- Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L. & Thornton, J. M. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13, 1205–1218 (2008).
Article CAS PubMed Google Scholar
- Andreini, C., Bertini, I. & Rosato, A. Metalloproteomes: a bioinformatic approach. Acc. Chem. Res. 42, 1471–1479 (2009).
Article CAS PubMed Google Scholar
- Andreini, C., Banci, L., Bertini, I. & Rosato, A. Zinc through the three domains of life. J. Proteome Res. 5, 3173–3178 (2006).
Article CAS PubMed Google Scholar
- Weinberg, E. D. Nutritional immunity. Host's attempt to withold iron from microbial invaders. JAMA 231, 39–41 (1975).
Article CAS PubMed Google Scholar
- Weinberg, E. D. Iron availability and infection. Biochim. Biophys. Acta 1790, 600–605 (2009).
Article CAS PubMed Google Scholar
- Cassat, J. E. & Skaar, E. P. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin. Immunopathol. 34, 215–235 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Haley, K. P. & Skaar, E. P. A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microbes Infect. 14, 217–227 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Nobles, C. L. & Maresso, A. W. The theft of host heme by Gram-positive pathogenic bacteria. Metallomics 3, 788–796 (2011).
Article CAS PubMed Google Scholar
- Ong, S. T., Shan Ho, J. Z., Ho, B. & Ding, J. L. Iron-withholding strategy in innate immunity. Immunobiology 211, 295–314 (2006).
- Braun, V. & Hantke, K. Recent insights into iron import by bacteria. Curr. Opin. Chem. Biol. 15, 328–334 (2011).
Article CAS PubMed Google Scholar
- Jabado, N. et al. Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J. Exp. Med. 192, 1237–1248 (2000). The finding that NRAMP1 protects against infection by extrusion of divalent cations from the phagosome, as shown using a fluorescence-based assay.
Article CAS PubMed PubMed Central Google Scholar
- Forbes, J. R. & Gros, P. Iron, managanese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102, 1884–1892 (2003).
Article CAS PubMed Google Scholar
- Schaible, U. E., Collins, H. L., Priem, F. & Kaufmann, S. H. E. Correction of the iron overload defect in β-2-microglobulin knockout mice by lactoferrin abolishes their increased susceptibility to tuberculosis. J. Exp. Med. 196, 1507–1513 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Posey, J. E. & Gherardini, F. C. Lack of a role for iron in the Lyme disease pathogen. Science 288, 1651–1653 (2000). An unprecedented demonstration of a human pathogen that has circumvented aspects of nutritional immunity by evolving to not require Fe.
Article CAS PubMed Google Scholar
- Schalk, I. J. Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway. J. Inorg. Biochem. 102, 1159–1169 (2008).
Article CAS PubMed Google Scholar
- Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004). The primary demonstration that NGAL-mediated binding of catecholate siderophores is crucial for the innate immune response to bacterial infection.
Article CAS PubMed Google Scholar
- Abergel, R. J. et al. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc. Natl Acad. Sci. USA 103, 18499–18503 (2006). A molecular explanation for the observation that the Bacillus anthracis siderophore petrobactin is required for infection, whereas bacillibactin is not. The unusual 3,4-dihydroxybenzoyl chelating subunit of petrobactin prevents siderocalin from binding, establishing petrobactin as a 'stealth siderophore'.
Article CAS PubMed PubMed Central Google Scholar
- Hantke, K., Nicholson, G., Rabsch, W. & Winkelmann, G. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc. Natl Acad. Sci. USA 100, 3677–3682 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Cornelis, P. Iron uptake and metabolism in pseudomonads. Appl. Microbiol. Biotechnol. 86, 1637–1645 (2010).
Article CAS PubMed Google Scholar
- Ratcliff-Griffin, M., Wilks, A. & Stojiljkovic, I. in Iron Transport in Bacteria: Molecular Genetics, Biochemistry, Microbial Pathogenesis and Ecology (eds Crosa, J. H., Mey, A. R. & Payne, S. M.) 86–94 (American Society for Microbiology Press, 2004).
Book Google Scholar
- Honsa, E. S. & Maresso, A. W. Mechanisms of iron import in anthrax. Biometals 24, 533–545 (2011).
Article CAS PubMed Google Scholar
- Fabian, M., Solomaha, E., Olson, J. S. & Maresso, A. W. Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis. J. Biol. Chem. 284, 32138–32146 (2009). A functional analysis of the only known secreted haemophore to be produced by Gram-positive pathogens.
Article CAS PubMed PubMed Central Google Scholar
- Cescau, S. et al. Heme acquisition by hemophores. Biometals 20, 603–613 (2007).
Article CAS PubMed Google Scholar
- Wilks, A. Heme oxygenase: evolution, structure, and mechanism. Antioxid. Redox Signal. 4, 603–614 (2002).
Article CAS PubMed Google Scholar
- Puri, S. & O'Brian, M. R. The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes. J. Bacteriol. 188, 6476–6482 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Chim, N., Iniguez, A., Nguyen, T. Q. & Goulding, C. W. Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J. Mol. Biol. 395, 595–608 (2010).
Article CAS PubMed Google Scholar
- Haley, K. P., Janson, E. M., Heilbronner, S., Foster, T. J. & Skaar, E. P. Staphylococcus lugdunensis IsdG liberates iron from host heme. J. Bacteriol. 193, 4749–4757 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Reniere, M. L. et al. The IsdG-family of haem oxygenases degrades haem to a novel chromophore. Mol. Microbiol. 75, 1529–1538 (2010). The structural elucidation of staphylobilin, the enzymatic degradation product of the IsdG family of haem-degrading enzymes and the only product of enzymatic haem degradation that is distinct from biliverdin.
Article CAS PubMed PubMed Central Google Scholar
- Zhang, R. et al. Crystallization and preliminary crystallographic studies of Campylobacter jejuni ChuZ, a member of a novel haem oxygenase family. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 1228–1230 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Zhang, R. et al. Crystal structure of Campylobacter jejuni ChuZ: a split-barrel family heme oxygenase with a novel heme-binding mode. Biochem. Biophys. Res. Commun. 415, 82–87 (2011).
Article CAS PubMed Google Scholar
- Cornelissen, C. Transferrin-iron uptake by Gram-negative bacteria. Front. Biosci. 8, D836–D847 (2003).
Article CAS PubMed Google Scholar
- Aranda, J. et al. Contribution of the FeoB transporter to Streptococcus suis virulence. Int. Microbiol. 12, 137–143 (2009).
CAS PubMed Google Scholar
- Cartron, M. L., Maddocks, S., Gillingham, P., Craven, C. J. & Andrews, S. C. Feo – transport of ferrous iron into bacteria. Biometals 19, 143–157 (2006).
Article CAS PubMed Google Scholar
- Panciera, R., Marlow, D. & Stintzi, A. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect. Immun. 74, 5433–5444 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Pandey, A. & Sonti, R. V. Role of the FeoB protein and siderophore in promoting virulence of Xanthomonas oryzae pv. oryzae on rice. J. Bacteriol. 192, 3187–3203 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Lemanceau, P., Expert, D., Gaymard, F., Bakker, P. A. H. M. & Briat, J. F. Chapter 12 Role of iron in plant–microbe interactions. Adv. Bot. Res. 51, 491–549 (2009).
Article CAS Google Scholar
- Expert, D. Withholding and exchanging iron: interactions between Erwinia spp. and their plant hosts. Annu. Rev. Phytopathol. 37, 307–334 (1999).
Article CAS PubMed Google Scholar
- Geiser, D. L. & Winzerling, J. J. Insect transferrins: multifunctional proteins. Biochim. Biophys. Acta 1820, 437–451 (2012).
Article CAS PubMed Google Scholar
- Watson, R. J., Millichap, P., Joyce, S. A., Reynolds, S. & Clarke, D. J. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01. BMC Microbiol. 10, 177 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Kehl-Fie, T. E. & Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224 (2010).
Article CAS PubMed Google Scholar
- Nies, D. H. & Grass, G. Transition metal homeostasis. In Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Böck, A. et al.) chapter 5.4.4.3 EcoSal[online] (American Society for Microbiology Press, 2002).
Google Scholar
- Tseng, H. J. Srikhanta, Y., McEwan, A. G. & Jennings, M. P. Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. Mol. Microbiol. 40, 1175–1186 (2001).
Article CAS PubMed Google Scholar
- Anjem, A., Varghese, S. & Imlay, J. A. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 72, 844–858 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Martin, J. E. & Imlay, J. A. The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Mol. Microbiol. 80, 319–334 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Sobota, J. M. & Imlay, J. A. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc. Natl Acad. Sci. USA 108, 5402–5407 (2011). The demonstration that crucial enzymes that utilize Fe 2+ as a cofactor are primary targets of hydrogen peroxide stress, and that bacteria can protect against this stress by shifting from an Fe 2+ -centred to a Mn 2+ -centred metabolism.
Article CAS PubMed PubMed Central Google Scholar
- Kehl-Fie, T. E. et al. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10, 158–164 (2011). The revelation that innate immune-mediated Mn 2+ chelation inactivates bacterial defences against oxidative stress at the same time that the neutrophil attacks the invading pathogen with the oxidative burst.
Article CAS PubMed PubMed Central Google Scholar
- Hantke, K. Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 8, 196–202 (2005).
Article CAS PubMed Google Scholar
- Gläser, R. et al. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nature Immunol. 6, 57–64 (2005).
Article CAS Google Scholar
- Moroz, O. V. et al. Structure of the human S100A12-copper complex: implications for host-parasite defence. Acta Crystallograph. Section D Biol. Crystallogr. 59, 859–867 (2003).
Article CAS Google Scholar
- Moroz, O. V. et al. Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem. 10, 11 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Corbin, B. D. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965 (2008). The first demonstration that calprotectin protects against infection through nutrient metal chelation, establishing calprotectin as the only known Mn 2+ -chelating protein of the innate immune system.
Article CAS PubMed Google Scholar
- McCormick, A. et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect. 12, 928–936 (2010).
Article CAS PubMed Google Scholar
- Urban, C. F. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5, e1000639 (2009). The seminal finding that calprotectin is an abundant component of neutrophil extracellular traps (NETs) and protects against fungal infection.
Article CAS PubMed PubMed Central Google Scholar
- Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11, 227–239 (2012). The first description of a bacterial pathogen exploiting calprotectin to provide a growth advantage over competing commensal bacteria. Specifically, S . Typhimurium uses high-affinity Zn 2+ acquisition systems to overcome calprotectin-mediated Zn 2+ chelation and thrive in the inflamed gut.
Article CAS PubMed PubMed Central Google Scholar
- Bianchi, M., Niemiec, M. J., Siler, U., Urban, C. F. & Reichenbach, J. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J. Allergy Clin. Immunol. 127, 1243–1252.e7 (2011).
Article CAS PubMed Google Scholar
- Hsu, K. et al. Anti-infective protective properties of S100 calgranulins. AntiInflamm. Antiallergy Agents Med. Chem. 8, 290–305 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kehres, D. G., Janakiraman, A., Slauch, J. M. & Maguire, M. E. SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar typhimurium. J. Bacteriol. 184, 3159–3166 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Ammendola, S. et al. High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect. Immun. 75, 5867–5876 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Campoy, S. et al. Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect. Immun. 70, 4721–4725 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Davis, L. M., Kakuda, T. & DiRita, V. J. A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J. Bacteriol. 191, 1631–1640 (2009).
Article CAS PubMed Google Scholar
- Bearden, S. W. & Perry, R. D. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol. Microbiol. 32, 403–414 (1999).
Article CAS PubMed Google Scholar
- Champion, O. L. et al. Yersinia pseudotuberculosis mntH functions in intracellular manganese accumulation, which is essential for virulence and survival in cells expressing functional Nramp1. Microbiology 157, 1115–1122 (2011).
Article CAS PubMed Google Scholar
- Perry, R. D. et al. Manganese transporters Yfe and MntH are Fur regulated and important for the virulence of Yersinia pestis. Microbiology 158, 804–815 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Anderson, E. S. et al. The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect. Immun. 77, 3466–3474 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Rosadini, C. V., Gawronski, J. D., Raimunda, D., Argüello, J. M. & Akerley, B. J. A novel zinc binding system, ZevAB, is critical for survival of nontypeable Haemophilus influenzae in a murine lung infection model. Infect. Immun. 79, 3366–3376 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Corbett, D. et al. Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. Infect. Immun. 80, 14–21 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Bayle, L. et al. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Mol. Microbiol. 82, 904–916 (2011).
Article CAS PubMed Google Scholar
- Hohle, T. H., Franck, W. L., Stacey, G. & O'Brian, M. R. Bacterial outer membrane channel for divalent metal ion acquisition. Proc. Natl Acad. Sci. USA 108, 15390–15395 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Stork, M. et al. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog. 6, e1000969 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Kumar, P., Sannigrahi, S. & Tzeng, Y.-L. The Neisseria meningitidis ZnuD zinc receptor contributes to interactions with epithelial cells and supports heme utilization when expressed in Escherichia coli. Infect. Immun. 80, 657–667 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Li, J. M., Russell, C. S. & Cosloy, S. D. The structure of the Escherichia coli hemB gene. Gene 75, 177–184 (1989).
Article CAS PubMed Google Scholar
- Kallifidas, D. et al. The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor. J. Bacteriol. 192, 608–611 (2010).
Article CAS PubMed Google Scholar
- Brandel, J. et al. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans. 41, 2820–2834 (2012).
Article CAS PubMed Google Scholar
- Klein, J. S. & Lewinson, O. Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence. Metallomics 3, 1098–1108 (2011).
Article CAS PubMed Google Scholar
- Andresen, E. et al. S100A7/psoriasin expression in the human lung: unchanged in patients with COPD, but upregulated upon positive S. aureus detection. BMC Pulm. Med. 11, 10 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Nielubowicz, G. R., Smith, S. N. & Mobley, H. L. T. Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect. Immun. 78, 2823–2833 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Dashper, S. G. et al. A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J. Biol. Chem. 280, 28095–28102 (2005).
Article CAS PubMed Google Scholar
- Botella, H., Stadthagen, G., Lugo-Villarino, G., de Chastellier, C. & Neyrolles, O. Metallobiology of host–pathogen interactions: an intoxicating new insight. Trends Microbiol. 20, 106–112 (2012).
Article CAS PubMed Google Scholar
- Botella, H. et al. Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259 (2011). The surprising findings that Zn 2+ is directed at M. tuberculosis within the phagosome, and that M. tuberculosis neutralizes the toxic effects of Zn 2+ accumulation through efflux.
Article CAS PubMed PubMed Central Google Scholar
- Hou, Z. J., Narindrasorasak, S., Bhushan, B., Sarkar, B. & Mitra, B. Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli. J. Biol. Chem. 276, 40858–40863 (2001).
Article CAS PubMed Google Scholar
- Veyrier, F. J., Boneca, I. G., Cellier, M. F. & Taha, M.-K. A novel metal transporter mediating manganese export (MntX) regulates the Mn to Fe intracellular ratio and Neisseria meningitidis virulence. PLoS Pathog. 7, e1002261 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Rosch, J. W., Gao, G., Ridout, G., Wang, Y.-D. & Tuomanen, E. I. Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae. Mol. Microbiol. 72, 12–25 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Jacobsen, F. E., Kazmierczak, K. M., Lisher, J. P., Winkler, M. E. & Giedroc, D. P. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics 3, 38–41 (2011).
Article CAS PubMed Google Scholar
- McDevitt, C. A. et al. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 7, e1002357 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Dintilhac, A., Alloing, G., Granadel, C. & Claverys, J.-P. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25, 727–739 (1997).
Article CAS PubMed Google Scholar
- Lawrence, M. C. et al. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6, 1553–1561 (1998).
Article CAS PubMed Google Scholar
- Ogunniyi, A. D. et al. Central role of manganese in regulation of stress responses, physiology, and metabolism in Streptococcus pneumoniae. J. Bacteriol. 192, 4489–4497 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Samanovic, M. I., Ding, C., Thiele, D. J. & Darwin, K. H. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11, 106–115 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Wolschendorf, F. et al. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 108, 1621–1626 (2011). The report that Cu transport proteins are crucial for mycobacterial Cu resistance and infection in animal models.
Article CAS PubMed PubMed Central Google Scholar
- White, C., Lee, J., Kambe, T., Fritsche, K. & Petris, M. J. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284, 33949–33956 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kim, B.-E., Nevitt, T. & Thiele, D. J. Mechanisms for copper acquisition, distribution and regulation. Nature Chem. Biol. 4, 176–185 (2008).
Article CAS Google Scholar
- Kim, H. W. et al. Human macrophage ATP7A is localized in the _trans_-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds. Inflammation 35, 167–175 (2011).
Article CAS Google Scholar
- Macomber, L., Rensing, C. & Imlay, J. A. Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J. Bacteriol. 189, 1616–1626 (2007).
Article CAS PubMed Google Scholar
- Djoko, K. Y. et al. Phenotypic characterization of a copA mutant of Neisseria gonorrhoeae identifies a link between copper and nitrosative stress. Infect. Immun. 80, 1065–1071 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Edwards, J. L. Neisseria gonorrhoeae survival during primary human cervical epithelial cell infection requires nitric oxide and is augmented by progesterone. Infect. Immun. 78, 1202–1213 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Xu, F. F. & Imlay, J. A. Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl. Environ. Microbiol. 78, 3614–3621 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Achard, M. E. S. et al. The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect. Immun. 78, 2312–2319 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Macomber, L. & Imlay, J. A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl Acad. Sci. USA 106, 8344–8349 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Knapp, C. W., Fowle, D. A., Kulczycki, E., Roberts, J. A. & Graham, D. W. Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources. Proc. Natl Acad. Sci. USA 104, 12040–12045 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Hakemian, A. S. & Rosenzweig, A. C. The biochemistry of methane oxidation. Annu. Rev. Biochem. 76, 223–241 (2007).
Article CAS PubMed Google Scholar
- Kenney, G. E. & Rosenzweig, A. C. Chemistry and biology of the copper chelator methanobactin. ACS Chem. Biol. 7, 260–268 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Kim, H. J. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305, 1612–1615 (2004).
Article CAS PubMed Google Scholar
- Balasubramanian, R. & Rosenzweig, A. C. Copper methanobactin: a molecule whose time has come. Curr. Opin. Chem. Biol. 12, 245–249 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Hakemian, A. S. et al. The copper chelator methanobactin from Methylosinus trichosporium OB3b binds copper(I). J. Am. Chem. Soc. 127, 17142–17143 (2005).
Article CAS PubMed PubMed Central Google Scholar
- El Ghazouani, A. et al. Copper-binding properties and structures of methanobactins from Methylosinus trichosporium OB3b. Inorg. Chem. 50, 1378–1391 (2011).
Article CAS PubMed Google Scholar
- Balasubramanian, R., Kenney, G. E. & Rosenzweig, A. C. Dual pathways for copper uptake by methanotrophic bacteria. J. Biol. Chem. 286, 37313–37319 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Shafeeq, S. et al. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol. Microbiol. 81, 1255–1270 (2011).
Article CAS PubMed Google Scholar
- Sharan, R., Chhibber, S. & Reed, R. H. A murine model to study the antibacterial effect of copper on infectivity of Salmonella enterica serovar Typhimurium. Int. J. Environ. Res. Public Health 8, 21–36 (2011).
Article CAS PubMed Google Scholar
- Ward, S. K., Abomoelak, B., Hoye, E. A., Steinberg, H. & Talaat, A. M. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol. Microbiol. 77, 1096–1110 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Liu, T. et al. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nature Chem. Biol. 3, 60–68 (2006). A seminal paper describing the identification of a large, previously uncharacterized family of transcriptional regulators, highlighted by the Cu+-specific repressor CsoR.
Article CAS Google Scholar
- Festa, R. A. et al. A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol. Microbiol. 79, 133–148 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Kim, J. S. et al. The sctR of Salmonella enterica serova Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol. Lett. 210, 99–103 (2002).
Article CAS PubMed Google Scholar
- Osman, D. et al. Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J. Biol. Chem. 285, 25259–25268 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Outten, F. W., Huffman, D. L., Hale, J. A. & O'Halloran, T. V. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276, 30670–30677 (2001).
Article CAS PubMed Google Scholar
- Lu, Z. H., Dameron, C. T. & Solioz, M. The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions. Biometals 16, 137–143 (2003).
Article CAS PubMed Google Scholar
- Hsu, Y.-H. et al. Association of NRAMP 1 gene polymorphism with susceptibility to tuberculosis in Taiwanese aboriginals. J. Formos. Med. Assoc. 105, 363–369 (2006).
Article CAS PubMed Google Scholar
- Huang, J. H. et al. Analyses of the NRAMP1 and IFN_-γ_R1 genes in women with Mycobacterium avium-intracellulare pulmonary disease. Am. J. Respir. Crit. Care Med. 157, 377–381 (1998).
Article CAS PubMed Google Scholar
- Tanaka, G. et al. Pulmonary Mycobacterium avium complex infection: association with NRAMP1 polymorphisms. Eur. Respir. J. 30, 90–96 (2007).
Article CAS PubMed Google Scholar
- Isidor, B. et al. Hyperzincemia and hypercalprotectinemia: unsuccessful treatment with tacrolimus. Acta Paediatr. 98, 410–412 (2009).
Article CAS PubMed Google Scholar
- Saito, Y. et al. Hyperzincemia with systemic inflammation: a heritable disorder of calprotectin metabolism with rheumatic manifestations? J. Pediatr. 140, 267–269 (2002).
Article PubMed Google Scholar
- Lee, A. C. W. & Li, C. H. Age as a factor in severe bacterial infection in transfusion-dependent patients with thalassemia major. Clin. Infect. Dis. 38, 1194–1195; author reply 1195 (2004).
Article PubMed Google Scholar
- Wang, S.-C. et al. Severe bacterial infection in transfusion-dependent patients with thalassemia major. Clin. Infect. Dis. 37, 984–988 (2003).
Article PubMed Google Scholar
- Gerhard, G. S. et al. Vibrio vulnificus septicemia in a patient with the hemochromatosis HFE C282Y mutation. Arch. Pathol. Lab. Med. 125, 1107–1109 (2001).
CAS PubMed Google Scholar
- Höpfner, M. et al. Yersinia enterocolitica infection with multiple liver abscesses uncovering a primary hemochromatosis. Scand. J. Gastroenterol. 36, 220–224 (2001).
Article PubMed Google Scholar
- Weinberg, E. D. Survival advantage of the hemochromatosis C282Y mutation. Perspect. Biol. Med. 51, 98–102 (2008).
Article PubMed Google Scholar
- Pishchany, G. et al. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe 8, 544–550 (2010). Evidence that polymorphisms within haemoglobin affect susceptibility to S. aureus infections.
Article CAS PubMed PubMed Central Google Scholar
- Torres, V. J., Pishchany, G., Humayun, M., Schneewind, O. & Skaar, E. P. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J. Bacteriol. 188, 8421–8429 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Krishna Kumar, K. et al. Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH. J. Biol. Chem. 286, 38439–38447 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Zarantonelli, M.-L. et al. Transgenic mice expressing human transferrin as a model for meningococcal infection. Infect. Immun. 75, 5609–5614 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Schryvers, A. B. & Morris, L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol. Microbiol. 2, 281–288 (1988).
Article CAS PubMed Google Scholar
- Noinaj, N. et al. Structural basis for iron piracy by pathogenic Neisseria. Nature 483, 53–58 (2012). The crystal structure of the Neisseria spp. TbpA in complex with transferrin.
Article CAS PubMed PubMed Central Google Scholar
- Calmettes, C., Alcantara, J., Yu, R.-H., Schryvers, A. B. & Moraes, T. F. The structural basis of transferrin sequestration by transferrin-binding protein B. Nature Struct. Mol. Biol. 19, 358–360 (2012).
Article CAS Google Scholar
- Borkow, G. & Gabbay, J. Copper as a biocidal tool. Curr. Med. Chem. 12, 2163–2175 (2005).
Article CAS PubMed Google Scholar
- Mikolay, A. et al. Survival of bacteria on metallic copper surfaces in a hospital trial. Appl. Microbiol. Biotechnol. 87, 1875–1879 (2010).
Article CAS PubMed Google Scholar
- Casey, A. L. et al. Role of copper in reducing hospital environment contamination. J. Hosp. Infect. 74, 72–77 (2010).
Article CAS PubMed Google Scholar
- Zhou, T., Ma, Y., Kong, X. & Hider, R. C. Design of iron chelators with therapeutic application. Dalton Trans. 41, 6371–6389 (2012).
Article CAS PubMed Google Scholar
- Summer, K. H. et al. The biogenic methanobactin is an effective chelator for copper in a rat model for Wilson disease. J. Trace Elem. Med. Biol. 25, 36–41 (2011).
Article CAS PubMed Google Scholar
- Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Hoffman, L. R. et al. Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog. 6, e1000712 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Ponton, F., Wilson, K., Cotter, S. C., Raubenheimer, D. & Simpson, S. J. Nutritional immunology: a multi-dimensional approach. PLoS Pathog. 7, e1002223 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Rohmer, L., Hocquet, D. & Miller, S. I. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol. 19, v341–348 (2011).
Article CAS Google Scholar
- Eisenreich, W., Dandekar, T., Heesemann, J. & Goebel, W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nature Rev. Microbiol. 8, 401–412 (2010).
Article CAS Google Scholar
- Price, C. T. D., Al-Quadan, T., Santic, M., Rosenshine, I. & Abu Kwaik, Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334, 1553–1557 (2011).
Article CAS PubMed Google Scholar
- Segond, D. et al. NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection. Plant J. 58, 195–207 (2009).
Article CAS PubMed Google Scholar
- Dellagi, A. et al. Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol. 150, 1687–1696 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Rokhbakhsh-Zamin, F. et al. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21, 556–566 (2011).
PubMed Google Scholar
- Lemanceau, P., Bauer, P., Kraemer, S. & Briat, J.-F. Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321, 513–535 (2009).
Article CAS Google Scholar
- Cheung, J., Beasley, F. C., Liu, S., Lajoie, G. A. & Heinrichs, D. E. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol. Microbiol. 74, 594–608 (2009).
Article CAS PubMed Google Scholar
- Beasley, F. C. et al. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol. Microbiol. 72, 947–963 (2009).
Article CAS PubMed Google Scholar