The spectrum of latent tuberculosis: rethinking the biology and intervention strategies (original) (raw)
Comstock, G. W., Baum, C. & Snider, D. E. Jr. Isoniazid prophylaxis among Alaskan Eskimos: a final report of the bethel isoniazid studies. Am. Rev. Respir. Dis.119, 827–830 (1979). CASPubMed Google Scholar
Dye, C. & Williams, B. G. Eliminating human tuberculosis in the twenty-first century. J. R. Soc. Interface5, 653–662 (2008). ArticlePubMed Google Scholar
Stead, W. W. Management of health care workers after inadvertent exposure to tuberculosis: a guide for the use of preventive therapy. Ann. Intern. Med.122, 906–912 (1995). ArticleCASPubMed Google Scholar
Pai, M., Zwerling, A. & Menzies, D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann. Intern. Med.149, 177–184 (2008). ArticlePubMedPubMed Central Google Scholar
Young, D. B., Gideon, H. P. & Wilkinson, R. J. Eliminating latent tuberculosis. Trends Microbiol.17, 193–188 (2009). ArticleCAS Google Scholar
Mtei, L. et al. High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. Clin. Infect. Dis.40, 1500–1507 (2005). ArticlePubMed Google Scholar
Vandiviere, H. M., Loring, W. E., Melvin, I. & Willis, S. The treated pulmonary lesion and its tubercle bacillus. II. The death and resurrection. Am. J. Med. Sci.232, 30–37 (1956). ArticleCASPubMed Google Scholar
Capuano, S. V. 3rd et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun.71, 5831–5844 (2003). ArticleCASPubMedPubMed Central Google Scholar
Goo, J. M. et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology216, 117–121 (2000). ArticleCASPubMed Google Scholar
Hara, T., Kosaka, N., Suzuki, T., Kudo, K. & Niino, H. Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: a positron emission tomography study. Chest124, 893–901 (2003). ArticleCASPubMed Google Scholar
Yang, C. M., Hsu, C. H., Lee, C. M. & Wang, F. C. Intense uptake of [F-18]-fluoro-2 deoxy-D-glucose in active pulmonary tuberculosis. Ann. Nucl. Med.17, 407–410 (2003). ArticlePubMed Google Scholar
Park, I. N., Ryu, J. S. & Shim, T. S. Evaluation of therapeutic response of tuberculoma using F-18 FDG positron emission tomography. Clin. Nucl. Med.33, 1–3 (2008). ArticleCASPubMed Google Scholar
Canetti, G., Parrot, R., Porven, G. & Le Lirzin, M. Rifamycin levels in the lung and tuberculous lesions in man. Acta Tuberc. Pneumol. Belg.60, 315–322 (1969). CASPubMed Google Scholar
Kislitsyna, N. A. Comparative evaluation of rifampicin and isoniazid penetration into the pathological foci of the lungs in tuberculosis patients. Probl. Tuberk. 55–57 (1985).
Kislitsyna, N. A. & Kotova, N. I. Rifampicin and isoniazid concentration in the blood and resected lungs in tuberculosis with combined use of the preparations. Probl. Tuberk8, 63–65 (1980). Google Scholar
Sauermann, R. et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob. Agents Chemother.49, 4448–4454 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wagner, C., Sauermann, R. & Joukhadar, C. Principles of antibiotic penetration into abscess fluid. Pharmacology78, 1–10 (2006). ArticleCASPubMed Google Scholar
Cotran, R. S., Kumar, V. & Robbins, S. L. in Pathologic Basis of Disease (ed. Company, W. B. S.) (Saunders, Philadelphia, 1989). Google Scholar
Dannenberg, A. M. Jr in Pathogenesis of Human Pulmonary Tuberculosis 36–64 (ASM, Washington D. C., 2006). A comprehensive review of five decades of literature on the pathogenesis of tuberculosis in humans and in the rabbit model, including comparisons with other animal models. Book Google Scholar
Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun.76, 2333–2340 (2008). A conclusive demonstration that hypoxia is a relevant phenotype in several non-mouse animal models of TB. ArticleCASPubMedPubMed Central Google Scholar
Rhoades, E. R., Frank, A. A. & Orme, I. M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber Lung Dis.78, 57–66 (1997). ArticleCASPubMed Google Scholar
Radaeva, T. V., Nikonenko, B. V., Mischenko, V. V., Averbakh, M. M. Jr & Apt, A. S. Direct comparison of low-dose and Cornell-like models of chronic and reactivation tuberculosis in genetically susceptible I/St and resistant B6 mice. Tuberculosis (Edinb.)85, 65–72 (2005). ArticleCAS Google Scholar
Sissons, J. et al. Multigenic control of tuberculosis resistance: analysis of a QTL on mouse chromosome 7 and its synergism with sst1. Genes Immun.10, 37–46 (2009). ArticleCASPubMed Google Scholar
Manabe, Y. C. et al. The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis (Edinb.)88, 187–196 (2008). ArticleCAS Google Scholar
Kesavan, A. K., Brooks, M., Tufariello, J., Chan, J. & Manabe, Y. C. Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model. Tuberculosis (Edinb.)89, 17–21 (2009). ArticleCAS Google Scholar
Tsenova, L. et al. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J. Infect. Dis.192, 98–106 (2005). ArticlePubMed Google Scholar
Gandotra, S., Schnappinger, D., Monteleone, M., Hillen, W. & Ehrt, S. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nature Med.13, 1515–1520 (2007). Demonstration of the use of conditional gene expression systems to study mycobacterial pathogenesis. ArticleCASPubMed Google Scholar
Sonnenberg, P. et al. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J. Infect. Dis.191, 150–158 (2005). ArticlePubMed Google Scholar
Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med.345, 1098–1104 (2001). The first demonstration that suppressing TNF levels correlates with reactivation of latent TB, the implication being that there is a delicate balance between immune function and the development of disease. ArticleCASPubMed Google Scholar
Marino, S. et al. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput. Biol.3, 1909–1924 (2007). ArticleCASPubMed Google Scholar
Sud, D., Bigbee, C., Flynn, J. L. & Kirschner, D. E. Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J. Immunol.176, 4296–4314 (2006). ArticleCASPubMed Google Scholar
Ray, J. C., Flynn, J. L. & Kirschner, D. E. Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J. Immunol.182, 3706–3717 (2009). Illustrates the use of modelling to understand the complex dynamics of tuberculous granulomas. ArticleCASPubMed Google Scholar
Timm, J. et al. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc. Natl Acad. Sci. USA100, 14321–14326 (2003). This is the first study to attempt to relate the transcriptional responses in humans to conditions relevant to disease. ArticleCASPubMedPubMed Central Google Scholar
Fenhalls, G. et al. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect. Immun.70, 6330–6338 (2002). ArticleCASPubMedPubMed Central Google Scholar
Xie, Z., Siddiqi, N. & Rubin, E. J. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother.49, 4778–4780 (2005). ArticleCASPubMedPubMed Central Google Scholar
Paramasivan, C. N., Sulochana, S., Kubendiran, G., Venkatesan, P. & Mitchison, D. A. Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.49, 627–631 (2005). ArticleCASPubMedPubMed Central Google Scholar
Herbert, D. et al. Bactericidal action of ofloxacin, sulbactam-ampicillin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.40, 2296–2299 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wayne, L. G. & Sramek, H. A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.38, 2054–2058 (1994). ArticleCASPubMedPubMed Central Google Scholar
Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med.198, 693–704 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rohde, K. H., Abramovitch, R. B. & Russell, D. G. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe2, 352–364 (2007). ArticleCASPubMed Google Scholar
Tailleux, L. et al. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS ONE3, e1403 (2008). ArticleCASPubMedPubMed Central Google Scholar
Talaat, A. M. et al. Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. J. Bacteriol.189, 4265–4274 (2007). ArticleCASPubMedPubMed Central Google Scholar
Voskuil, M. I. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med.198, 705–713 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rodriguez, G. M., Voskuil, M. I., Gold, B., Schoolnik, G. K. & Smith, I. ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun.70, 3371–3381 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fisher, M. A., Plikaytis, B. B. & Shinnick, T. M. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J. Bacteriol.184, 4025–4032 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rustad, T. R., Harrell, M. I., Liao, R. & Sherman, D. R. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS ONE3, e1502 (2008). ArticleCASPubMedPubMed Central Google Scholar
Converse, P. J. et al. Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect. Immun.77, 1230–1237 (2009). ArticleCASPubMed Google Scholar
Malhotra, V. et al. Disruption of response regulator gene, devR, leads to attenuation in virulence of Mycobacterium tuberculosis. FEMS Microbiol. Lett.231, 237–245 (2004). ArticleCASPubMed Google Scholar
Dahl, J. L. et al. The relA homolog of Mycobacterium smegmatis affects cell appearance, viability, and gene expression. J. Bacteriol.187, 2439–2447 (2005). ArticleCASPubMedPubMed Central Google Scholar
McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature406, 735–738 (2000). ArticleCASPubMed Google Scholar
Munoz-Elias, E. J., Upton, A. M., Cherian, J. & McKinney, J. D. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol. Microbiol60, 1109–1122 (2006). ArticleCASPubMed Google Scholar
Rachman, H. et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect. Immun.74, 1233–1242 (2006). ArticleCASPubMedPubMed Central Google Scholar
Garton, N. J. et al. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med.5, e75 (2008). This work raises new questions about the metabolic consequences of activation of the dormancy regulon inM. tuberculosisand the presence of lipid bodies. ArticleCASPubMedPubMed Central Google Scholar
Boshoff, H. I. et al. Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J. Biol. Chem.283, 19329–19341 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA100, 12989–12994 (2003). ArticleCASPubMedPubMed Central Google Scholar
Beste, D. J. et al. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol.8, R89 (2007). ArticleCASPubMedPubMed Central Google Scholar
Raman, K., Rajagopalan, P. & Chandra, N. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLoS Comput. Biol.1, e46 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bloch, H. & Segal, W. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J. Bacteriol.72, 132–141 (1956). CASPubMedPubMed Central Google Scholar
Segal, W. & Bloch, H. Pathogenic and immunogenic differentiation of Mycobacterium tuberculosis grown in vitro and in vivo. Am. Rev. Tuberc.75, 495–500 (1957). CASPubMed Google Scholar
Lange, R. P., Locher, H. H., Wyss, P. C. & Then, R. L. The targets of currently used antibacterial agents: lessons for drug discovery. Curr. Pharm. Des13, 3140–3154 (2007). ArticleCASPubMed Google Scholar
Walsh, C. in Antibiotics: Actions, Origins, Resistance 11–88 (ASM, Washington, D. C., 2003). Book Google Scholar
Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell135, 679–690 (2008). A must-read illustration of the complexities of the mechanism by which antibiotics cause bacteria to die. ArticleCASPubMedPubMed Central Google Scholar
Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell130, 797–810 (2007). ArticleCASPubMed Google Scholar
Singh, R. et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science322, 1392–1395 (2008). Identification of new mycobactericidal mechanism under anaerobic conditions. ArticleCASPubMedPubMed Central Google Scholar
Rao, S. P., Alonso, S., Rand, L., Dick, T. & Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA105, 11945–11950 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dhar, N. & McKinney, J. D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol.10, 30–38 (2007). ArticleCASPubMed Google Scholar
Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev.68, 538–559 (2004). ArticleCASPubMedPubMed Central Google Scholar
Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov.6, 29–40 (2007). A review that describes many of the challenges complicating antibacterial drug development. ArticleCAS Google Scholar
Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nature Rev. Drug Discov.6, 41–55 (2007). ArticleCAS Google Scholar
Manjunatha, U. H. et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA103, 431–436 (2006). ArticleCASPubMed Google Scholar
Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science307, 223–227 (2005). First report of a promising new antimycobacterial agent with activity against replicating and non-replicating cultures. ArticleCASPubMed Google Scholar
Terstappen, G. C., Schlupen, C., Raggiaschi, R. & Gaviraghi, G. Target deconvolution strategies in drug discovery. Nature Rev. Drug Discov.6, 891–903 (2007). ArticleCAS Google Scholar
Boshoff, H. I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem.279, 40174–40184 (2004). ArticleCASPubMed Google Scholar
Dartois V., Leong, F. J. & Dick, T. in Antiparasitic and Antibacterial Drug Discovery: From Molecular Targets to Drug Candidates. (ed. Seltzer, P. M.) 415–440 (Wiley-VCH, Weinheim, 2009). Book Google Scholar
Nikaido, H. & Jarlier, V. Permeability of the mycobacterial cell wall. Res. Microbiol142, 437–443 (1991). ArticleCASPubMed Google Scholar
Liu, J., Barry, C. E. 3rd, Besra, G. S. & Nikaido, H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem.271, 29545–29551 (1996). ArticleCASPubMed Google Scholar
Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science303, 1189–1192 (2004). ArticleCASPubMed Google Scholar
Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol.48, 77–84 (2003). ArticleCASPubMed Google Scholar
Pichota, A. et al. Peptide deformylase inhibitors of Mycobacterium tuberculosis: synthesis, structural investigations, and biological results. Bioorg. Med. Chem. Lett.18, 6568–6572 (2008). ArticleCASPubMed Google Scholar
Klotzsche, M., Ehrt, S. & Schnappinger, D. Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res.37, 1778–1788 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ferebee, S. H. & Mount, F. W. Tuberculosis morbidity in a controlled trial of the prophylactic use of isoniazid among household contacts. Am. Rev. Respir. Dis.85, 490–510 (1962). CASPubMed Google Scholar
Ferebee, S. H., Mount, F. W., Murray, F. J. & Livesay, V. T. A controlled trial of isoniazid prophylaxis in mental institutions. Am. Rev. Respir. Dis.88, 161–175 (1963). CASPubMed Google Scholar
Wallis, R. S. et al. Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect. Dis.9, 162–172 (2009). ArticleCASPubMed Google Scholar
Ewer, K. et al. Dynamic antigen-specific T-cell responses after point-source exposure to Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med.174, 831–839 (2006). ArticleCASPubMed Google Scholar
Goletti, D. et al. Isoniazid prophylaxis differently modulates T-cell responses to RD1-epitopes in contacts recently exposed to Mycobacterium tuberculosis: a pilot study. Respir. Res.8, 5 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wilkinson, K. A. et al. Effect of treatment of latent tuberculosis infection on the T cell response to Mycobacterium tuberculosis antigens. J. Infect. Dis.193, 354–359 (2006). ArticleCASPubMed Google Scholar
Higuchi, K., Harada, N. & Mori, T. Interferon-γ responses after isoniazid chemotherapy for latent tuberculosis. Respirology13, 468–472 (2008). ArticlePubMed Google Scholar
Veening, G. J. Long term isoniazid prophylaxis. Controlled trial on INH prophylaxis after recent tuberculin conversion in young adults. Bull. Int. Union Tuberc.41, 169–171 (1968). CASPubMed Google Scholar
Comstock, G. W. & Woolpert, S. F. in The Mycobacteria: A Sourcebook (eds Kubica, G. P. & Wayne, L. G.) 1071–1082 (Marcel Dekker, New York, 1984). Google Scholar
Lin, P. L. et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun.77, 4631–4642 (2009). ArticleCASPubMedPubMed Central Google Scholar