Thomas, C. M. (ed.) The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread (Harwood Academic Publishers, Amsterdam, 2000). Book Google Scholar
Nakamura, Y., Itoh, T., Matsuda, H. & Gojobori, T. Biased function of horizontally transferred genes in prokaryotic genomes. Nature Genet.36, 760–766 (2004). ArticleCASPubMed Google Scholar
Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA96, 3801–3806 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nielsen, K. M. & Townsend, J. P. Monitoring and modeling horizontal gene transfer. Nature Biotechnol.22, 1110–1114 (2004). ArticleCAS Google Scholar
Cohan, F. M., Roberts, M. S. & King, E. C. The potential for genetic exchange by transformation within a natural population of Bacillus subtilis. Evolution45, 1383–1421 (1991). Article Google Scholar
Jonas, D. A. et al. Safety considerations of DNA in food. Ann. Nutr. Metab.45, 235–254 (2001). ArticleCASPubMed Google Scholar
Paget, E. & Simonet, P. On the track of natural transformation in soil. FEMS Microbiol. Ecol.15, 109–117 (1994). ArticleCAS Google Scholar
Lorenz, M. G. & Wackernagel, W. Bacterial gene-transfer by natural genetic-transformation in the environment. Microbiol. Rev.58, 563–602 (1994). ArticleCASPubMedPubMed Central Google Scholar
Moscoso, M. & Claverys, J. P. Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol. Microbiol.54, 783–794 (2004). ArticleCASPubMed Google Scholar
Lorenz, M. G., Gerjets, D. & Wackernagel, W. Release of transforming plasmid and chromosomal DNA from 2 cultured soil bacteria. Arch. Microbiol.156, 319–326 (1991). ArticleCASPubMed Google Scholar
Ueda, S. & Hara, T. Studies on nucleic acid production and application. I. production of extracellular DNA by Pseudomonas sp. KYU-1. J. Appl. Biochem.3, 1–10 (1981). CAS Google Scholar
Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science295, 1487–1487 (2002). ArticleCASPubMed Google Scholar
Palmen, R. & Hellingwerf, K. J. Acinetobacter calcoaceticus liberates chromosomal DNA during induction of competence by cell lysis. Curr. Microbiol.30, 7–10 (1995). ArticleCASPubMed Google Scholar
Friedlander, A. M. DNA release as a direct measure of microbial killing. J. Immunol.115, 1404–1408 (1975). CASPubMed Google Scholar
Connolly, J. H., Herriott, R. M. & Gupta, S. Deoxyribonuclease in human blood and platelets. Br. J. Exp. Pathol.43, 392–408 (1962). CASPubMedPubMed Central Google Scholar
Rozenberg-Arska, M., Salters, E. C., Vanstrijp, J. A., Hoekstra, W. P. M. & Verhoef, J. Degradation of Escherichia coli chromosomal and plasmid DNA in serum. J. Gen. Microbiol.130, 217–222 (1984). CASPubMed Google Scholar
Doerfler, W. Foreign DNA in Mammalian Systems. (Wiley-VCH Verlag GmbH, Weinheim, 2000). Google Scholar
Worthey, A. L., Kane, J. F. & Orvos, D. R. Fate of pBR322 DNA in a wastewater matrix. J. Ind. Microbiol. Biotechnol.22, 164–166 (1999). ArticleCAS Google Scholar
Widmer, F., Seidler, R. J. & Watrud, L. S. Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol. Ecol.5, 603–613 (1996). ArticleCAS Google Scholar
Widmer, F., Seidler, R. J., Donegan, K. K. & Reed, G. L. Quantification of transgenic plant marker gene persistence in the field. Mol. Ecol.6, 1–7 (1997). ArticleCAS Google Scholar
Romanowski, G., Lorenz, M. G., Sayler, G. S. & Wackernagel, W. Persistence of free plasmid DNA in soil monitored by various methods, including a transformation assay. Appl. Environ. Microbiol.58 3012–3019 (1992). ArticleCASPubMedPubMed Central Google Scholar
Romanowski, G., Lorenz, M. G. & Wackernagel, W. Plasmid DNA in a groundwater aquifer microcosm — adsorption, DNAase resistance and natural genetic transformation of Bacillus subtilis. Mol. Ecol.2, 171–181 (1993). ArticleCASPubMed Google Scholar
Landweber, L. in Genetics and the Extinction of Species: DNA and the Conservation of Biodiversity. (eds Landweber, L. & Dobson, A. P.) 163–186 (Princeton University Press, Princeton, 1999). Book Google Scholar
Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. & Paabo, S. Ancient DNA. Nature Rev. Genet.2, 353–359 (2001). ArticleCASPubMed Google Scholar
Ogram, A., Sayler, G. S. & Barkay, T. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods7, 57–66 (1987). ArticleCAS Google Scholar
DeFlaun, M. F. & Paul, J. H. Detection of exogenous gene sequences in dissolved DNA from aquatic environments. Microb. Ecol.18, 21–28 (1989). ArticleCASPubMed Google Scholar
Karl, D. M. & Bailiff, M. D. The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnol. Oceanogr.34, 543–558 (1989). ArticleCAS Google Scholar
Schubbert, R., Renz, D., Schmitz, B. & Doerfler, W. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc. Natl Acad. Sci. USA94, 961–966 (1997). ArticleCASPubMedPubMed Central Google Scholar
Einspanier, R. et al. The fate of forage plant DNA in farm animals: a collaborative case-study investigating cattle and chicken fed recombinant plant material. Eur. Food Res. Technol.212, 129–134 (2001). ArticleCAS Google Scholar
Chiter, A., Forbes, J. M. & Blair, G. E. DNA stability in plant tissues: implications for the possible transfer of genes from genetically modified food. FEBS Lett.481, 164–168 (2000). ArticleCASPubMed Google Scholar
Paget, E., Lebrun, M., Freyssinet, G. & Simonet, P. The fate of recombinant plant DNA in soil. Eur. J. Soil Biol.34, 81–88 (1998). ArticleCAS Google Scholar
Gebhard, F. & Smalla, K. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol.28, 261–272 (1999). ArticleCAS Google Scholar
Graham, J. B. & Istock, C. A. Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture. Science204, 637–639 (1979). ArticleCASPubMed Google Scholar
Nielsen, K. M., Bones, A. M. & van Elsas, J. D. Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol.63, 3972–3977 (1997). ArticleCASPubMedPubMed Central Google Scholar
Frischer, M. E., Stewart, G. J. & Paul, J. H. Plasmid transfer to indigenous marine bacterial-populations by natural transformation. FEMS Microbiol. Ecol.15, 127–135 (1994). ArticleCAS Google Scholar
Baur, B., Hanselman, K., Schlimme, W. & Jenni, B. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl. Environ. Microbiol.62, 3673–3678 (1996). ArticleCASPubMedPubMed Central Google Scholar
Mercer, D. K., Scott, K. P., Melville, C. M., Glover, L. A. & Flint, H. J. Transformation of an oral bacterium via chromosomal integration of free DNA in the presence of human saliva. FEMS Microbiol. Lett.200, 163–167 (2001). ArticleCASPubMed Google Scholar
Duggan, P. S., Chambers, P. A., Heritage, J. & Forbes, J. M. Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent. FEMS Microbiol. Lett.191, 71–77 (2000). ArticleCASPubMed Google Scholar
Brautigaum, M., Hertel, C. & Hammes, W. P. Evidence for natural transformation of Bacillus subtilis in foodstuffs. FEMS Microbiol. Lett.155, 93–98 (1997). Article Google Scholar
Bauer, F., Hertel, C. & Hammes, W. P. Transformation of Escherichia coli in foodstuffs. Syst. Appl. Microbiol.22 (1999).
Palmen, R. & Hellingwerf, K. J. Uptake and processing of DNA by Acinetobacter calcoaceticus — a review. Gene192, 179–190 (1997). ArticleCASPubMed Google Scholar
Puyet, A., Greenberg, B. & Lacks, S. A. Genetic and structural characterization of EndA — a membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J. Mol. Biol.213, 727–738 (1990). ArticleCASPubMed Google Scholar
Chen, I. & Dubnau, D. DNA uptake during natural transformation. Nature Rev. Microbiol.2, 241–249 (2004). ArticleCAS Google Scholar
Nielsen, K. M. et al. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol.63, 1945–1952 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mejean, V. & Claverys, J. P. DNA processing during entry in transformation of Streptococcus pneumoniae. J. Biol. Chem.268, 5594–5599 (1993). ArticleCASPubMed Google Scholar
Berndt, C., Meier, P. & Wackernagel, W. DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiology149, 895–901 (2003). ArticleCASPubMed Google Scholar
Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays22, 1115–1122 (2000). Article Google Scholar
Feil, E. J. & Spratt, B. G. Recombination and the population structures of bacterial pathogens. Annu. Rev. Microbiol.55, 561–590 (2001). ArticleCASPubMed Google Scholar
Townsend, J. P., Nielsen, K. M., Fisher, D. S. & Hartl, D. L. Horizontal acquisition of divergent chromosomal DNA in bacteria: effects of mutator phenotypes. Genetics164, 13–21 (2003). ArticleCASPubMedPubMed Central Google Scholar
Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science277, 1833–1834 (1997). ArticleCASPubMed Google Scholar
Vulic, M., Dionisio, F., Taddei, F. & Radman, M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl Acad. Sci. USA94, 9763–9767 (1997). ArticleCASPubMedPubMed Central Google Scholar
de Vries, J., Meier, P. & Wackernagel, W. The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol. Lett.195, 211–215 (2001). ArticleCASPubMed Google Scholar
Majewski, J. & Cohan, F. M. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics148, 13–18 (1998). ArticleCASPubMedPubMed Central Google Scholar
Majewski, J., Zawadzki, P., Pickerill, P., Cohan, F. M. & Dowson, C. G. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol.182, 1016–1023 (2000). ArticleCASPubMedPubMed Central Google Scholar
Heinemann, J. A. & Traavik, T. Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nature Biotechnol.22, 1105–1109 (2004). ArticleCAS Google Scholar
Ikeda, H., Shiraishi, K. & Ogata, Y. Illegitimate recombination mediated by double-strand break and end-joining in Escherichia coli. Adv. Biophys.38, 3–20 (2004). ArticleCASPubMed Google Scholar
Nielsen, K. M. An assessment of factors affecting the likelihood of horizontal transfer of recombinant plant DNA to bacterial recipients in the soil and rhizosphere. Collection of Biosafety Reviews (Italy)1, 96–149 (2003). Google Scholar
Kurland, C. G. What tangled web: barriers to rampant horizontal gene transfer. BioEssays27, 741–747 (2005). ArticleCASPubMed Google Scholar
Dempsey, L. A. & Dubnau, D. A. Identification of plasmid and Bacillus subtilis chromosomal recombination sites used for pE194 integration. J. Bacteriol.171, 2856–2865 (1989). ArticleCASPubMedPubMed Central Google Scholar
Lovett, S. T., Hurley, R. L., Sutera, V. A., Aubuchon, R. H. & Lebedeva, M. A. Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways. Genetics160, 851–859 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shen, P. & Huang, H. V. Homologous recombination in Escherichia coli — dependence on substrate length and homology. Genetics112, 441–457 (1986). ArticleCASPubMedPubMed Central Google Scholar
Majewski, J. & Cohan, F. M. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics153, 1525–1533 (1999). ArticleCASPubMedPubMed Central Google Scholar
Meier, P. & Wackernagel, W. Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol. Microbiol.48, 1107–1118 (2003). ArticleCASPubMed Google Scholar
de Vries, J., Herzfeld, T. & Wackernagel, W. Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol. Microbiol.53, 323–334 (2004). ArticleCASPubMed Google Scholar
de Vries, J. & Wackernagel, W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl Acad. Sci. USA99, 2094–2099 (2002). ArticleCASPubMedPubMed Central Google Scholar
Prudhomme, M., Libante, V. & Claverys, J. P. Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA99, 2100–2105 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nielsen, K. M., van Elsas, J. D. & Smalla, K. Transformation of Acinetobacter sp. strain BD413(pFG4 Delta nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol.66, 1237–1242 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kay, E., Vogel, T. M., Bertolla, F., Nalin, R. & Simonet, P. In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol.68, 3345–3351 (2002). ArticleCASPubMedPubMed Central Google Scholar
Funchain, P., Yeung, A., Stewart, J., Clendenin, W. M. & Miller, J. H. Amplification of mutator cells in a population as a result of horizontal transfer. J. Bacteriol.183, 3737–3741 (2001). ArticleCASPubMedPubMed Central Google Scholar
Feng, G., Tsui, H. C. T. & Winkler, M. E. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J. Bacteriol.178, 2388–2396 (1996). ArticleCASPubMedPubMed Central Google Scholar
LeClerc, J. E., Li, B. G., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science274, 1208–1211 (1996). ArticleCASPubMed Google Scholar
Richardson, A. R., Yu, Z., Popovic, T. & Stojiljkovic, I. Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc. Natl Acad. Sci. USA99, 6103–6107 (2002). ArticleCASPubMedPubMed Central Google Scholar
Young, D. M. & Ornston, L. N. Functions of the mismatch repair gene mutS from Acinetobacter sp strain ADP1. J. Bacteriol.183, 6822–6831 (2001). ArticleCASPubMedPubMed Central Google Scholar
Burrus, V., Pavlovic, G., Decaris, B. & Guedon, G. Conjugative transposons: the tip of the iceberg. Mol. Microbiol.46, 601–610 (2002). ArticleCASPubMed Google Scholar
Flores, M. et al. Prediction, identification, and artificial selection of DNA rearrangements in Rhizobium: Toward a natural genomic design. Proc. Natl Acad. Sci. USA97, 9138–9143 (2000). ArticleCASPubMedPubMed Central Google Scholar
Reimmann, C. & Haas, D. Mode of replicon fusion mediated by the duplicated insertion-sequence IS_21_ in Escherichia coli. Genetics115, 619–625 (1987). ArticleCASPubMedPubMed Central Google Scholar
Reimmann, C. et al. Genetic structure, function and regulation of the transposable element IS_21_. Mol. Gen. Genetics215, 416–424 (1989). ArticleCAS Google Scholar
Bao, T. H., Betermier, M., Polard, P. & Chandler, M. Assembly of a strong promoter following IS_911_ circularization and the role of circles in transposition. EMBO J.16, 3357–3371 (1997). Article Google Scholar
Duval-Valentin, G., Marty-Cointin, B. & Chandler, M. Requirement of IS_911_ replication before integration defines a new bacterial transposition pathway. EMBO J.23, 3897–3906 (2004). ArticleCASPubMedPubMed Central Google Scholar
Duval-Valentin, G., Normand, C., Khemici, V., Marty, B. & Chandler, M. Transient promoter formation: a new feedback mechanism for regulation of IS_911_ transposition. EMBO J.20, 5802–5811 (2001). ArticleCASPubMedPubMed Central Google Scholar
McGrath, B. M. & Pembroke, J. T. Detailed analysis of the insertion site of the mobile elements R997, pMERPH, R392, R705 and R391 in E. coli K12. FEMS Microbiol. Lett.237, 19–26 (2004). ArticleCASPubMed Google Scholar
Mateos, L. M., Schafer, A., Kalinowski, J., Martin, J. F. & Puhler, A. Integration of narrow-host-range vectors from Escherichia coli into the genomes of amino acid-producing Corynebacteria after intergeneric conjugation. J. Bacteriol.178, 5768–5775 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ikeda, H., Shimizu, H., Ukita, T. & Kumagai, M. A novel assay for illegitimate recombination in Escherichia coli — stimulation of λ-bio transducing phage formation by ultraviolet-light and its independence from RecA function. Adv. Biophys.31, 197–208 (1995). ArticleCASPubMed Google Scholar
Shiraishi, K., Hanada, K., Iwakura, Y. & Ikeda, H. Roles of recJ, RecO, and RecR in RecET-mediated illegitimate recombination in Escherichia coli. J. Bacteriol.184, 4715–4721 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chiu, C.-M. & Thomas, C. M. Evidence for the past integration of IncP-1 plasmids into bacterial chromosomes. FEMS Lett.241, 163–169 (2004). ArticleCAS Google Scholar
Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol.1, 137–149 (2003). ArticleCAS Google Scholar
Anthony, K. G., Sherburne, C., Sherburne, R. & Frost, L. S. The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Mol. Microbiol.13, 939–953 (1994). ArticleCASPubMed Google Scholar
Ishiwa, A. & Komano, T. PilV adhesins of plasmid R64 thin pili specifically bind to the lipopolysaccharides of recipient cells. J. Mol. Biol.343, 615–625 (2004). ArticleCASPubMed Google Scholar
Samuels, A. L., Lanka, E. & Davies, J. E. Conjugative junctions in RP4-mediated mating of Escherichia coli. J. Bacteriol.182, 2709–2715 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kelly, B. A. & Kado, C. I. _Agrobacterium_-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Mol. Plant Pathol.3, 125–134 (2002). ArticleCASPubMed Google Scholar
Giebelhaus, L. A. et al. The Tra2 core of the IncP alpha plasmid RP4 is required for intergeneric mating between Escherichia coli and Streptomyces lividans. J. Bacteriol.178, 6378–6381 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bingle, L. E. H., Zatyka, M., Manzoor, S. E. & Thomas, C. M. Co-operative interactions control conjugative transfer of broad host-range plasmid RK2: full effect of minor changes in TrbA operator depends on KorB. Mol. Microbiol.49, 1095–1108 (2003). ArticleCASPubMed Google Scholar
Grohmann, E., Muth, G. & Espinosa, M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev.67, 277–301 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hirt, H., Schlievert, P. M. & Dunny, G. M. In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10. Infect. Immun.70, 716–723 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chandler, J. R. & Dunny, G. M. Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides25, 1377–1388 (2004). ArticleCASPubMed Google Scholar
Waters, C. M. & Dunny, G. M. Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J. Bacteriol.183, 5659–5667 (2001). ArticleCASPubMedPubMed Central Google Scholar
Flannagan, S. E. & Clewell, D. B. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterocccus faecalis and Staphylococcus aureus. Mol. Microbiol.44, 803–817 (2002). ArticleCASPubMed Google Scholar
Clewell, D. B., Francia, M. V., Flannagan, S. E. & An, F. Y. Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid48, 193–201 (2002). ArticleCASPubMed Google Scholar
Kurenbach, B. R. et al. Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region. Plasmid50, 86–93 (2003). ArticleCASPubMed Google Scholar
Maas, R. M., Gotz, J., Wohlleben, W. & Muth, G. The conjugative plasmid pSG5 from Streptomyces ghanaensis DSM 2932 differs in its transfer functions from other Streptomyces rolling-circle-type plasmids. Microbiology144, 2809–2817 (1998). ArticleCASPubMed Google Scholar
Pettis, G. S. & Cohen, S. N. Mutational analysis of the tra locus of the broad-host-range Streptomyces plasmid pIJ101. J. Bacteriol.182, 4500–4504 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bentley, S. D. et al. SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol.51, 1615–1628 (2004). ArticleCASPubMed Google Scholar
Haug, I. et al. Streptomyces coelicolor A3(2) plasmid SCP2*: deductions from the complete sequence. Microbiology149, 505–513 (2003). ArticleCASPubMed Google Scholar
Stecker, C., Johann, A., Herzberg, C., Averhoff, B. & Gottschalk, G. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J. Bacteriol.185, 5269–5274 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cabezon, E., Sastre, J. I. & de la Cruz, F. Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol. Gen. Genet.254, 400–406 (1997). ArticleCASPubMed Google Scholar
Llosa, M., Zunzunegui, S. & de la Cruz, F. Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc. Natl Acad. Sci. USA100, 10465–10470 (2003). ArticleCASPubMedPubMed Central Google Scholar
Frost, L. S., Ippen-Ihler, K. & Skurray, R. A. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol. Rev.58, 162–210 (1994). ArticleCASPubMedPubMed Central Google Scholar
Haase, J., Kalkum, M. & Lanka, E. TrbK, a small cytoplasmic membrane lipoprotein, functions in entry exclusion of the IncP alpha plasmid RP4. J. Bacteriol.178, 6720–6729 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hochhut, B., Beaber, J. W., Woodgate, R. & Waldor, M. K. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J. Bacteriol.183, 1124–1132 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pohlman, R. F., Genetti, H. D. & Winans, S. C. Entry exclusion of the IncN plasmid-pKM101 is mediated by a single hydrophilic protein containing a lipid attachment motif. Plasmid31, 158–165 (1994). ArticleCASPubMed Google Scholar
Possoz, C., Gagnat, J., Sezonov, G., Guerineau, M. & Pernodet, J. L. Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor). Mol. Microbiol.47, 1385–1393 (2003). ArticleCASPubMed Google Scholar
Boyd, E. F., Hill, C. W., Rich, S. M. & Hartl, D. L. Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics143, 1091–1100 (1996). ArticleCASPubMedPubMed Central Google Scholar
Schluter, A. et al. The 64 508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology149, 3139–3153 (2003). ArticleCASPubMed Google Scholar
Peters, J. E., Bartoszyk, I. M., Dheer, S. & Benson, S. A. Redundant homosexual F transfer facilitates selection-induced reversion of plasmid mutations. J. Bacteriol.178, 3037–3043 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ghigo, J. M. Natural conjugative plasmids induce bacterial biofilm development. Nature412, 442–445 (2001). ArticleCASPubMed Google Scholar
Reisner, A., Haagensen, J. A. J., Schembri, M. A., Zechner, E. L. & Molin, S. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol.48, 933–946 (2003). ArticleCASPubMed Google Scholar
Sukulpovi, S. & O'Connor, C. D. TraT lipoprotein, a plasmid-specified mediator of interactions between Gram-negative bacteria and their environment. Microbiol. Rev.54, 331–341 (1990). Article Google Scholar
Jeltsch, A. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene317, 13–16 (2003). ArticleCASPubMed Google Scholar
Lacks, S. A. & Springhorn, S. S. Transfer of recombinant plasmids containing the gene for DpnII DNA methylase into strains of Streptococcus pneumoniae that produce DpnI or DpnII restirction endonucleases. J. Bacteriol.158, 905–909 (1984). ArticleCASPubMedPubMed Central Google Scholar
Moser, D. P., Zarka, D. & Kallas, T. Characterization of a restriction barrier and electrotransformation of the Cyanobacterium nostoc Pcc-7121. Arch. Microbiol.160, 229–237 (1993). CASPubMed Google Scholar
Purdy, D. et al. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol. Microbiol.46, 439–452 (2002). ArticleCASPubMed Google Scholar
Pinedo, C. A. & Smets, B. F. Conjugal TOL transfer from Pseudomonas putida to Pseudomonas aeruginosa: effects of restriction porificiency, toxicant exposure, cell density ratios, and conjugation detection method on observed transfer efficiencies. Appl. Environ. Microbiol.71, 51–57 (2005). ArticleCASPubMed Google Scholar
Wilkins, B. M., Chilley, P. M., Thomas, A. T. & Pocklington, M. J. Distribution of restriction enzyme recognition sequences on broad host range plasmid RP4: molecular and evolutionary implications. J. Mol. Biol.258, 447–456 (1996). ArticleCASPubMed Google Scholar
Bassett, C. L. & Janisiewicz, W. J. Electroporation and stable maintenance of plasmid DNAs in a biocontrol strain of Pseudomonas syringae. Biotechnol. Lett.25, 199–203 (2003). ArticleCASPubMed Google Scholar
Belogurov, A. A., Delver, E. P. & Rodzevich, O. V. IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions. J. Bacteriol.174, 5079–5085 (1992). ArticleCASPubMedPubMed Central Google Scholar
Belogurov, A. A., Delver, E. P. & Rodzevich, O. V. Plasmid pKM101 encodes 2 nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J. Bacteriol.175, 4843–4850 (1993). ArticleCASPubMedPubMed Central Google Scholar
Belogurov, A. A. et al. Antirestriction protein ard (TypeC) encoded by IncW plasmid pSa has a high similarity to the “protein transport” domain of the TraC1 primase of promiscous plasmid RP4. J. Mol. Biol.296, 969–977 (2000). ArticleCASPubMed Google Scholar
Chilley, P. M. & Wilkins, B. M. Distribution of the ArdA family of antirestriction gene on conjugative plasmids. Microbiology141, 2157–2164 (1995). ArticleCASPubMed Google Scholar
Larsen, M. H. & Figurski, D. H. Structure, expression, and regulation of the kilC operon of promiscuous IncP-α plasmids. J. Bacteriol.176, 5022–5032 (1994). ArticleCASPubMedPubMed Central Google Scholar
Thorsted, P.A et al. Complete sequence of the IncP β plasmid R751: implications for evolution and organisation of the IncP. backbone. J. Mol. Biol.282, 969–990 (1998). ArticleCASPubMed Google Scholar
Kobayashi, I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res.29, 3742–3756 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nakayama, Y. & Kobayashi, I. Restriction-modification gene complexes as selfish gene entities: roles of a regulatory system in their establishment, maintenance, and apoptotic mutual exclusion. Proc. Natl Acad. Sci. USA95, 6442–6447 (1998). ArticleCASPubMedPubMed Central Google Scholar
Adamczyk, M. & Jagura-Burdzy, G. Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim. Pol.50, 425–453 (2003). ArticleCASPubMed Google Scholar
Scherzinger, E., Haring, V., Lurz, R. & Otto, S. Plasmid RSF1010 DNA-replication in vitro promoted by purified RSF1010 RepA, RepB and RepC proteins. Nucleic Acids Res.19, 1203–1211 (1991). ArticleCASPubMedPubMed Central Google Scholar
Becker, E. C. & Meyer, R. J. Acquisition of resistance genes by the IncQ plasmid R1162 is limited by its high copy number and lack of a partitioning mechanism. J. Bacteriol.179, 5947–5950 (1997). ArticleCASPubMedPubMed Central Google Scholar
Haines, A. S., Jones, K., Cheung, M. & Thomas, C. M. The IncP-6 plasmid Rms149 consists of a small mobilizable backbone with multiple large insertions. J. Bacteriol.187, 4728–4738 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kramer, M. G., Espinosa, M., Misra, T. K. & Khan, S. A. Lagging strand replication of rolling-circle plasmids: specific recognition of the _ssoA_-type origins in different Gram-positive bacteria. Proc. Natl Acad. Sci. USA95, 10505–10510 (1998). ArticleCASPubMedPubMed Central Google Scholar
Anand, S. P., Mitra, P., Naqvi, A. & Khan, S. A. Bacillus anthracis and Bacillus cereus PcrA helicases can support DNA unwinding and in vitro rolling-circle replication of plasmid pT181 of Staphylococcus aureus. J. Bacteriol.186, 2195–2199 (2004). ArticleCASPubMedPubMed Central Google Scholar
Doran, K. S., Helinski, D. R. & Konieczny, I. Host-dependent requirement for specific DnaA boxes for plasmid RK2 replication. Mol. Microbiol.33, 490–498 (1999). ArticleCASPubMed Google Scholar
Caspi, R. et al. A broad host range replicon with different requirements for replication initiation in three bacterial species. EMBO J.20, 3262–3271 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhong, Z. P., Helinski, D. & Toukdarian, A. A specific region in the N terminus of a replication initiation protein of plasmid RK2 is required for recruitment of Pseudomonas aeruginosa DnaB helicase to the plasmid origin. J. Biol. Chem.278, 45305–45310 (2003). ArticleCASPubMed Google Scholar
Jiang, Y., Pacek, M., Helinski, D. R., Konieczny, I. & Toukdarian, A. A multifunctional plasmid-encoded replication initiation protein both recruits and positions an active helicase at the replication origin. Proc. Natl Acad. Sci. USA100, 8692–8697 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bignell, C. R., Haines, A. S., Khare, D. & Thomas, C. M. Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol. Microbiol.34, 205–216 (1999). ArticleCASPubMed Google Scholar
Siddique, A. & Figurski, D. H. The active partition gene incC of IncP plasmids is required for stable maintenance in a broad range of hosts. J. Bacteriol.184, 1788–1793 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhong, Z. P., Helinski, D. & Toukdarian, A. Plasmid host-range: restrictions to F replication in Pseudomonas. Plasmid54, 48–56 (2005). ArticleCASPubMed Google Scholar
Maestro, B. et al. Modulation of pPS10 host range by DnaA. Mol. Microbiol.46, 223–234 (2002). ArticleCASPubMed Google Scholar
Maestro, B., Sanz, J. M., Diaz-Orejas, R. & Fernandez-Tresguerres, E. Modulation of pPS10 host range by plasmid-encoded RepA initiator protein. J. Bacteriol.185, 1367–1375 (2003). ArticleCASPubMedPubMed Central Google Scholar
Greated, A., Titok, M., Krasowiak, R., Fairclough, R. J. & Thomas, C. M. The replication and stable-inheritance functions of IncP-9 plasmid pM3. Microbiology146, 2249–2258 (2000). ArticleCASPubMed Google Scholar
Sevastsyanovich, Y. R., Titok, M. A., Krasowiak, R., Bingle, L. E. H. & Thomas, C. M. Ability of IncP-9 plasmid pM3 to replicate in E. coli is dependent on both rep and par functions. Mol. Microbiol.57, 819–833 (2005). ArticleCASPubMed Google Scholar
Wu, L. T. & Tseng, Y. H. Characterization of the IncW cryptic plasmid pXV2 from Xanthomonas campestris pv. vesicatoria. Plasmid44, 163–172 (2000). ArticleCASPubMed Google Scholar
Nielsen, K. M. Barriers to horizontal gene transfer by natural transformation in soil bacteria. APMIS Suppl.84, 77–84 (1998). ArticleCASPubMed Google Scholar
Nielsen, K. M., Bones, A. M., Smalla, K. & van Elsas, J. D. Horizontal gene transfer from plants to terrestrial bacteria — a rare event? FEMS Microbiol. Rev.22, 79–103 (1998). ArticleCASPubMed Google Scholar