Can landscape ecology untangle the complexity of antibiotic resistance? (original) (raw)
References
Salyers, A. A. & Amabile-Cuevas, C. F. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother.41, 2321–2325 (1997). ArticleCASPubMedPubMed Central Google Scholar
Salyers, A. A., Shoemaker, N. B. & Bonheyo, G. T. in Bacterial Resistance to Antimicrobials (eds Lewis, K., Salyers, A. A., Taber, H. W. & Wax, R. G.) 1–18 (Marcel Dekker, New York, 2002). Google Scholar
Summers, A. O. Generally overlooked fundamentals of bacterial genetics and ecology. Clin. Infect. Dis.34, (Suppl. 3), S85–S92 (2002). ArticleCASPubMed Google Scholar
Aarestrup, F. M., Kruse, H., Tast, E., Hammerum, A. M. & Jensen, L. B. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb. Drug Resist.6, 63–70 (2000). ArticleCASPubMed Google Scholar
Aarestrup, F. M. et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother.45, 2054–2059 (2001). ArticleCASPubMedPubMed Central Google Scholar
Casewell, M., Friis, C., Marco, E., McMullin, P. & Phillips, I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother.52, 159–161 (2003). ArticleCASPubMed Google Scholar
Heuer, O. E., Pedersen, K., Andersen, J. S. & Madsen, M. Vancomycin-resistant enterococci (VRE) in broiler flocks 5 years after the avoparcin ban. Microb. Drug Resist.8, 133–138 (2002). ArticleCASPubMed Google Scholar
Heuer, O. E., Pedersen, K., Jensen, L. B., Madsen, M. & Olsen, J. E. Persistence of vancomycin-resistant enterococci (VRE) in broiler houses after the avoparcin ban. Microb. Drug Resist.8, 355–361 (2002). ArticleCASPubMed Google Scholar
Phillips, I. et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother.53, 28–52 (2004). ArticleCASPubMed Google Scholar
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Centre, Norwich, UK, 2000). Google Scholar
Waksman, S. The role of antibiotics in nature. Perspect. Biol. Med.4, 271–287 (1961). Article Google Scholar
Yim, G., Wang, H. H. & Davies, J. The truth about antibiotics. Int. J. Med. Microbiol.296, 163–170 (2006). ArticleCASPubMed Google Scholar
D'Costa, V. M., McGrann, K. M., Hughes, D. W. & Wright, G. D. Sampling the antibiotic resistome. Science311, 374–377 (2006). ArticleCASPubMed Google Scholar
Davies, J. Are antibiotics naturally antibiotics? J. Ind. Microbiol. Biotechnol.33, 496–499 (2006). ArticleCASPubMed Google Scholar
Schmitt, H., Stoob, K., Hamscher, G., Smit, E. & Seinen, W. Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb. Ecol.51, 267–276 (2006). ArticlePubMed Google Scholar
Kummerer, K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources — a review. Chemosphere45, 957–969 (2001). ArticleCASPubMed Google Scholar
Kummerer, K. & Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect.9, 1203–1214 (2003). ArticleCASPubMed Google Scholar
Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol.36, 1202–1211 (2002). ArticleCASPubMed Google Scholar
Schrag, S. J., Perrot, V. & Levin, B. R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. Biol. Sci.264, 1287–1291 (1997). ArticleCASPubMedPubMed Central Google Scholar
Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol.2, 489–493 (1999). ArticleCASPubMed Google Scholar
Lenski, R. E. Bacterial evolution and the cost of antibiotic resistance. Int. Microbiol.1, 265–270 (1998). CASPubMed Google Scholar
Sorum, M. et al. Prevalence, persistence, and molecular characterization of glycopeptide-resistant enterococci in Norwegian poultry and poultry farmers 3 to 8 years after the ban on avoparcin. Appl. Environ. Microbiol.72, 516–521 (2006). ArticleCASPubMedPubMed Central Google Scholar
Khachatryan, A. R., Hancock, D. D., Besser, T. E. & Call, D. R. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Appl. Environ. Microbiol.70, 752–757 (2004). ArticleCASPubMedPubMed Central Google Scholar
Khachatryan, A. R., Hancock, D. D., Besser, T. E. & Call, D. R. Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Appl. Environ. Microbiol.72, 443–448 (2006). ArticleCASPubMedPubMed Central Google Scholar
Luo, N., Sahin, O., Lin, J., Michel, L. O. & Zhang, Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother.47, 390–394 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother.46, 1204–1211 (2002). ArticleCASPubMedPubMed Central Google Scholar
Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics154, 985–997 (2000). CASPubMedPubMed Central Google Scholar
Forman, R. T. T. Land Mosaics: The Ecology of Landscapes and Regions (Cambridge University Press, Cambridge UK, 1995). Book Google Scholar
Martiny, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol.4, 102–112 (2006). ArticleCAS Google Scholar
Pavlovsky, E. N. Natural Nidality of Transmissible Diseases: With Special Reference to the Landscape Ecology of Zooanthroponoses. (University of Illinois Press, Urbana Illinois, 1966). Book Google Scholar
Kitron, U. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J. Med. Entomol.35, 435–445 (1998). ArticleCASPubMed Google Scholar
Reisen, W. K., Lothrop, H. D., Presser, S. B., Hardy, J. L. & Gordon, E. W. Landscape ecology of arboviruses in southeastern California: temporal and spatial patterns of enzootic activity in Imperial Valley, 1991–1994. J. Med. Entomol.34, 179–188 (1997). ArticleCASPubMed Google Scholar
Guerra, M. et al. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis.8, 289–297 (2002). ArticlePubMedPubMed Central Google Scholar
Pei, R., Kim, S. C., Carlson, K. H. & Pruden, A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res.40, 2427–2435 (2006). ArticleCASPubMed Google Scholar
Unicomb, L. E. et al. Low-level fluoroquinolone resistance among Campylobacter jejuni isolates in Australia. Clin. Infect. Dis.42, 1368–1374 (2006). ArticleCASPubMed Google Scholar
Davelos, A. L., Kinkel, L. L. & Samac, D. A. Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl. Environ. Microbiol.70, 1051–1058 (2004). ArticleCASPubMedPubMed Central Google Scholar
Swaminathan, B., Barrett, T. J. & Fields, P. Surveillance for human Salmonella infections in the United States. J. AOAC Int.89, 553–559 (2006). CASPubMed Google Scholar
Zhao, S. et al. Antimicrobial resistance and genetic relatedness among Salmonella from retail foods of animal origin: NARMS retail meat surveillance. Foodborne. Pathog. Dis.3, 106–117 (2006). ArticleCASPubMed Google Scholar
Lipsitch, M. & Samore, M. H. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg. Infect. Dis.8, 347–354 (2002). ArticlePubMedPubMed Central Google Scholar
Harris, A. D. et al. Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, Enterococci, and Escherichia coli. Clin. Infect. Dis.34, 1558–1563 (2002). ArticlePubMed Google Scholar
Lipsitch, M. Measuring and interpreting associations between antibiotic use and penicillin resistance in Streptococcus pneumoniae. Clin. Infect. Dis.32, 1044–1054 (2001). ArticleCASPubMed Google Scholar
Rubin, D. B. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol.66, 688–701 (1974). Article Google Scholar
Maldonado, G. & Greenland, S. Estimating causal effects. Int. J. Epidemiol.31, 422–429 (2002). ArticlePubMed Google Scholar
McGowan, J. E. Jr. Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev. Infect. Dis.5, 1033–1048 (1983). ArticlePubMed Google Scholar
Alonso, A., Sanchez, P. & Martinez, J. L. Environmental selection of antibiotic resistance genes. Environ. Microbiol.3, 1–9 (2001). ArticleCASPubMed Google Scholar
Borgen, K., Sorum, M., Wasteson, Y., Kruse, H. & Oppegaard, H. Genetic linkage between erm(B) and vanA in Enterococcus hirae of poultry origin. Microb. Drug Resist.8, 363–368 (2002). ArticleCASPubMed Google Scholar
Sander, J. E., Hofacre, C. L., Cheng, I. H. & Wyatt, R. D. Investigation of resistance of bacteria from commercial poultry sources to commercial disinfectants. Avian Dis.46, 997–1000 (2002). ArticlePubMed Google Scholar
Sidhu, M. S., Sorum, H. & Holck, A. Resistance to quaternary ammonium compounds in food-related bacteria. Microb. Drug Resist.8, 393–399 (2002). ArticleCASPubMed Google Scholar
Sidhu, M. S., Heir, E., Leegaard, T., Wiger, K. & Holck, A. Frequency of disinfectant resistance genes and genetic linkage with β-lactamase transposon Tn_552_ among clinical staphylococci. Antimicrob. Agents Chemother.46, 2797–2803 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sidhu, M. S., Heir, E., Sorum, H. & Holck, A. Genetic linkage between resistance to quaternary ammonium compounds and β-lactam antibiotics in food-related Staphylococcus spp. Microb. Drug Resist.7, 363–371 (2001). ArticleCASPubMed Google Scholar
Guerra, B., Soto, S., Helmuth, R. & Mendoza, M. C. Characterization of a self-transferable plasmid from Salmonella enterica serotype typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob. Agents Chemother.46, 2977–2981 (2002). ArticleCASPubMedPubMed Central Google Scholar
Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. Co-selection of antibiotic and metal resistance. Trends Microbiol.14, 176–182 (2006). ArticleCASPubMed Google Scholar
Stepanauskas, R. et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ. Microbiol.8, 1510–1514 (2006). ArticleCASPubMed Google Scholar
Barkay, T., Miller, S. M. & Summers, A. O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev.27, 355–384 (2003). ArticleCASPubMed Google Scholar
Wireman, J., Liebert, C. A., Smith, T. & Summers, A. O. Association of mercury resistance with antibiotic resistance in the Gram-negative fecal bacteria of primates. Appl. Environ. Microbiol.63, 4494–4503 (1997). CASPubMedPubMed Central Google Scholar
Liebert, C. A., Hall, R. M. & Summers, A. O. Transposon Tn_21_, flagship of the floating genome. Microbiol. Mol. Biol. Rev.63, 507–522 (1999). CASPubMedPubMed Central Google Scholar
Bass, L. et al. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob. Agents Chemother.43, 2925–2929 (1999). ArticleCASPubMedPubMed Central Google Scholar
Berg, J., Tom-Petersen, A. & Nybroe, O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol.40, 146–151 (2005). ArticleCASPubMed Google Scholar
Hasman, H. & Aarestrup, F. M. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother.46, 1410–1416 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hasman, H. & Aarestrup, F. M. Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob. Agents Chemother.49, 454–456 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sarmah, A. K., Meyer, M. T. & Boxall, A. B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere65, 725–759 (2006). ArticleCASPubMed Google Scholar
Rooklidge, S. J. Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways. Sci. Total Environ.325, 1–13 (2004). ArticleCASPubMed Google Scholar
Chander, Y., Kumar, K., Goyal, S. M. & Gupta, S. C. Antibacterial activity of soil-bound antibiotics. J. Environ. Qual.34, 1952–1957 (2005). ArticleCASPubMed Google Scholar
Clay, S. A., Liu, Z., Thaler, R. & Kennouche, H. Tylosin sorption to silty clay loam soils, swine manure, and sand. J. Environ. Sci. Health B40, 841–850 (2005). ArticleCASPubMed Google Scholar
Aga, D. S. et al. Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J. Agric. Food Chem.53, 7165–7171 (2005). ArticleCASPubMed Google Scholar
Kumar, K., Gupta, S. C., Baidoo, S. K., Chander, Y. & Rosen, C. J. Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual.34, 2082–2085 (2005). ArticleCASPubMed Google Scholar
Novais, C., Coque, T. M., Ferreira, H., Sousa, J. C. & Peixe, L. Environmental contamination with vancomycin-resistant enterococci from hospital sewage in Portugal. Appl. Environ. Microbiol.71, 3364–3368 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lewis, D. J. et al. Linking on-farm dairy management practices to storm-flow fecal coliform loading for California coastal watersheds. Environ. Monit. Assess.107, 407–425 (2005). ArticleCASPubMed Google Scholar
Rodgers, P., Soulsby, C., Hunter, C. & Petry, J. Spatial and temporal bacterial quality of a lowland agricultural stream in northeast Scotland. Sci. Total Environ.314–316, 289–302 (2003). ArticlePubMedCAS Google Scholar
Moore, J. A. Surface transport of microorganisms by water. Biotechnology15, 41–55 (1991). CASPubMed Google Scholar
Gibbs, S. G., Green, C. F., Tarwater, P. M. & Scarpino, P. V. Airborne antibiotic resistant and nonresistant bacteria and fungi recovered from two swine herd confined animal feeding operations. J. Occup. Environ. Hyg.1, 699–706 (2004). ArticlePubMed Google Scholar
Chapin, A., Rule, A., Gibson, K., Buckley, T. & Schwab, K. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environ. Health Perspect.113, 137–142 (2005). ArticlePubMed Google Scholar
Elliott, P., Wakefield, J., Best, N. & Briggs, D. Spatial epidemiology: Methods and Applications. (Oxford University Press, Oxford, 2000). Google Scholar
Lawson, A. B. Statistical Methods in Spatial Epidemiology. (John Wiley, Chichester 2001). Google Scholar
Hendrickx, G. et al. The spatial pattern of trypanosomosis prevalence predicted with the aid of satellite imagery. Parasitology120, 121–134 (2000). ArticlePubMed Google Scholar
Kitron, U. & Kazmierczak, J. J. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am. J. Epidemiol.145, 558–566 (1997). ArticleCASPubMed Google Scholar
Chadee, D. D. & Kitron, U. Spatial and temporal patterns of imported malaria cases and local transmission in Trinidad. Am. J. Trop. Med. Hyg.61, 513–517 (1999). ArticleCASPubMed Google Scholar
Kleinschmidt, I., Sharp, B., Mueller, I. & Vounatsou, P. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am. J. Epidemiol.155, 257–264 (2002). ArticlePubMed Google Scholar
Ali, M., Emch, M., Yunus, M. & Sack, R. B. Are the environmental niches of Vibrio cholerae O139 different from those of Vibrio cholerae O1 El Tor? Int. J. Infect. Dis.5, 214–219 (2001). ArticleCASPubMed Google Scholar
Ali, M., Emch, M., Donnay, J. P., Yunus, M. & Sack, R. B. The spatial epidemiology of cholera in an endemic area of Bangladesh. Soc. Sci. Med.55, 1015–1024 (2002). ArticlePubMed Google Scholar
Myaux, J., Ali, M., Felsenstein, A., Chakraborty, J. & De Francisco, A. Spatial distribution of watery diarrhoea in children: identification of 'risk areas' in a rural community in Bangladesh. Health Place.3, 181–186 (1997). ArticleCASPubMed Google Scholar
Cifuentes, E., Mazari-Hiriart, M., Carneiro, F., Bianchi, F. & Gonzalez, D. The risk of enteric diseases in young children and environmental indicators in sentinel areas of Mexico City. Int. J. Environ. Health Res.12, 53–62 (2002). ArticlePubMed Google Scholar
Njemanze, P. C., Anozie, J., Ihenacho, J. O., Russell, M. J. & Uwaeziozi, A. B. Application of risk analysis and geographic information system technologies to the prevention of diarrheal diseases in Nigeria. Am. J. Trop. Med. Hyg.61, 356–360 (1999). ArticleCASPubMed Google Scholar
Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geograph.46, 234–240 (1970). Article Google Scholar
Singer, R. S., Case, J. T., Carpenter, T. E., Walker, R. L. & Hirsh, D. C. Assessment of spatial and temporal clustering of ampicillin- and tetracycline-resistant strains of Pasteurella multocida and P. haemolytica isolated from cattle in California. J. Am. Vet. Med. Assoc.212, 1001–1005 (1998). CASPubMed Google Scholar
Metlay, J. P., Branas, C. C. & Fishman, N. O. Hospital-reported pneumococcal susceptibility to penicillin. Emerg. Infect. Dis.10, 54–59 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ward, M. P. & Carpenter, T. E. Techniques for analysis of disease clustering in space and in time in veterinary epidemiology. Prev. Vet. Med.45, 257–284 (2000). ArticleCASPubMed Google Scholar
Singer, R. S., Reid-Smith, R. & Sischo, W. M. Stakeholder position paper: Epidemiological perspectives on antibiotic use in animals. Prev. Vet. Med.73, 153–161 (2006). ArticlePubMed Google Scholar
Diez-Roux, A. V. Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am. J. Public Health88, 216–222 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dohoo, I. R., Martin, S. W. & Strynh, H. in Veterinary Epidemiologic Research. (Atlantic Veterinary College Inc., 2003). Google Scholar
Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nature Rev. Microbiol.3, 722–732 (2005). ArticleCAS Google Scholar
Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nature Rev. Microbiol.3, 679–687 (2005). ArticleCAS Google Scholar
Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol.3, 711–721 (2005). ArticleCAS Google Scholar
Riesenfeld, C. S., Goodman, R. M. & Handelsman, J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol.6, 981–989 (2004). ArticleCASPubMed Google Scholar
Franklin, R. B. & Mills, A. L. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol. Ecol.44, 335–346 (2003). ArticleCASPubMed Google Scholar
Yu, Z., Michel, F. C. Jr, Hansen, G., Wittum, T. & Morrison, M. Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl. Environ. Microbiol.71, 6926–6933 (2005). ArticleCASPubMedPubMed Central Google Scholar
Smith, M. S. et al. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl. Environ. Microbiol.70, 7372–7377 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hayes, J. R., Wagner, D. D., English, L. L., Carr, L. E. & Joseph, S. W. Distribution of streptogramin resistance determinants among Enterococcus faecium from a poultry production environment of the USA. J. Antimicrob. Chemother.55, 123–126 (2005). ArticleCASPubMed Google Scholar