Hydrothermal vents and the origin of life (original) (raw)
Corliss, J. B. et al. Submarine thermal springs on the Galapagos rift. Science203, 1073–1083 (1979). ArticleCASPubMed Google Scholar
Spiess, F. N. et al. East Pacific rise: hot springs and geophysical experiments. Science207, 1421–1433 (1980). ArticleCASPubMed Google Scholar
Baross, J. A. & Hoffman, S. E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph.15, 327–345 (1985). ArticleCAS Google Scholar
Kelley, D. S. et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature412, 145–149 (2001). Reports the discovery of the LCHF and important differences of LCHF geochemistry compared with black smokers. ArticleCASPubMed Google Scholar
Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science307, 1428–1434 (2005). ArticleCASPubMed Google Scholar
de Wit, M. J. Early Archean processes: evidence from the South African Kaapvaal craton and its greenstone belts. Geologie en Mijinbouw76, 369–371 (1998). Article Google Scholar
Baker, E. T. & German, C. R. in Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans (eds German, C., Lin, J. & Parson, L. M.) 245–266 (American Geophysical Union, Washington DC, 2004). Google Scholar
Hammond, S. R. Offset caldera and crater collapse on Juan de Fuca ridge-flank volcanoes. Bull. Volcanol.58, 617–627 (1997). Article Google Scholar
Delaney, J. R. et al. The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science281, 222–230 (1998). ArticleCASPubMed Google Scholar
Embley, R. W. & Lupton, J. E. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S. D., DeLong, E. F., Kelley, D. S., Baross, J. A. & Cary, S. C.) 75–97 (American Geophysical Union, Washington DC, 2004). Book Google Scholar
Karson, J. A., Früh-Green, G. L., Kelley, D. S., Williams, E. A., Yoerger, D. R. & Jakuba, M. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic ridge, 30°N. Geochem. Geophys. Geosyst.7, Q06016 (2006). Google Scholar
Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet Sci.30, 385–491 (2002). ArticleCAS Google Scholar
Von Damm, K. L. et al. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet Sci. Lett.206, 265–378 (2003). Article Google Scholar
Von Damm, K. L. in Physical, Chemical, Biological, and Geological Interactions within Seafloor Hydrothermal Systems (eds Humphris, S., Zierenberg, R., Mullineau, L. & Thomson R.) 222–247 (American Geophysical Union, Washington DC, 1995). Google Scholar
Kashefi, K. & Lovley, D. R. Extending the upper temperature limit for life. Science301, 934 (2003). ArticleCASPubMed Google Scholar
Little, C. T. S., Cann, J. R., Herrington, R. J. & Morisseau, M. Late Cretaceous hydrothermal vent communities from the Troodos Ophiolite, Cyprus. Geology27, 1027–1030 (1999). Article Google Scholar
Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature405, 676–679 (2000). ArticleCASPubMed Google Scholar
Ludwig, K. A., Kelley, D. S., Butterfield, D. A., Nelson, B. K. & Früh-Green, G. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochim. Cosmochim. Acta70, 3625–3645 (2006). ArticleCAS Google Scholar
Früh-Green, G. L. et al. 30,000 years of hydrothermal activity at the Lost City Vent Field. Science301, 495–498 (2003). ArticlePubMedCAS Google Scholar
Proskurowski, G., Lilley, M. D., Kelley, D. S. & Olson, E. J. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol.229, 331–343 (2006). ArticleCAS Google Scholar
Blackman, D. K. et al. Geology of the Atlantis massif, (Mid-Atlantic Ridge 30°N): implications for the evolution of an ultramafic oceanic core complex. Mar. Geophys. Res.23, 443–469 (2002). Article Google Scholar
Proskurowski, G. et al. Abiogenic hydrocarbon production at lost city hydrothermal field. Science319, 604–607 (2008). Reports isotopic evidence which indicated that CH4and volatile hydrocarbon production at Lost City is a geochemical, not a biological, process. This study therefore implicates serpentinization in abiogenic carbon reduction, which could be highly relevant in an origin-of-life context. ArticleCASPubMed Google Scholar
Ludwig, K. A., Kelley, D. S., Shen, C., Cheng, H. & Edwards, R L. U/Th geochronology of carbonate chimneys at the Lost City hydrothermal field. Eos Trans. AGU86, V51B–1487 (2005).
Bach, W., Banerjee, N. R., Dick, H. J. B. & Baker, E. T. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16°E. Geochem. Geophys. Geosystems3, 1044 (2002). Article Google Scholar
Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature426, 405–412 (2003). ArticleCASPubMed Google Scholar
Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic. Nature421, 252–256 (2003). ArticleCASPubMed Google Scholar
Schrenk, M. O., Kelley, D. S., Bolton, S. & Baross, J. A. Low archaeal diversity linked to sub-seafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol.6, 1086–1095 (2004). ArticleCASPubMed Google Scholar
Brazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. Methane and sulfur metabolizing microbial communities dominate in the Lost City hydrothermal vent ecosystem. Appl. Environ. Microbiol.72, 6257–6270 (2006). ArticleCASPubMedPubMed Central Google Scholar
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Direct phylogenetic and isotopic evidence for multiple groups of Archaea involved in the anaerobic oxidation of methane. Geochim. Cosmochim. Acta66, A571 (2002). Google Scholar
Teske, A. et al. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol.68, 1994–2007 (2002). ArticleCASPubMedPubMed Central Google Scholar
Aloisi, G. I. et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet. Sci. Lett.203, 195–203 (2002). ArticleCAS Google Scholar
Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature407, 623–626 (2000). ArticleCASPubMed Google Scholar
Michaelis, W. et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science297, 1013–1015 (2002). ArticleCASPubMed Google Scholar
Orphan, V. J. et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol.67, 1922–1934 (2001). ArticleCASPubMedPubMed Central Google Scholar
Thomsen, T. R., Finster, K. & Ramsing, N. B. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol.67, 1646–1656 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science305, 1457–1462 (2004). ArticleCASPubMed Google Scholar
Meyerdierks, A. et al. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ. Microbiol.7, 1937–1951 (2005). ArticleCASPubMed Google Scholar
Raghoebarsing, A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature440, 918–921 (2006). ArticleCASPubMed Google Scholar
Girguis, P. R., Cozen, A. E. & DeLong E. F. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl. Environ. Microbiol.71, 3725–3733 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen–sulfate reducer consortium. Global Biogeochem. Cycles8, 451–463 (1994). ArticleCAS Google Scholar
Nauhaus, K., Boetius, A., Kruger, M. & Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol.4, 296–305 (2002). ArticleCASPubMed Google Scholar
Nauhaus, K., Treude, T., Boetius, A. & Krüger, M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol.7, 98–106 (2005). ArticleCASPubMed Google Scholar
Schouten, S., Wakeham, S. G., Hopmans, E. C. & Damste, J. S. S. Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl. Environ. Microbiol.69, 1680–1686 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kallmeyer, J. & Boetius, A. Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl. Environ. Microbiol.70, 1231–1233 (2004). ArticleCASPubMedPubMed Central Google Scholar
Moran, J. J. et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ. Microbiol.10, 162–173 (2008). CASPubMed Google Scholar
Bada, J. L. & Lazcano, A. Some like it hot, but not the first biomolecules. Science296, 1982–1983 (2002). ArticleCASPubMed Google Scholar
Fuchs, G. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev.39, 181–213 (1986). ArticleCAS Google Scholar
Fuchs, G. & Stupperich, E. in Evolution of Prokaryotes (eds Schleifer, K. H. & Stackebrandt, E.) 235–251 (Academic, London, 1985). Google Scholar
Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science318, 1782–1786 (2007). ArticleCASPubMed Google Scholar
Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev. Microbiol.6, 579–591 (2008). Provides the most recent summary of methanogen bioenergetics and explains important and newly recognized differences in the energy metabolism of methanogens that possess cytochromes compared with those that lack cytochromes. ArticleCAS Google Scholar
Maden, B. E. H. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem. J.350, 609–629 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rother, M. & Metcalf, W. W. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc. Natl Acad. Sci. USA101, 16929–16934 (2004). ArticleCASPubMedPubMed Central Google Scholar
Shock, E. L. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life Evol. Biosph.20, 331–367 (1990). ArticleCAS Google Scholar
Shock, E. L., McCollom, T. M. & Schulte, M. D. in Thermophiles: The Keys to Molecular Evolution and The Origin of Life? (eds Wiegel, J. & Adams, M. W. W.) 59–76 (Taylor and Francis, London, 1998). Google Scholar
McCollom, T. M. & Seewald, J. S. Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate. Geochim. Cosmochim. Acta67, 3625–3644 (2003). ArticleCAS Google Scholar
McCollom, T. M. & Seewald J. S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev.107, 382–401 (2007). ArticleCASPubMed Google Scholar
Lang, S. Q., Butterfield, D., Hedges, J. & Lilley, M. Production of isotopically heavy dissolved organic carbon in the Lost City Hydrothermal Vent Field. Eos Trans. AGU86, V43C–06 (2005). Google Scholar
Lang, S. Q., Butterfield, D. & Lilley, M. Organic geochemistry of Lost City Hydrothermal fluids. InterRidge Theoretical Institute 'Biogeochemical interaction at deep-sea vents'[online], (2007). Google Scholar
Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. Lond. B367, 1187–1925 (2007). Google Scholar
Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London154, 377–402 (1997). ArticleCASPubMed Google Scholar
Cody, G. D. Transition metal sulfides and the origin of metabolism. Annu. Rev. Earth Planet. Sci.32, 569–599 (2004). ArticleCAS Google Scholar
Heinen, W. & Lauwers, A. M. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig. Life Evol. Biosph.26, 131–150 (1996). Detected Fe(II)- and hydrogen sulphide-dependent CO2reduction of methyl sulphide and other compounds under mild conditions as might have been encountered in Hadean hydrothermal vents. ArticleCASPubMed Google Scholar
Huber, C. & Wächtershäuser, G. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science276, 245–247 (1997). Detected Fe(II)- and Ni(II)-dependent synthesis of acetate and the thioester acetyl methyl sulphide from CO and methyl sulfide under conditions as might have been encountered in Hadean hydrothermal vents. ArticleCASPubMed Google Scholar
Wächtershäuser, G. From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos. Trans. R. Soc. Lond. B361, 1787–1806 (2006). ArticleCAS Google Scholar
Ferry, J. G. & House, C. H. The step-wise evolution of early life driven by energy conservation. Mol. Biol. Evol.23, 1286–1292 (2006). ArticleCASPubMed Google Scholar
Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science306, 283–286 (2004). ArticleCASPubMed Google Scholar
Russell, M. J., Daniel, R. M., Hall, A. J. & Sherringham, J. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol.39, 231–243 (1994). ArticleCAS Google Scholar
Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev.25, 175–243 (2001). ArticleCASPubMed Google Scholar
Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature191, 144–148 (1961). ArticleCASPubMed Google Scholar
Schäfer, G., Engelhard, M. & Müller, V. Bioenergetics of the Archaea. Microbiol. Mol. Biol. Rev.63, 570–620 (1999). PubMedPubMed Central Google Scholar
Baymann, F. et al. The redox protein construction kit: pre-last universal common ancestor evolution of energy conserving enzymes. Philos. Trans. R. Soc. Lond. B358, 267–274 (2003). ArticleCAS Google Scholar
Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W. & Walker, J. E. Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science308, 654–659 (2005). ArticleCASPubMed Google Scholar
Kaesler, B. & Schönheit, P. The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2 H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2 . Eur. J. Biochem.184, 223–232 (1989). ArticleCASPubMed Google Scholar
Baaske, P., Weinert, F. M., Duhr, S., Lemke, K. H., Russell, M. J. & Braun, D. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl Acad. Sci. USA104, 9346–9351 (2007). ArticleCASPubMedPubMed Central Google Scholar
Braun, D. & Libchaber, A. Thermal force approach to molecular evolution. Phys. Biol.1, P1–P8 (2004). ArticleCASPubMed Google Scholar
Oparin, A. I. The Origin of Life (Dover, New York, 1952). Google Scholar
Haldane, J. B. S. The origin of life. Rationalist Annual148, 3–10 (1929). Google Scholar
Miller, S. L. A production of amino acids under possible primitive Earth conditions. Science117, 528–529 (1953). ArticleCASPubMed Google Scholar
Bada, J. L. How life began on Earth: a status report. Earth Planet. Sci. Lett.226, 1–15 (2004). ArticleCAS Google Scholar
Orgel, L. E. Prebiotic chemistry and the origin of the RNA World. Crit. Rev. Biochem. Mol. Biol.39, 99–123 (2004). ArticleCASPubMed Google Scholar
de Duve, C. Vital Dust: Life as a Cosmic Imperative (Basic Books, New York, 1995). Google Scholar
Schulte, M., Blake, D., Hoehler, T. & McCollom, T. M. Serpentinization and its implications for life on the early Earth and Mars. Astrobiology6, 364–376 (2006). ArticleCASPubMed Google Scholar
Bach, W. et al. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett.33, L13306 (2006). ArticleCAS Google Scholar
Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Bird, D. K. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. USA101, 12818–12823 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fisher, A. T. Marine hydrogeology: recent accomplishments and future opportunities. Hydrogeol. J.13, 69–97 (2005). Article Google Scholar
White, H. B. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol.7, 101–104 (1976). ArticleCASPubMed Google Scholar
Bartoschek, S., Vorholt, J. A., Thauer. R. K., Geierstanger, B. H. & Griesinger, C. _N_-carboxymethanofuran (carbamate) formation from methanofuran and CO2 in methanogenic archaea. Thermodynamics and kinetics of the spontaneous reaction. Eur. J. Biochem.267, 3130–3138 (2000). ArticleCASPubMed Google Scholar
Morowitz, H. J., Kostelnik, J. D., Yang, J. & Cody, G. D. The origin of intermediary metabolism. Proc. Natl Acad. Sci. USA97, 7704–7708 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schrenk, M. O., Kelley, D. S., Delaney, J. R. & Baross, J. A. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol.69, 3580–3592 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pagé, A., Tivey, M. K., Stakes, D. S. & Reysenbach, A.-L. Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ. Microbiol.10, 874–884 (2008). ArticlePubMedCAS Google Scholar
Seewald, J. S., Zolotov, M. Y. & McCollom, T. M. Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim. Cosmochim. Acta70, 446–460 (2006). Provides important insights into the chemical equilibria and speciation of C1intermediates in the reaction of H2and CO2to CH4under conditions that simulate submarine hydrothermal vents. This study showed that formate and CO are readily generated from CO2and H2and revealed kinetic barriers to CH4formation. ArticleCAS Google Scholar
Imkamp, F., Biegel, E., Jayamani, E., Buckel, W. & Müller, V. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J. Bacteriol.189, 8145–8153 (2007). ArticleCASPubMedPubMed Central Google Scholar
Edwards, K. J., Bach, W. & McColluom, T. M. Geomicrobiology in oceanography: microbe–mineral interactions at and below the seafloor. Trends Microbiol.13, 449–456 (2005). ArticleCASPubMed Google Scholar
Kashefi, K., Holmes, D. E., Lovley, D. R. & Tor, J. M. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S. D., DeLong, E. F., Kelley, D. S., Baross, J. A. & Cary, S. C.) 199–212 (American Geophysical Union, Washington DC, 2004). Book Google Scholar
Campbell, B. J. & Engel, A. S. The versatile e-proteobacteria: key players in sulphidic habitats. Nature Rev. Microbiol.4, 458–468 (2006). ArticleCAS Google Scholar
Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, D. R. Microbiological evidence for Fe(III) reduction on early Earth. Nature395, 65–67 (1998). ArticleCASPubMed Google Scholar