitron, U. Spatial and temporal patterns of imported malaria cases and local transmission in Trinidad. Am. J. Trop. Med. Hyg. 61, 513–517 (1999).
    Article CAS PubMed Google Scholar
  80. Kleinschmidt, I., Sharp, B., Mueller, I. & Vounatsou, P. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am. J. Epidemiol. 155, 257–264 (2002).
    Article PubMed Google Scholar
  81. Ali, M., Emch, M., Yunus, M. & Sack, R. B. Are the environmental niches of Vibrio cholerae O139 different from those of Vibrio cholerae O1 El Tor? Int. J. Infect. Dis. 5, 214–219 (2001).
    Article CAS PubMed Google Scholar
  82. Ali, M., Emch, M., Donnay, J. P., Yunus, M. & Sack, R. B. The spatial epidemiology of cholera in an endemic area of Bangladesh. Soc. Sci. Med. 55, 1015–1024 (2002).
    Article PubMed Google Scholar
  83. Myaux, J., Ali, M., Felsenstein, A., Chakraborty, J. & De Francisco, A. Spatial distribution of watery diarrhoea in children: identification of 'risk areas' in a rural community in Bangladesh. Health Place. 3, 181–186 (1997).
    Article CAS PubMed Google Scholar
  84. Cifuentes, E., Mazari-Hiriart, M., Carneiro, F., Bianchi, F. & Gonzalez, D. The risk of enteric diseases in young children and environmental indicators in sentinel areas of Mexico City. Int. J. Environ. Health Res. 12, 53–62 (2002).
    Article PubMed Google Scholar
  85. Njemanze, P. C., Anozie, J., Ihenacho, J. O., Russell, M. J. & Uwaeziozi, A. B. Application of risk analysis and geographic information system technologies to the prevention of diarrheal diseases in Nigeria. Am. J. Trop. Med. Hyg. 61, 356–360 (1999).
    Article CAS PubMed Google Scholar
  86. Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geograph. 46, 234–240 (1970).
    Article Google Scholar
  87. Singer, R. S., Case, J. T., Carpenter, T. E., Walker, R. L. & Hirsh, D. C. Assessment of spatial and temporal clustering of ampicillin- and tetracycline-resistant strains of Pasteurella multocida and P. haemolytica isolated from cattle in California. J. Am. Vet. Med. Assoc. 212, 1001–1005 (1998).
    CAS PubMed Google Scholar
  88. Metlay, J. P., Branas, C. C. & Fishman, N. O. Hospital-reported pneumococcal susceptibility to penicillin. Emerg. Infect. Dis. 10, 54–59 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  89. Ward, M. P. & Carpenter, T. E. Techniques for analysis of disease clustering in space and in time in veterinary epidemiology. Prev. Vet. Med. 45, 257–284 (2000).
    Article CAS PubMed Google Scholar
  90. Singer, R. S., Reid-Smith, R. & Sischo, W. M. Stakeholder position paper: Epidemiological perspectives on antibiotic use in animals. Prev. Vet. Med. 73, 153–161 (2006).
    Article PubMed Google Scholar
  91. Diez-Roux, A. V. Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am. J. Public Health 88, 216–222 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  92. Dohoo, I. R., Martin, S. W. & Strynh, H. in Veterinary Epidemiologic Research. (Atlantic Veterinary College Inc., 2003).
    Google Scholar
  93. Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nature Rev. Microbiol. 3, 722–732 (2005).
    Article CAS Google Scholar
  94. Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nature Rev. Microbiol. 3, 679–687 (2005).
    Article CAS Google Scholar
  95. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol. 3, 711–721 (2005).
    Article CAS Google Scholar
  96. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  97. Riesenfeld, C. S., Goodman, R. M. & Handelsman, J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6, 981–989 (2004).
    Article CAS PubMed Google Scholar
  98. Franklin, R. B. & Mills, A. L. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol. Ecol. 44, 335–346 (2003).
    Article CAS PubMed Google Scholar
  99. Yu, Z., Michel, F. C. Jr, Hansen, G., Wittum, T. & Morrison, M. Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl. Environ. Microbiol. 71, 6926–6933 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  100. Smith, M. S. et al. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl. Environ. Microbiol. 70, 7372–7377 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  101. Hayes, J. R., Wagner, D. D., English, L. L., Carr, L. E. & Joseph, S. W. Distribution of streptogramin resistance determinants among Enterococcus faecium from a poultry production environment of the USA. J. Antimicrob. Chemother. 55, 123–126 (2005).
    Article CAS PubMed Google Scholar

Download references