Oral multispecies biofilm development and the key role of cell–cell distance (original) (raw)
Achtman, M. & Wagner, M. Microbial diversity and the genetic nature of microbial species. Nature Rev. Microbiol.6, 431–440 (2008). ArticleCAS Google Scholar
Huber, J. A. et al. Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environ. Microbiol.11, 1292–1302 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lozupone, C. A. & Knight, R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev.32, 557–578 (2008). ArticleCASPubMed Google Scholar
Paster, B. J., Olsen, I., Aas, J. A. & Dewhirst, F. E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 200042, 80–87 (2006). ArticlePubMed Google Scholar
Zaura, E., Keijser, B. J., Huse, S. M. & Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol.9, 259 (2009). ArticleCASPubMedPubMed Central Google Scholar
Xie, H., Lin, X., Wang, B. Y., Wu, J. & Lamont, R. J. Identification of a signalling molecule involved in bacterial intergeneric communication. Microbiology153, 3228–3234 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mager, D. L., Ximenez-Fyvie, L. A., Haffajee, A. D. & Socransky, S. S. Distribution of selected bacterial species on intraoral surfaces. J. Clin. Periodontol.30, 644–654 (2003). ArticlePubMed Google Scholar
Bos, R., van der Mei, H. C. & Busscher, H. J. Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose. J. Dent. Res.75, 809–815 (1996). ArticleCASPubMed Google Scholar
Ledder, R. G., Timperley, A. S., Friswell, M. K., Macfarlane, S. & McBain, A. J. Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol. Ecol.66, 630–636 (2008). ArticleCASPubMed Google Scholar
Min, K. R. & Rickard, A. H. Coaggregation by the freshwater bacterium Sphingomonas natatoria alters dual-species biofilm formation. Appl. Environ. Microbiol.75, 3987–3997 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E. & Handley, P. S. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol.11, 94–100 (2003). ArticleCASPubMed Google Scholar
Diaz, P. I. et al. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol.72, 2837–2848 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dige, I., Nilsson, H., Kilian, M. & Nyvad, B. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J. Oral Sci.115, 459–467 (2007). ArticlePubMed Google Scholar
Dige, I., Nyengaard, J. R., Kilian, M. & Nyvad, B. Application of stereological principles for quantification of bacteria in intact dental biofilms. Oral Microbiol. Immunol.24, 69–75 (2009). ArticleCASPubMed Google Scholar
Dige, I., Raarup, M. K., Nyengaard, J. R., Kilian, M. & Nyvad, B. Actinomyces naeslundii in initial dental biofilm formation. Microbiology155, 2116–2126 (2009). ArticleCASPubMed Google Scholar
Nyvad, B. & Kilian, M. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent Res.95, 369–380 (1987). CASPubMed Google Scholar
Nyvad, B. & Kilian, M. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res.24, 267–272 (1990). ArticleCASPubMed Google Scholar
Ding, A. M., Palmer, R. J. Jr, Cisar, J. O. & Kolenbrander, P. E. Shear-enhanced oral microbial adhesion. Appl. Environ. Microbiol.76, 1294–1297 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chalmers, N. I., Palmer, R. J. Jr, Cisar, J. O. & Kolenbrander, P. E. Characterization of a Streptococcus sp-Veillonella sp. community micromanipulated from dental plaque. J. Bacteriol.190, 8145–8154 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chalmers, N. I. et al. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Appl. Environ. Microbiol.73, 630–636 (2007). ArticleCASPubMed Google Scholar
Jakubovics, N. S., Gill, S. R., Iobst, S. E., Vickerman, M. M. & Kolenbrander, P. E. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J. Bacteriol.190, 3646–3657 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jakubovics, N. S., Gill, S. R., Vickerman, M. M. & Kolenbrander, P. E. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol. Ecol.66, 637–644 (2008). ArticleCASPubMed Google Scholar
Palmer, R. J. Jr, Diaz, P. I. & Kolenbrander, P. E. Rapid succession within the Veillonella population of a developing human oral biofilm in situ.J. Bacteriol.188, 4117–4124 (2006). ArticleCASPubMedPubMed Central Google Scholar
Palmer, R. J. Jr, Gordon, S. M., Cisar, J. O. & Kolenbrander, P. E. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol.185, 3400–3409 (2003). ArticleCASPubMed Google Scholar
Palmer, R. J. Jr, Kazmerzak, K., Hansen, M. C. & Kolenbrander, P. E. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun.69, 5794–5804 (2001). ArticleCASPubMedPubMed Central Google Scholar
Periasamy, S., Chalmers, N. I., Du-Thumm, L. & Kolenbrander, P. E. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl. Environ. Microbiol.75, 3250–3257 (2009). ArticleCASPubMedPubMed Central Google Scholar
Periasamy, S. & Kolenbrander, P. E. Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities in saliva with Fusobacterium nucleatum and Veillonella sp. Infect. Immun.77, 3542–3551 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rickard, A. H., Campagna, S. R. & Kolenbrander, P. E. Autoinducer-2 is produced in saliva-fed flow conditions relevant to natural oral biofilms. J. Appl. Microbiol.105, 2096–2103 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rickard, A. H. et al. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol.60, 1446–1456 (2006). ArticleCASPubMed Google Scholar
Periasamy, S. & Kolenbrander, P. E. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J. Bacteriol.191, 6804–6811 (2009). ArticleCASPubMedPubMed Central Google Scholar
Periasamy, S. & Kolenbrander, P. E. Central role of early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle and late colonizers of enamel. J. Bacteriol.192, 12 Feb 2010 (doi:10.1128/JB.01631-09). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, C. W., Lux, R., Haake, S. K. & Shi, W. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol.71, 35–47 (2009). ArticleCASPubMed Google Scholar
Buckley, M. R. Microbial communities: from life apart to life together. American Academy of Microbiology[online] (2002).
Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos. Trans. R. Soc. Lond. B Biol. Sci.362, 1241–1249 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hardie, K. R. & Heurlier, K. Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development. Nature Rev. Microbiol.6, 635–643 (2008). ArticleCAS Google Scholar
Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol.4, 249–258 (2006). ArticleCAS Google Scholar
Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol.10, 365–370 (2002). ArticleCASPubMed Google Scholar
Bassler, B. L., Greenberg, E. P. & Stevens, A. M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol.179, 4043–4045 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cosseau, C. et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect. Immun.76, 4163–4175 (2008). ArticleCASPubMedPubMed Central Google Scholar
Handfield, M. et al. Distinct transcriptional profiles characterize oral epithelium-microbiota interactions. Cell. Microbiol.7, 811–823 (2005). ArticleCASPubMed Google Scholar
Hasegawa, Y. et al. Gingival epithelial cell transcriptional responses to commensal and opportunistic oral microbial species. Infect. Immun.75, 2540–2547 (2007). ArticleCASPubMedPubMed Central Google Scholar
Paddick, J. S., Brailsford, S. R., Kidd, E. A. M. & Beighton, D. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl. Environ. Microbiol.71, 2467–2472 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wickstrom, C. & Svensater, G. Salivary gel-forming mucin MUC5B - a nutrient for dental plaque bacteria. Oral Microbiol. Immunol.23, 177–182 (2008). ArticleCASPubMed Google Scholar
Dawes, C. What is the critical pH and why does a tooth dissolve in acid? J. Can. Dent. Assoc.69, 722–724 (2003). PubMed Google Scholar
de Soet, J. J., Nyvad, B. & Kilian, M. Strain-related acid production by oral streptococci. Caries Res.34, 486–490 (2000). ArticleCASPubMed Google Scholar
Burne, R. A. & Marquis, R. E. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol. Lett.193, 1–6 (2000). ArticleCASPubMed Google Scholar
Marsh, P. D. Are dental diseases examples of ecological catastrophes? Microbiology149, 279–294 (2003). ArticleCASPubMed Google Scholar
Becker, M. R. et al. Molecular analysis of bacterial species associated with childhood caries. J. Clin. Microbiol.40, 1001–1009 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lo, E. C., Schwarz, E. & Wong, M. C. Arresting dentine caries in Chinese preschool children. Int. J. Paediatr. Dent.8, 253–260 (1998). ArticleCASPubMed Google Scholar
Dixon, D. R., Reife, R. A., Cebra, J. J. & Darveau, R. P. Commensal bacteria influence innate status within gingival tissues: a pilot study. J. Periodontol.75, 1486–1492 (2004). ArticlePubMed Google Scholar
Socransky, S. S., Smith, C. & Haffajee, A. D. Subgingival microbial profiles in refractory periodontal disease. J. Clin. Periodontol.29, 260–268 (2002). ArticlePubMed Google Scholar
Haffajee, A. D., Teles, R. P. & Socransky, S. S. The effect of periodontal therapy on the composition of the subgingival microbiota. Periodontol. 200042, 219–258 (2006). ArticlePubMed Google Scholar
Kilic, A. O. et al. Involvement of Streptococcus gordonii b-glucoside metabolism systems in adhesion, biofilm formation, and in vivo gene expression. J. Bacteriol.186, 4246–4253 (2004). ArticleCASPubMedPubMed Central Google Scholar
Merritt, J., Niu, G., Okinaga, T. & Qi, F. Autoaggregation response of Fusobacterium nucleatum. Appl. Environ. Microbiol.75, 7725–7733 (2009). ArticleCASPubMedPubMed Central Google Scholar
Stadtman, E. R. & Levine, R. L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids25, 207–218 (2003). ArticleCASPubMed Google Scholar
Kreth, J., Zhang, Y. & Herzberg, M. C. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J. Bacteriol.190, 4632–4640 (2008). ArticleCASPubMedPubMed Central Google Scholar
Simionato, M. R. et al. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect. Immun.74, 6419–6428 (2006). ArticleCASPubMedPubMed Central Google Scholar
Egland, P. G., Palmer, R. J. Jr & Kolenbrander, P. E. Interspecies communication in _Streptococcus gordonii_-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl Acad. Sci. USA101, 16917–16922 (2004). ArticleCASPubMedPubMed Central Google Scholar
Johnson, B. P. et al. Interspecies signaling between Veillonella atypica and Streptococcus gordonii requires the transcription factor CcpA. J. Bacteriol.191, 5563–5565 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bamford, C. V. et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun.77, 3696–3704 (2009). ArticleCASPubMedPubMed Central Google Scholar
Samaranayake, L. P., Keung Leung, W. & Jin, L. Oral mucosal fungal infections. Periodontol. 200049, 39–59 (2009). ArticlePubMed Google Scholar
Xavier, K. B. et al. Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem. Biol.2, 128–136 (2007). ArticleCASPubMed Google Scholar
Ahmed, N. A., Petersen, F. C. & Scheie, A. A. AI-2/LuxS is involved in increased biofilm formation by Streptococcus intermedius in the presence of antibiotics. Antimicrob. Agents Chemother.53, 4258–4263 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pecharki, D., Petersen, F. C. & Scheie, A. A. LuxS and expression of virulence factors in Streptococcus intermedius. Oral Microbiol. Immunol.23, 79–83 (2008). ArticleCASPubMed Google Scholar
Semmelhack, M. F., Campagna, S. R., Federle, M. J. & Bassler, B. L. An expeditious synthesis of DPD and boron binding studies. Org. Lett.7, 569–572 (2005). ArticleCASPubMed Google Scholar
Li, J. et al. Identification of early microbial colonizers in human dental biofilm. J. Appl. Microbiol.97, 1311–1318 (2004). ArticleCAS Google Scholar
Kolenbrander, P. E., Andersen, R. N. & Moore, L. V. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect. Immun.57, 3194–3203 (1989). CASPubMedPubMed Central Google Scholar
Moore, W. E. & Moore, L. V. The bacteria of periodontal diseases. Periodontol. 20005, 66–77 (1994). ArticleCASPubMed Google Scholar
Taga, M. E., Miller, S. T. & Bassler, B. L. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol. Microbiol.50, 1411–1427 (2003). ArticleCASPubMed Google Scholar
Shao, H., James, D., Lamont, R. J. & Demuth, D. R. Differential interaction of Aggregatibacter (Actinobacillus) actinomycetemcomitans LsrB and RbsB proteins with autoinducer 2. J. Bacteriol.189, 5559–5565 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shao, H., Lamont, R. J. & Demuth, D. R. Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect. Immun.75, 4211–4218 (2007). ArticleCASPubMedPubMed Central Google Scholar
Warburton, P. J., Palmer, R. M., Munson, M. A. & Wade, W. G. Demonstration of in vivo transfer of doxycycline resistance mediated by a novel transposon. J. Antimicrob. Chemother.60, 973–980 (2007). ArticleCASPubMed Google Scholar
Rice, L. B. Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother.42, 1871–1877 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mira, A. in Molecular Oral Microbiology, (ed Rogers, A. H.) 65–85 (Caister, Norfolk, UK, 2008). Google Scholar
Naito, M. et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res.15, 215–225 (2008). ArticleCASPubMedPubMed Central Google Scholar
Koehler, A. et al. Multilocus sequence analysis of Porphyromonas gingivalis indicates frequent recombination. Microbiology149, 2407–2415 (2003). ArticleCASPubMed Google Scholar
Tribble, G. D., Lamont, G. J., Progulske-Fox, A. & Lamont, R. J. Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. J. Bacteriol.189, 6382–6388 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wang, B. Y., Chi, B. & Kuramitsu, H. K. Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol. Immunol.17, 108–112 (2002). ArticleCASPubMed Google Scholar
Li, Y. H., Lau, P. C., Lee, J. H., Ellen, R. P. & Cvitkovitch, D. G. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol.183, 897–908 (2001). ArticleCASPubMedPubMed Central Google Scholar
Petersen, F. C., Tao, L. & Scheie, A. A. DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J. Bacteriol.187, 4392–4400 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tamura, S. et al. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans. Oral Microbiol. Immunol.24, 152–161 (2009). ArticleCASPubMed Google Scholar
Wang, B. Y. & Kuramitsu, H. K. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl. Environ. Microbiol.71, 354–362 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kreth, J., Merritt, J., Shi, W. & Qi, F. Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol. Microbiol.57, 392–404 (2005). ArticleCASPubMedPubMed Central Google Scholar
Perry, J. A., Jones, M. B., Peterson, S. N., Cvitkovitch, D. G. & Levesque, C. M. Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol. Microbiol.72, 905–917 (2009). ArticleCASPubMedPubMed Central Google Scholar
Steinberger, R. E. & Holden, P. A. Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl. Environ. Microbiol.71, 5404–5410 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tetz, G. V., Artemenko, N. K. & Tetz, V. V. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob. Agents Chemother.53, 1204–1209 (2009). ArticleCASPubMed Google Scholar
Mulcahy, H., Charron-Mazenod, L. & Lewenza, S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog.4, e1000213 (2008). ArticleCASPubMedPubMed Central Google Scholar
Agnelli, A. et al. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem.36, 859–868 (2004). ArticleCAS Google Scholar
Gao, Z., Tseng, C.-H., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA104, 2927–2932 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kroes, I., Lepp, P. W. & Relman, D. A. Bacterial diversity within the human subgingival crevice. Proc. Natl Acad. Sci. USA96, 14547–14552 (1999). ArticleCASPubMedPubMed Central Google Scholar
Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci.104, 11889–11894 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science296, 1127–1129 (2002). ArticleCASPubMed Google Scholar
Branda, S. S. et al. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol.186, 3970–3979 (2004). ArticleCASPubMedPubMed Central Google Scholar
Blevins, J. S., Beenken, K. E., Elasri, M. O., Hurlburt, B. K. & Smeltzer, M. S. Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect. Immun.70, 470–480 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fine, D. H. et al. Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology145, 1335–1347 (1999). ArticleCASPubMed Google Scholar
Saito, A. et al. Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol.54, 349–355 (2008). ArticleCASPubMed Google Scholar
Takahashi, N. & Nyvad, B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res.42, 409–418 (2008). ArticleCASPubMed Google Scholar
Pereira, C. S., McAuley, J. R., Taga, M. E., Xavier, K. B. & Miller, S. T. Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria. Mol. Microbiol.70, 1223–1235 (2008). ArticleCASPubMedPubMed Central Google Scholar
Takenaka, S., Pitts, B., Trivedi, H. M. & Stewart, P. S. Diffusion of macromolecules in model oral biofilms. Appl. Environ. Microbiol.75, 1750–1753 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kuboniwa, M. et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol. Microbiol.60, 121–139 (2006). ArticleCASPubMed Google Scholar